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Abstract

It is a premise of this research that prevention of near-term terrorist attacks

requires an understanding of current terrorist organizations to include their composi-

tion, the actors involved, and how they operate to achieve their objectives. To aid in

this understanding, operations research, sociological, and behavioral theory relevant

to the study of social networks are applied, thereby providing theoretical foundations

for new and useful methodologies to analyze non-cooperative organizations. Such

organizations are defined as those trying to hide their structures or are unwilling to

provide information regarding their operations; examples include criminal networks,

secret societies, and, most importantly, clandestine terrorist organizations.

Techniques leveraging information regarding multiple dimensions of interper-

sonal relationships, inferring from them the strengths of interpersonal ties, are ex-

plored. Hence, a layered network construct is offered that provides new analytic

opportunities and insights generally unaccounted for in traditional social network

analysis. These offer decision makers improved courses of action designed to impute

influence upon an adversarial network, thereby achieving a desired influence, per-

ception, or outcome to one or more actors within the target network. In addition,

this knowledge can also be used to identify key individuals, relationships, and or-

ganizational practices. Subsequently, such analysis may lead to the identification of

weaknesses that can be exploited in an endeavor to either eliminate the network as

a whole, cause it to become operationally ineffective, or influence it to directly or

indirectly support National Security Strategy.

In today’s world, proficiency in this aspect of warfare is a necessary condition

to ensure United States National Security, as well as to promote and maintain global

stability. Quantitative methods serving as the basis for, and discriminator between,

courses of action seeking a path towards peace are a principal output of this research.
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ANALYSIS OF LAYERED SOCIAL NETWORKS

I. Introduction

“To know them means to eliminate them” - Colonel Mathieu in the movie,
Battle of Algiers [Pontecorvo, 1967].

1.1 Background

This opening quote refers to Colonel Mathieu’s objective of quelling the vio-

lent insurrection lead by the National Liberation Army (ALN), under direction by

the National Liberation Front (FLN). The FLN’s struggle for independence from

French rule in Algeria relied upon underground organizations not unlike the terror-

ist networks highlighted in today’s media. Colonel Mathieu realized that defeating

this elusive organization could only be accomplished by understanding the organiza-

tion’s objectives and its underlying social structure, consequently placing a greater

reliance upon intelligence and analysis than mere application of military force.

Truly knowing these clandestine organizations means understanding how they

arrange and build their structures through recruitment, their underlying motivations

for violent and seemingly irrational behavior, and their methods of operational con-

trol and execution of terrorist activities. Once gained, this knowledge can then be

used to identify key individuals, relationships, and organizational practices. Sub-

sequently, such analysis may lead to the identification of weaknesses that can be

exploited in an endeavor to either eliminate the network as a whole, cause it to

become operationally ineffective, or influence it to directly or indirectly support our

own objectives. In today’s interconnected world, proficiency in this type of warfare

is a necessary condition to ensure U.S. national security, as well as to promote and

maintain global stability.

1



Table 1.1: Means to Achieve U.S. National Security Strategy

1. Champion aspirations for human dignity.
2. Strengthen alliances to defeat global terrorism and work to prevent attacks

against us and our friends.
3. Work with others to defuse regional conflicts.
4. Prevent our enemies from threatening us, our allies, and our friends with

weapons of mass destruction.
5. Ignite a new era of global economic growth through free markets and free

trade.
6. Expand the circle of development by opening societies and building the

infrastructure of democracy.
7. Develop agendas for cooperative action with the other main centers of

global power.
8. Transform America’s National Security Institutions to meet the challenges

and opportunities of the twenty-first century.
9. Engage the opportunities and confront the challenges of globalization.

The National Security Strategy (NSS) focuses not rather on the “great armies”

and countries with “great industrial capabilities” as was required in the past, but

upon the “shadowy networks of individuals [that] can bring great chaos and suffering

to our shores for less than it costs to purchase a single tank” [The President, 2006,

np]. The second of eight means (see Table 1.1) to achieve the NSS–Strengthen

alliances to defeat global terrorism and work to prevent attacks against us and our

friends–deals directly with the subject of terrorism and how to counter its effects

upon the nation. Specifically, it necessitates the disruption and destruction of global

terrorist networks via attacks upon their “. . . leadership; command, control, and

communications; material support; and finances” [The President, 2006, pg. 1].

