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ABSTRACT

The paper discusses a mathematical nature of
signs and symbols, and relates it to information
processing and understanding, structure of the
mind and brain, learning, and pattern
recognition. I discuss past limitations of
algorithms and neural networks, combina-torial
complexity, the roles of concepts and emotions
in mind’s mechanisms, and various types of
logic underlying mathematical techniques. A
mathematical theory of semiosis, adaptive
processes of sign interpretation, is described; it
includes a similarity measure between signals
and internal representations and fuzzy dynamic
logic, a mechanism of the similarity
maximization. Mathematical mechanisms of sign
and symbol processing are presented and
related to the functioning of mind.
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1. SEMIOTICS, MIND, AND BRAIN

Semiotics studies signs and symbols, which
are generally understood as entities designating
some other entities in the world or in the mind.
Using words like mind, thought, imagination,
emotion, concept represents a specific
challenge: people use these words in many

ways colloquially, but their use in science and
especially in mathematics of intelligence has not
been uniquely defined and is a subject of active
research and ongoing debates [1]. Whereas
standardized definitions come at the end of the
development of a theory (like “force” was
defined by the 2nd Newton’s law, following
centuries of less precise usage) this paper
adheres to a following guidance: we need to
make sure that our definitions: (1) are
mathematically exact, (2) correspond to the
usage in scientific and mathematical community,
(3) correspond to the general usage. According
to a dictionary [2], mind includes conscious and
unconscious processes, especially thought,
perception, emotion, will, memory, and
imagination, and it originates in brain. These
constituent notions will be discussed throughout
the paper. Specific neural mechanisms in brain
“implementing” various mind functions constitute
the relationship between the mind and brain; we
will discuss how the mathematical descriptions
of mind are implemented in brain.

In mathematics and in “Symbolic AI” there
is no difference between signs and symbols.
Both are considered as notations, arbitrary non-
adaptive entities with axiomatically fixed
meaning. But in general culture, symbols are
understood also as psychological processes of
sign interpretation. Jung emphasized that
symbol-processes connect conscious and
unconscious [3], Pribram wrote of symbols as
adaptive, context-sensitive signals in the brain,
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whereas signs he identified with less adaptive
and relatively context-insensitive neural signals
[4].

In this paper I use “symbol” as a symbol-
process, corresponding to general notions of
symbol in culture and psychology. The symbol-
processes are closely related to the processes
of thinking, and a mathematical theory suitable
for the description of sym-bols is closely related
to the mathematical description of the working
of the mind.

A broad range of opinions exists on the
mathematical methods suitable for the
description of the mind. Founders of artificial
intelligence thought that formal logic was
sufficient [5] and no specific mathematical
techniques would be needed to describe the
mind [6]. An opposite point of view is that there
are few specific mathematical constructs, “the
first principles” of mind. Among researchers
taking this view is Grossberg, who suggests that
the first principles include a resonant matching
between lower-level signals [7] and higher-level
representations and emotional evaluation of
conceptual contents [8]; Zadeh develops theory
of granularity [9], Meystel develops hierarchical
multiscale organization with specific intra-level
closed-loop structures [10]; and the author,
suggests similarity measures between lower-
level signals and higher-level representations [11]
and the fuzzy dynamic logic [12] among first
principles of mind.

2. MIND, LOGIC, AND COMPLEXITY

Understanding the meaning of signals
coming from sensory organs involves
associating the subsets of signals corresponding
to an object with internal representations. This
recognition activates internal brain signals
leading to mental and behavioral responses
involved in understanding.

Developing mathematical descriptions of the
very first recognition step of this seemingly
simple association-recognition-understanding

process has not been easy, a number of
difficulties have been encoun-tered during the
past fifty years. These difficulties have been
summarized under the term combinatorial
complexity (CC) [11]. The problem was first
identified in pattern recognition and
classification problems in the 1960s and was
named “the curse of dimensionality” [13]. The
following thirty years of developing adaptive
statistical pattern recognition and neural
network algorithms led to a conclusion that
these approaches often encountered CC of
learning requirements. Rule-based systems
were proposed to solve the problem of learning
complexity. An initial idea was that rules would
capture the required knowledge and eliminate a
need for learning. However, rule systems and
expert systems in the presence of variability,
encountered CC of rules. Model-based
systems were proposed to combine advantages
of adaptivity and rules by utilizing adaptive
models, but they encountered computational
CC (N and NP complete algorithms).