It can also easily be argued that the remaining means, at a minimum, indi-

rectly focus upon conquering terrorism, either by reducing the conditions that give

rise to future terrorists or by minimizing the risks associated with our country’s

vulnerabilities to terrorist acts. These latter efforts are led by the Department of

Homeland Security (DHS). Accordingly, the prioritized strategic objectives of DHS

include: “prevent terrorist attacks within the US; reduce America’s vulnerability to
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terrorism; and minimize the damage and recover from attacks that do occur” [DHS,

2002, pg. vii].

It is a premise of this research that prevention of near-term terrorist attacks

requires an understanding of current terrorist organizations to include their composi-

tion, the actors involved, and how they operate to achieve their objectives. Further,

the prevention of far-term terrorist attacks requires a number of preemptive mea-

sures both external and internal to current terrorist organizations. Externally to

the existing terrorist networks, the economic, social, and political conditions that

contribute to the recruitment process must be addressed; this appears to be the up-

coming, preferred U.S. strategy. Internally, current members must be convinced (one

way or another) to discontinue the use of violent behavior as the primary means of

achieving their political objectives. The mid-term realm is hypothesized to consist

of a continuous struggle of a combination of offensive (counterterrorism) and preven-

tive (anti-terrorism) measures that facilitate the transition over time to a long-term

approach. The realm of primary interest in this research is to support near-term,

counterterrorism efforts.

1.2 Problem Definition

The overarching objective of this research is to expand operations research,

sociological, and behavioral theory relevant to the study of social networks, thereby

providing theoretical foundations for new and useful methodologies to analyze non-

cooperative organizations. Social networks are classically defined as “the set of actors

[individuals] and the ties [relationships] among them” [Wasserman and Faust, 1994,

pg. 9]. For the purposes of this research, non-cooperative organizations are those

trying to hide their structures or are unwilling to provide information regarding

their operations; examples include criminal networks, secret societies, and, most

importantly, clandestine terrorist organizations [cf., Sparrow, 1991; van Meter, 2002].
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Given the resultant understanding and insights provided by the analytic tech-

niques developed in the course of this research, decision makers are offered better

courses of action that impute influence upon the adversary’s network. Such courses

of action seek to achieve a target influence, perception, or outcome to one or more

actors within the network through either direct or indirect means. The method or

methods of imposing influence upon a network may take on a number of forms;

for example, specific individuals may be directly targeted or a number of relation-

ships between two or more individuals may be exploited or altered via information,

influence, or psychological operations. Further, kinetic, non-kinetic, or a mix of

approaches, may be considered to achieve these methods of influence. In addition,

the time-line upon which influence is applied could range from immediate to long-

term; consequently, options to mitigate near- and far-term terrorist activities can be

explored, respectively.

Quantitative methods serving as the basis for, and discriminator between,

courses of action are a principal output of this research. The quantitative study

of social networks has been undertaken in ‘modern’ sociological and anthropological

studies for some time, beginning with a graphical representation of the social net-

work known as the sociogram [Moreno, 1953]. However, the majority of applications

have been primarily descriptive in nature, focusing on “[measuring] interpersonal

relations in small groups . . . , [describing] properties of social structures and indi-

vidual social environments . . . , and [assessing] the impact of structural arrangement

on group problem solving and individual performance. . . ” [Wasserman and Faust,

1994, pg. 4, 12-13]. There exist a number of works that have investigated clandestine

organizations, which are included within the context of ‘non-cooperative,’ networks

from a SNA perspective [e.g., Sparrow, 1991; Carley et al., 2002; Krebs, 2002; van

Meter, 2002; Sageman, 2004; Xu and Hsinchun, 2004]. The research presented here

builds upon such sociologically-oriented methodologies as well as the recent oper-

ations research-oriented works of Renfro [2001], Sterling [2004], and Clark [2005],

4



all of which have bridged gaps between descriptive sociological and anthropological

techniques and prescriptive operations research techniques.

As Renfro and numerous other works within the genre of SNA suggest, the

commodity of influence flows through these social networks, a phenomenon often

used to study the spread of rumors, acceptance of innovations, coalescence of group

opinions, and so forth. However, the rates and capacities of the conceptual flow of

interpersonal influence are predicated upon the situation, the organizational norms,

the relationships between, and the individual characteristics held among the inter-

acting individuals. Analyses that often yield asymmetry of relationship existence

between actors include ‘who works for whom,’ which individuals are opinion leaders

or early adopters of innovation, or even ‘who is friends with whom’ where some re-

spondents forget friends [cf., Brewer and Webster, 1999]. Alternatively, asymmetry

of influence over other individuals may be conjured by the classic ‘E. F. Hutton’

example or any other leader-follower type of relationship1. Further, the direction of

dominance may change, given a change in context. For example, the team captain

may not be the class leader. Means to measure and take advantage of these effects of

influence within operations research methods provide an opportunity to improve the

current social network modeling capabilities, particularly those having underlying

assumptions not amenable to the study of non-cooperative networks.

Renfro also discussed multiple contexts of relationships between individuals

and posited an accompanying multi-commodity network formulation; however, there

remain numerous research questions and clarifications of these concepts and their

underlying theory. For example, when people interact, there is often more than one

affiliation or context upon which that interaction may benefit (e.g., past friendships,

familial, education, religious, and professional contexts). Consequently, modeling

1Recall the advertisement for the brokerage, E. F. Hutton. The typical scene involved a crowded,
noisy, room. When a representative of this firm began to speak, all other conversation immediately
stopped in order to hear what advice or information was being offered.
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Affiliations
Unique
Actor

Figure 1.1: Layered Social Network

these contexts as layers of affiliation (see Figure 1.1) may provide a means to gain

new insight into how, why, and to what extent dyadic interactions occur.

1.3 General Assumptions and Scope

Admittedly, social interaction, and therefore the subsequent network compo-

sition and/or topology, is far from a static process. As time progresses, friendships

can strengthen, weaken, or even disappear altogether. Additionally, new friendships

may be formed, either among individuals already within the network, incorporating

entirely new members, or both. Finally, current members may leave the network over

time due to any number of reasons (e.g., alienation by the group, renunciation of

one’s membership to the group, capture, or death). Consequently, a social network

is a dynamic entity.

Interestingly, most studies investigating the propagation of opinions, rumors,

or influence over time throughout a given social network assume a known, and un-

changing, network topology. This is clearly contrary to social interaction observed

in the real world, even for non-cooperative networks that minimize their social inter-

action in an effort to maintain secrecy. Structural change over time is inevitable due

to the risky endeavors often undertaken (i.e., actors and their associated links disap-

6



pear due to capture or death); further, the never-ending need to ensure survival of

the organization and the fight for its cause necessitates the creation of new bonds of

trust (i.e., recruitment, shared experience, and so forth). Current developments at-

tempting to overcome this limiting assumption include the computational modeling,

essentially an agent-based simulation approach proposed by [Monge and Contractor,

2003, Chapter 4], and the dynamic network analyses techniques proposed by [Carley,

2003; Marsili et al., 2004].

Unsurprisingly, dynamic analysis is almost certainly more representative of

real-world social network systems and is perhaps the ultimate modeling goal, partic-

ularly for the analysis of long-term anti-terrorism approaches. However, the dynamic

approach subsumes a range of data requirements. For example, in order to model

actor behaviors, one must know, or hypothesize at a minimum, the possible courses

of action available to the actor conditioned upon a multitude of environments, the

likelihoods of the individual taking one of those actions, the subsequent behavior of

other actors in reaction, and so forth.

Another potential issue for viewing and analyzing this problem dynamically is

the underlying assumption of the time-sensitive nature of counterterrorist operations.

It is assumed that, in general, the time-sensitive aspect will be weighed against

both data uncertainty and availability. Said another way, this type of analysis will

likely not enjoy the general assumption of accurate and complete data that prevails

throughout the SNA literature [Thomason et al., 2004].