Combinatorial complexity has been related
to the type of logic, underlying various
algorithms and neural networks [14]. Formal
logic is based on the “law of excluded third”,
according to which every statement is either
true or false and nothing in between. Therefore,
algorithms based on formal logic have to
evaluate every little variation in data or internal
representations as a separate logical statement
(hypothesis); a large number of combinations of
these variations causes combinatorial
complexity. In fact, combinatorial complexity of
algorithms based on logic has been related to
the Gödel theory: it is a manifestation of the
incompleteness of logic in finite systems [15].
Multivalued logic and fuzzy logic were
proposed to overcome limitations related to the
law of excluded third [16]. Yet the mathematics
of multivalued logic is no different in principle
from formal logic. Fuzzy logic encountered a
difficulty related to the degree of fuzziness, if
too much fuzziness is specified, the solution
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does not achieve a needed accuracy, if too
little, it might become similar to formal logic.

Another view on these difficulties can be
obtained by comparing mathematical tech-
niques to human mind. An essential role of
emotions in the working of the mind was
analyzed from the psychological and neural
perspective by Grossberg [17], from the neuro-
physiological perspective by Damazio [18], and
from the learning and control perspective by the
author [19]. One reason for engineering
community being slow in adopting these results
is the cultural bias against emotions as a part of
thinking processes. Plato and Aristotle thought
that emotions are “bad” for intelligence, this is a
part of our cultural heritage, and the founders of
Artificial Intelligence repeated it. Yet, as
discussed in the next section, combining
conceptual understanding with emotional
evaluations might be crucial for overcoming the
combinatorial complexity as well as the related
difficulties of logic.

3. MODELING FIELD THEORY (MFT)

Modeling field theory [11], summarized
below, associates lower-level signals with
higher-level representations, resulting in
understanding of signals, while overcoming the
difficulties described in the previous section. It
is achieved by using flexible measures of
similarity between the representations and the
input signals combined with the fuzzy dynamic
logic. Modeling field theory is a multi-level,
hetero-hierarchical system. This section
describes a basic mechanism of interaction
between two adjacent hierarchical levels of
signals (fields of neural activation); sometimes, it
will be more convenient to talk about these two
signal-levels as an input to and output from a
(single) processing-level.

At each level, the output are concepts
recognized (or formed) in input signals. Input
signals X are associated with (or recognized, or
grouped into) concepts according to the

representations-models and similarity measures
at this level. In the process of association-
recognition, models are adapted for better
representation of the input signals; and similarity
measures are adapted so that their fuzziness is
matched to the model uncertainty. The initial
uncertainty of models is high and so is the
fuzziness of the similarity measure; in the
process of learning models become more
accurate and the similarity measure more crisp,
the value of the similarity increases. We call this
mechanism fuzzy dynamic logic.

3.1 Internal Models, Learning, and
Similarity

 During the learning process, new
associations of input signals are formed resulting
in evolution of new concepts. Input signals
{X(n), n ∈ N}, is a field of input neuronal
synapse activation levels, X = {Xd, d = 1,...
D}; a set of concepts {h ∈ H} is characterized
by internal parameters {Sh} and by models
(representations) of the signals {Mh(Sh,n)}
corresponding to concepts {h}. For each
model h, the set of parameters is denoted as Sh

= {S
a

h, a = 1,... A}. Learning process increases
a similarity measure between the sets of models
and signals, L({X},{M}). The similarity
measure is a function of model parameters and
associations between the input synapses and
concepts-models. A similarity measure is
designed so that it treats each model as an
alternative for each subset of signals

L({X},{M}) = 
n∈N
∏

h∈H
∑ r(h) l(X(n) | h), (1)

here l(X(n)|h) (or simply l(n|h)) is a conditional
partial similarity between signal vector X(n) and
model Mh (when mapping this terminology onto
its implemetation in the brain, n and h are neural
indexes numbering individual neurons or small
groups of neurons). For example, l(n|h) can be
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selected as a probability density function. Then
L is a total likelihood (this interpretation does
not require statistical independence among
signal vectors n and n': dependencies are
accounted for by model dependencies on {n}).