Uncertainty in the data of both individual and overall network characteristics

will remain an underlying concern despite continuing investigative efforts. Related

dilemmas have been previously studied by Stork and Richards [1992] regarding non-

respondents in studies (akin to a terrorist not answering the question “who are your

fellow terrorists?”); the effects of unintended (or intended, depending upon the con-

text) asymmetries upon structural properties of friendship networks [Brewer and

Webster, 1999]; and the impact upon classical SNA centrality measures as a result
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of incorrect node or edge data Borgatti et al. [2006]. Over time and with more inves-

tigative resources, reliability and confidence in the data may increase; however, the

amount of time reserved for intelligence gathering to reduce this uncertainty is also

provided to the terrorists and their recruiting, operations planning, and execution

activities.

Given these considerations, methodologies that can be implemented quickly to

accommodate updated intelligence and are robust enough in the face of uncertainty to

still permit useful quantification of network phenomena are desired. Sensitivity and

parametric analysis enable testing and characterization of the requisite assumptions

and are assumed to sufficiently alleviate data concerns. Consequently, this research

assumes that a static picture of the network at given points in time is sufficient for the

methodologies proposed for two main reasons: scarcity and questionable accuracy

of available data and the potentially time-sensitive nature of operations that may

apply the methodologies herein.

As in the real-world, research data characterizing not only non-cooperative

networks but the contexts within which they interact is difficult to obtain. In order

to study these multi-level networks and test such measures, data composed of either

open, unclassified sources or of generated notional networks are presented.

As previously noted, short-term goals for the global war on terror include

disbanding, disrupting, and eliminating current organizations; long-term goals seek

to reduce the underlying conditions favorable to terrorism. Although the long-term

strategy is likely the only way to ensure our nations’s future security, the short-term

strategy will not only improve our immediate security but will contribute to the

long-term strategy as well. Therefore, this research focuses primarily upon short-

term strategies that implement counterterrorist options.

In order to develop these options, new measures of inter-personal influence and

modeling techniques to employ them are proposed, accommodating when possible

the nuances of non-cooperative networks. These measures and their accompany-
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ing theory are compared to existing ones when possible for verification purposes.

Additionally, previous mappings between SNA and OR, specifically in the area of

network flow models, require further work in the area of flow typology. Overall,

this research lends itself to improved modeling capabilities regarding the impact of

influence operations upon the individuals within a non-cooperative network.

1.4 Research Objectives

The primary objective of this research is to develop the underlying theory and

associated methodology used to generate and analyze courses of action that may be

applied to networks of non-cooperative individuals. The courses of action specifically

seek to shape the intentions of our adversaries through influence. This activity is

within the context of military psychological operations that strive to influence an

adversarys “. . . emotions, motives, objective reasoning, and ultimately, the behavior

of their governments, organizations, groups, and individuals” [DOD, 2006a, pg. II-1].

These activities are often undertaken in order to achieve a given political goal. The

ability to quantitatively assess potential courses of action both prior to execution–

to facilitate decision making and alternative selection–and after–to determine the

operation’s efficacy–serves as a crucial first step to improve our understanding and

execution of warfare that extends beyond the realm of physical damage.

To accomplish these objectives, previous SNA and OR cross-sectional works

are built upon. This research differs from earlier works in methodological scope

as well as the investigation of benefits, disadvantages, and incorporation of layered

network perspectives and information into various mathematical techniques. Specific

objectives of this research include:

1. Develop a new centrality-like measure, via extensions of several others in use,

to screen networks for potential actors of interest. The theoretical bases that
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make this measure more amenable to non-cooperative networks, advantages,

and computational challenges are presented.

2. Develop new techniques to identify key members of an organization in line

with the ‘key-player problem’ described by Borgatti [2003a]. Mathematical

programs equivalent to current heuristic approaches are presented and com-

pared. Further extensions of the programs, and therefore the technique, are

developed and discussed to accommodate specific analysis requirements as well

as other methodological constructs presented in other areas of this research.

3. Develop a theory of measuring interpersonal relationships accounting for multi-

plexity. This measurement approach facilitates the incorporation of multiplex-

ity into mathematical programs of social networks. Methods to characterize

and analyze non-cooperative networks as layered, inter-dependent networks

are also investigated. In addition, determining which contexts or layers are of

interest, given a specified organization and scenario, is explored.

4. Exploration and explanation of how to aggregate, as appropriate, multiple so-

cial networks into a single, weighted network upon which classical and newly

developed analyses may be performed. In addition, if psychological operations

are applied to one or more layers, investigation of how the weights may change

over time and the affect upon the network performance and exchange of influ-

ence (or power, or status, etc.) measures in response to these external forces

(courses of action) are performed.

5. Extend current power theory and develop a pair-wise valued measure of gains,

losses, or thresholds of influence between two individuals. Incorporation of

this measure into generalized network flow formulations and its subsequent

impact upon analysis methodology and results are explored. A new measure,

an extension of the centrality measure proposed by Freeman et al. [1991], is

developed.
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6. Apply the mathematical modeling, decision-analysis-like techniques, newly de-

veloped social network measures, and other, related theory to several, un-

classified examples–presenting a process that provides actionable information

facilitating course of action development, analysis, and improved capability to

forecast roles and responsibilities of individuals in a non-cooperative network

when faced with limited information.

7. Combine the most promising techniques into a prototype tool-set, developed

in MATLAB, for intelligence analysis use by the sponsoring organizations.

1.5 Dissertation Overview

The organization of this dissertation document is as follows. Chapter II presents

the literature relevant to the problem areas and builds the case for the contribu-

tion objectives described above. Chapter III provides an overview of the complete

methodology and its general assumptions. Chapter IV presents a new social network

measure that addresses some limitations of currently available approaches which can

be used as a screening technique if limited information exists. Chapter V presents a

mathematical programming formulation for a concept amenable to targeting key in-

dividuals within a social network. Chapter VI develops and discusses various means

to measure the multiplexity of a relationship, which serves as a proxy for the strength

of an interpersonal relationship. Chapter VII explores the nuances of persuasion and

power theory in order to estimate gains and losses of information or influence as a

function of sender-receiver interactions. Although smaller examples are provided

for illustrative purposes throughout the document, Chapter VIII details a larger

example, where all aspects of the research methodology are applied and discussed.

Chapter IX provides overall, general conclusions as well as recommendations for

future research.
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II. Literature Review

This chapter serves several purposes. First, a brief review of graph theoretic defi-

nitions provide underlying terminology. Second, a review of the history and recent

developments of social network analysis (SNA) literature is provided, with the latter

focusing on the investigation of clandestine (e.g., criminal or terrorist) organiza-

tions. The behavioral literature and current modeling efforts of such networks is

summarized, providing a basis of understanding for the extremist phenomenon.

In light of the ultimate goal of negating the threat of terrorist networks via

the application of influence, ranging from psychological operations to lethal force,

underlying theories related to influence and motivation are presented. A number of

these theories provide an opportunity to quantify interpersonal influence, albeit some

require various assumptions that may or may not lend themselves to the analysis of

non-cooperative networks. Opportunities to merge these social network techniques

with those of operations research (OR), similarly accomplished by Renfro [2001], are

explored.

Several operations research methods have been developed to measure inter-

personal influence, incorporating this information into various models to study or-

ganizational phenomena [Renfro, 2001; Clark, 2005]. Possible areas of opportunity

to enhance existing theory, as well as potential improvements to accommodate non-

cooperative network phenomena, are suggested. Obtaining information character-

izing non-cooperative networks is fundamentally challenging. Consequently, this

research suggests that viewing interpersonal relationships as multidimensional, as

opposed to the generally single dimensional assessment, offers a means to improve

upon existing models of social networks. Measurement of the strength of inter-

personal relationships is derived from a combined and weighted assessment across

multiple relationship contexts or dimensions. This research area is derived from de-
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cision analytic techniques and its underlying theory of attribute weighting, as well

as appropriate graph theory and SNA-related literature.

Lastly, leveraging the output of these techniques as input to a variety of math-

ematical programming techniques comprise a major focus area of this research. As

such, applicable mathematical programming models are reviewed, as well as existing

sociological techniques that may benefit from such techniques. As noted by Borgatti

[2005], the underlying assumptions of information and influence flow play pivotal

roles when choosing a specific social network measure and interpreting its output.