In the process of learning, concept-models
are constantly modified. From time to time a
system forms a new concept, while retaining an
old one as well; alternatively, old concepts are
sometimes merged.  Formation of new
concepts and merging of old ones require a
modification of the similarity measure (1); the
reason is that more models always result in a
better fit between the models and data. This is a
well known problem, it can be addressed by
reducing (1) using a “penalty function”, p(N,M)
that grows with the number of models M, and
this growth is steeper for a smaller amount of
data N. For example, an asymptotically
unbiased maximum likelihood estimation leads
to multiplicative  p(N,M) = exp(-Npar/2), where
Npar is a total number of adaptive parameters in
all models (this penalty function is known as
Akaike Information Criterion, see [11] for
further discussion and references).

In case, when a set of observations, N,
corresponds to a continuous flow of signals, for
example, a flow of visual stimuli in time and
space, it is convenient instead of eq.(1) to
consider its continuous version,

L = exp ?
N

 ln (
h ∈H
∑ r(h) l(X(n) | h) ), (2)

where N is a continuum, such as time-space. In
this case, models describe continuous modeling
fields and maximization of similarity L can be
compared to minimization of action in a physical
field theory.

3.2 Fuzzy dynamic logic and MFT

The learning process consists in estimating
internal parameters S and associating subsets of
signals with concepts by maximizing the

similarity (1). When likelihood is used as a
similarity measure, this is a problem of the
maximum likelihood estimation. Note, that (1)
contains a total of HN items; this is a source of
the combinatorial complexity in many algorithms
(called maximum hypothesis testing) which
attempt to maximize similar expressions by first
maximizing each item over the parameters and
then finding the maximal item.

Modeling field theory solves this problem
by utilizing fuzzy dynamic logic [11,20]. Let us
introduce association variables f(h|n)

f(h|n) = r(h) l(X(n)|h) /
h '∈H
∑ r(h') l(X(n)|h'). (3)

Eq.(3) looks like the Bayes formula for a
posteriori probabilities, if l(n|h) are conditional
likelihoods. An internal dynamics of the
Modeling Fields (MF) is defined as follows,

df(h | n)/dt = f(h | n) 
h '∈H
∑ {[δhh' - f(h'|n)] ·

[?lnl (n|h')/?Mh'] ∂M '
h'/∂Sh' · dSh'/dt, (4)

dSh/dt={?
N

f(h|n)[?lnl(n|h)/?Mh]∂M '
h/∂Sh, (5)

here
δhh' is 1 if h=h', 0 otherwise. (6)

Parameter t is the time of the internal dynamics
of the MF system (like a number of internal
iterations). A more specific form of (5) can be
written when Gaussian-shape functions are used
for conditional partial similarities,

l(n|h) =  G(X(n) | Mh(Sh, n), Ch).  (7)

where G is a Gaussian function with mean Mh

and covariance matrix Ch (this is not a
necessary assumption, but it will simplify some
discussions later, also, it is not same as usual
Gaussian limitation, in fact, it is not much of a
limitation at all, because a weighted sum of
Gaussians in (1) can approximate any positive
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function). And let us specify the dynamics of the
MFT as follows,

dS
a

h/dt  = [Yh

-1
]
ab Zh

b
 , (8)

dCh/dt = -0.5Ch

-2
 ?
N

f(h|n)[Ch-Dnh Dnh
T]; (9)

Dnh  =  ( X (n) – Mh' ) , (10)

Yh

ab
 = ?

 N
f(h|n)[M

;a

hCh

-1
M

;b

h], (11)

Zh

b
  = ?

 N
f(h|n)[M

;b

hCh

-1
Dnh], (12)

here superscript T denotes a transposed row-
vector; summation is assumed over repeated
indexes a, b; and (;) denotes partial derivatives
with respect to parameters  S with
corresponding indexes:

M
;b

h  =   ∂Mh / ∂S
b

h . (13)

The following theorem was proven.
Theorem. Equations (3) through (6) (or (3)

and (8 through 12)) define a convergent
dynamic system MF with stationary states
defined by max{Sh}L.
It follows that the stationary states of an MF
system give the maximum similarity solution of
the model-based pattern recognition problem.
When likelihood is used as similarity, the
stationary values of parameters {Sh} are
asymptotically unbiased and efficient estimates
of these parameters [21]. A computational
complexity of the MF method is linear in N.

3.3 MFT hierarchical organization

The previous sub-section described a single
processing layer in a hierarchical MFT system.
An input to each layer is a set of signals X(n),

or in neural terminology, an input field of
neuronal activations. An output are the
activated models Mh(Sh, n); it is a set of models
or concepts recognized in the input signals.
Equations (3-6) or (3) and (7-12) describe a
loop-process: at each iteration (or internal-time
t) the l.h.s. of the equations contain association
variables f(h|n) and other model parameters
computed at the previous iteration. In other
words, the output models “act” upon the input
to produce a “refined” output models (at the
next iteration). This process is directed at
increasing the similarity between the models and
signals. It can be described as an internal
behavior generated by the models.

The output models initiate other actions as
well. First, activated models (neuronal axons)
serve as input signals to the next processing
layer, where more general concept-models are
recognized or created (internal behavior within
the MFT system). Second, concept-models
along with the corresponding instinctual signals
and emotions may activate behavioral models
and generate behavior directed into the outside
world (a process not contained within the
above equations).

MFT describes an intelligent system
composed of multiple adaptive intelligent agents:
each concept-model is an agent, which is
"dormant" until activated by a high similarity
value. When activated, it is adapted to the
signals, so that the similarity increases. Every
piece of signal may activate several concepts,
which "compete" with each other, while
adapting to the new signals.

3.4 MFT theory of mind

MFT dynamics, (3) and (4-6) or (7-12),
describes an elementary process of perception
or cognition, in which a large number of model-
concepts compete for incoming signals, model-
concepts are modified and new ones are
formed, and eventually, connections are
established among signal subsets on the one
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hand, and model-concepts on the other.
Perception refers to processes in which the
input signals come from sensory organs and
model-concepts correspond to objects in the
surrounding world. Cognition refers to higher
levels in the hierarchy where the input signals
are concepts activated at lower levels and
model-concepts are more complex and
correspond to situations and relationships
among lower-level concepts.

A salient mathematical property of this
processes ensuring a smooth convergence is a
correspondence between uncertainty in models
(that is, in the knowledge of model parameters)
and uncertainty in associations f(h|n). In
perception, as long as model parameters do not
correspond to actual objects, there is no match
between models and signals; many models
poorly match many objects, and associations
remain fuzzy; this can be described more
specifically, if Gaussian functions are used for
l(X|h): for poorly matched models, the
covariances, Ch, are large (that is, model
uncertainties are large), which in turn prevents
f(h|n) from attaining definite (0,1) values.
Eventually, one model (h') wins a competition
for a subset {n'} of input signals X(n), when
parameter values match object properties, Ch'

becomes smaller than other Ch, and f(h'|n)
values become close to 1 for n∈{n'} and 0 for
n∉{n'}. Upon the convergence, the entire set of
input signals {n} is divided into subsets, each
associated with one model-object, Ch become
small, and fuzzy a priori concepts become crisp
concepts. Cognition is different from perception
in that models are more general, more
abstracts, and input signals are the activation
signals from concepts identified (cognized) at a
lower hierarchical level; the general
mathematical laws of cognition and perception
are similar in MFT. Let us discuss relationships
between the MFT theory, theory of solitons in
non-linear systems and concepts of mind
originated in psychology, philosophy, linguistics,
aesthetics, neuro-physiology, neural networks,

artificial intelligence, pattern recognition, and
intelligent systems.

Solitons and MFT resonances. The
physical nature of concepts of mind in MFT is
similar to that of solitons. If the data X(n) are all
given from the very beginning, equations (3-6)
or (7-12) converge to a fixed point of MFT
system. This fixed point is comprised of a
number of resonances [22] between the field of
models and field of data, in other words, the
models come into a resonance with the data,
and the system stays in this resonant state.
Formation of a resonance takes different time
(number of iterations) for various models, and it
is more proper to talk about each model
coming into a resonance with a corresponding
data subset. If there is a continuous flow of
data, X(n,t), a resonance is a long-living state
(long comparative to a single iteration cycle).
The nature of this resonance between the
modeling fields and the data field is such that a
particular subset of data (corresponding to an
object h) "drives” the modeling-field to a
specific value (or pattern) Mh(Sh,n,t), and
these modeling-field values "drive” the
association-fields, f(h|n), to {0,1} values. It
follows that concepts of mind in MFT theory
are resonant states, or solitons of a highly
nonlinear MFT system. It is interesting to note
recent results [23] establishing relationships
between solitons in certain nonlinear systems
and theorems of inversive geometry. More
research is needed to establish general
relationships between concepts of mind as long-
living resonant states in a nonlinear system and a
body of results obtained in the theory of
integrable systems and solitons [24].

Elementary thought-process, conscious-
ness, and unconscious. A thought-process or
thinking involves a number of sub-processes
and attributes, including internal representations
and their manipulation, attention, memory,
concept formation, knowledge, generalization,
recognition, understanding, meaning, prediction,
imagination, intuition, emotion, decisions,
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reasonining, goals, behavior, conscious and
unconscious [7,10,11].

A “minimal” subset of these processes has
to involve mechanisms for afferent and efferent
signals [22], in other words, bottom-up and top-
down signals coming from outside (external
sensor signals) and from inside (internal
representation signals). According to Carpenter
and Grossberg [22] every recognition and
concept formation process involves a
“resonance” between these two types of
signals. In MFT, at every level in a hierarchy the
afferent signals are represented  by the input
signal field X, and the efferent signals are
represented  by the modeling field signals Mh;
resonances correspond to high similarity
measures l(n|h) for some subsets of {n} that are
“recognized” as concepts (or objects) h. The
mechanism leading to the resonances is given by
(3-6) or (7-12), and we call it an elementary
thought-process. The elementary thought-
process involves elements of conscious and
unconscious processes, imagination, memory,
internal representations, concepts, instincts,
emotions, understanding and behavior as further
described later.

A description of working of the mind as
given by the MFT dynamics was first provided
by Aristotle [25], describing thinking as a
learning process in which an a priori form-as-
potentiality (fuzzy model) meets matter (sensory
signals) and becomes a form-as-actuality (a
concept). Jung suggested that conscious
concepts are developed by mind based on
genetically inherited structures of mind,
archetypes, which are inaccessible to
consciousness [3]; and Grossberg [7] suggested
that only signals and models attaining a resonant
state (that is signals matching models) reach
consciousness.

Understanding. In the elementary thought
process, subsets in the incoming signals are
associated with recognized model-objects,
creating phenomena (of the MFT-mind) which
are understood as objects, in other words

signal subsets acquire meaning (e.g., a subset
of retinal signals acquires a meaning of a chair).
There are several aspects to understanding and
meaning. First, object-models are connected
(by emotional signals [8,11,19]) to instincts that
they might satisfy, and also to behavioral
models that can make use of them for instinct
satisfaction. Second, an object is understood in
the context of a more general situation in the
next layer consisting of more general concept-
models, which accepts as input-signals the
results of object recognition. That is, each
recognized object-model (phenomenon) sends
(in neural terminology, activates) an output
signal; and a set of these signals comprises input
signals for the next layer models, which
‘cognize’ more general concept-models. And
this process continues up and up the hierarchy
of models and mind toward the most general
models a system could come up with, such as
models of universe (scientific theories), models
of self (psychological concepts), models of
meaning of existence (philosophical concepts),
models of a priori transcendent intelligent
subject (theological concepts).

Imagination.  Imagination involves
excitation of a neural pattern in a visual cortex in
absense of an actual sensory stimulation (say,
with closed eyes) [7]. Imagination was often
considered to be a part of thinking processes;
Kant [26] emphasized the role of imagination in
the thought process, he called thinking “a play
of cognitive functions of imagination and
understanding”. Whereas pattern recognition
and artificial intelligence algorithms of recent
past would not know how to relate to this [5,6],
Carpenter and Grossberg resonance model [22]
and the MFT dynamics both describe
imagination as an inseparable part of thinking:
imagined patterns are top-down signals that
prime the percepting cortex areas (priming is a
neural terminology for making neural cells to be
more readily excited). In MFT, the imagined
neural patterns are given by models Mh. MFT
(in agreement with neural data) just adds details
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to Kantian description: thinking is a play of
higher-hierarchical-level imagination and
lower-level understanding. Kant identified this
“play” [described by (3-6) or (7-12)] as a
source of aesthetic emotion; modeling aesthetic
emotion in MFT is described later.

Mind vs. Brain. Historically, the mind is
described in psychological and philosophical
terms, whereas the brain is described in terms
of neurobiology and medicine. Withing scientific
exploration the mind and brain are different
description levels of the same system.
Establishing relationships between these
description is of great scientific interest. Today
we approach solutions to this challenge [27],
which eluded Newton in his attempt to establish
physics of “spiritual substance” [28]. General
neural mechanisms of the elementary thought
process (which are similar in MFT and ART
[22]) have been confirmed by neural and
psychological experiments, this includes neural
mechanisms for bottom-up (sensory) signals,
top-down “imagination” model-signals, and the
resonant matching between the two [29].
Adaptive modeling abilities are well studied with
adaptive parameters identified with synaptic
connections [30]; instinctual learning mechanisms
have been studied in psychology and linguistics
[31].

Instincts and emotions. Functioning of the
mind and brain cannot be understood in
isolation from the system’s “bodily needs”. For
example, a biological system (and any
autonomous system) needs to replenish its
energy resources (eat); this and other
fundamental unconditional needs are indicated
to the system by instincts, which could be
described as internal sensors. Emotional signals,
generated by this instinct are perceived by
consciousness as “hunger”, and they activate
behavioral models related to food searching and
eating. In this paper we are concerned primarily
with the behavior of recognition: instinctual
influence on recognition modify the object-
perception process (3) - (6) in such a way, that

desired objects “get” enhanced recognition; it
can be accomplished by modifying priors, r(h).

Aesthetic emotions and instinct for
knowledge. Recognizing objects in the
environment and understanding their meaning is
so important for human evolutionary success
that there has evolved an instinct for learning
and improving concept-models. This instinct is
described in MFT by maximization of similarity
between the models and the world, (1).
Emotions related to satisfaction-dissatisfaction
of this instinct are perceived by us as harmony-
disharmony (between our understanding of how
things ought to be and how they actually are in
the surrounding world). According to Kant [32]
these are aesthetic emotions.

Intuition includes an intuitive perception
(imagination) of object-models and their
relationships with objects in the world, as well
as higher-level models of relationships among
simpler models. Intuition involves fuzzy
unconscious concept-models, which are in a
state of being learned and being adapted
toward crisp and conscious models (a theory);
such models may satisfy or dissatisfy the
knowledge instinct in varying degrees before
they are accessible to consciousness, hence the
complex emotional feel of an intuition.  The
beauty of a physical theory discussed often by
physicists is related to satisfying our feeling of
purpose in the world, that is, satisfying our need
to improve the models of the meaning in our
understanding of the universe.

Beauty. Harmony is an elementary aesthetic
emotion related to improvement of object-
models. Higher aesthetic emotions are related
to the development of more complex “higher”
models: we perceive an object or situation as
aesthetically pleasing if it satisfies our learning
instinct, that is the need for improving the
models and increasing similarity (1). The highest
forms of aesthetic emotion are related to the
most general and most important models.
According to Kantian analysis [32], among the
highest models are models of the meaning of
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our existence, of our purposiveness or
intentionality, and beauty is related to improving
these models: we perceive an object or a
situation as beautiful, when it stimulates
improvement of these highest models of
meaning. Beautiful is what “reminds” us of our
purposiveness.

Theory testing and future directions. The
general neural mechanisms of the elementary
thought process, which includes neural
mechanisms for bottom-up (sensory) signals,
top-down “imagination” model-signals, and the
resonant matching between the two [33], have
been confirmed by neural and psychological
experiments (these mechanisms are similar in
MFT and ART [22]). Adaptive modeling
abilities are well studied and adaptive
parameters have been identified with synaptic
connections [34]; instinctual learning mechanisms
have been studied in psychology and linguistics
[35]. Ongoing and future research will confirm,
disprove, or suggest modifications to specific
mechanisms of model parameterization and
parameter adaptation (5) or (8), reduction of
fuzziness during learning (9), similarity measure
(1) as a foundation of aesthetic instinct for
knowledge, relationships between psychological
and neural mechanisms of learning on the one
hand and, on the other, aesthetic feelings of
harmony and emotion of beautiful.
Differentiated forms of (1) need to be
developed for various forms of the knowledge
instinct (child development, language learning,
etc.) Future experimental research needs to
study in details the nature of hierarchical
interactions: to what extent the hierarchy is
“hardwired” vs. adaptively emerging; what is a
hierarchy of learning instinct? theory of
emerging hierarchical models will have to be
developed (that is, adaptive, dynamic, fuzzy
hierarchy- heterarchy).

4. THINKING PROCESS AND
SEMIOTICS

Semiotics studies symbol-content of culture
[36]. For example, consider a written word
"chair". It can be interpreted by a mind to refer
to something else: an entity in the world, a
specific chair, or the concept "chair" in the
mind. In this process, the mind, or an intelligent
system is called an interpreter, the written
word is called a sign, the real-world chair is
called a designatum, and the concept in the
interpreter's mind, the internal representation of
the results of interpretation is called an
interpretant of the sign. The essence of a sign
is that it can be interpreted by an interpreter to
refer to something else, a designatum. This
process of sign interpretation is an element of a
more general process called semiosis which
consists of multiple processes of sign
interpretation at multiple levels of the mind
hierarchy.

In classical semiotics [37] words sign and
symbol were not used consistently; in this
paper, a sign means something that can be
interpreted to mean something else (like a
mathematical notation, or a word), and the
process of interpretation is called a symbol-
process, or symbol. Intepretation, or
understanding of a sign by the mind according
to MFT is due to the fact that a sign (e.g., a
word) is a part of an object-model (or a
situation-model at higher levels of the mind
hierarchy). The mechanism of a sign
interpretation therefore involves first an
activation of an object-model, which is
connected to instincts that the object might
satisfy, and also to behavioral models that can
make use of this object for instinct satisfaction.
Second, a sign is understood in the context of a
more general situation in the next layer
consisting of more general concept-models,
which accepts as input-signals the results of
lower-level sign recognition. That is, recognized
signs comprise input signals for the next layer
models, which ‘cognize’ more general concept-
models.

A symbol-process of a sign interpretation
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coincides with an elementary thought-process.
Each sign-interpretation or elementary thought
process, a symbol, involves conscious and
unconscious, emotions and concepts; this
definition connecting symbols to archetypes
(fuzzy unconscious model-concepts)
corresponds to a usage in general culture and
psychology [3,4]. As described previously, this
process continues up and up the hierarchy of
models and mind toward the most general
models. In semiotics this process is called
semiosis, a continuous process of creating and
interpreting the world outside (and inside our
mind) as an infinite hierarchical stream of signs
and symbol-processes.
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