Consequently, mismatches between the type of flow and the type of measure applied

often results in erroneous conclusions. The typology of flow processes within a net-

work and the implications upon network flow formulations are examined. Overall,

the combination of techniques derived or extended from these fields comprise the

various elements of the research methodology.

2.1 Graph Theory

While not a complete review of graph theory, this section serves to establish

a common graph-theoretic lexicon applicable to the SNA methods of interest within

the remainder of this dissertation. Social networks are typically represented and

analyzed via a graph [Moreno, 1953]. A graph, G = (N, A), is comprised of the set N

of n nodes corresponding to the individuals, and the set A of m arcs representing the

ties, relationships, bonds, or some other contextually-dependent connection between

two individuals [Newman, 2003, pg. 173]. An arc going from actor i to actor j is

denoted (i, j). Such relationships can be undirected or directed, the latter resulting

in a digraph. Undirected relationships are symmetric, or (i, j) = (j, i), implying

that the relationship, bond, and so forth runs equivalently in either direction. If

the context of the sociometric data (e.g., accounting for supervisory roles) or if

responses within a sociological survey are not equitable between two given actors
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(e.g., the forgetting of friends), a directed, asymmetric arc is more appropriate [cf.

Brewer and Webster, 1999].

The number of nodes within a graph denotes the order of the graph. The

density of the graph is the ratio of the number of edges to the theoretical maximum

number of edges possible. The maximum number of edges is n(n− 1)/2 for a graph

and n(n−1) for a digraph. Given that the individuals and their existing relationships

are often the focus of analyses, a number of SNA measures attempt to describe how

information, influence, rumors, adoption, and other influences may flow through the

network as a result of its topology.

A walk is defined as “a sequence of nodes and lines, starting and ending with

nodes, in which each node is incident with the lines following and preceding it in the

sequence” [Wasserman and Faust, 1994, pg. 105]. SNA literature generally allows

both nodes and arcs to be repeated within a walk [Wasserman and Faust, 1994, pg.

105] whereas graph-theoretic literature does not [Deo, 1974, pg. 19]. Within the

set of walks are trails and paths. A trail is “a walk in which all of the lines are

distinct, though some node(s) may be included more than once” [Wasserman and

Faust, 1994, pg. 107]. A path is defined as “a walk in which all nodes and all lines

are distinct” [Wasserman and Faust, 1994, pg. 105]. Additionally, given a digraph,

the term path also implies that the direction of the arcs within the path also follow

the direction of the path; otherwise it is a chain [Bazaraa et al., 1990, pg. 422]. The

length of a walk, trail, path, or chain is determined simply by the summation of the

lengths of each of its arcs. Paths, directed walks with unique arcs and nodes, are

taken advantage of within a new social measure, discussed later.

A common assumption underlying many SNA measures, either explicitly or

implicitly, requires that information or influence flow along the shortest path within a

network–termed a geodesic path. The geodesic path is defined as “the [not necessarily

unique] shortest path through the network from one vertex to another” [Newman,
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2003, pg.173]. The length of the longest geodesic path between all possible node

pairs defines the diameter (D) of a network [Newman, 2003, pg.173].

Although graph theory considers the nature of all types of networks, this re-

search pays particular attention to previous efforts related to the study of social

networks and other types of graphs demonstrating properties similar to those in-

duced by the social interaction of individuals. Next, the concepts of ‘random’ and

‘small world’ graphs are briefly discussed and compared to the network that appears

to lie between these realms–the social one.

2.2 Graphs and Social Networks

Recent works such as Watts [1999], Barabási [2002], and Buchanan [2002]

have popularized what is referred to as the ‘small-world’ network phenomena. The

initial concept of small-world networks is often credited with Milgram’s research that

investigated the passing of letters to an unknown individual via known contacts. By

tracing the paths taken by the correspondence, the famous ‘six degrees of separation’

between ostensibly distant and unconnected actors was observed [Milgram, 1967].

Such networks are generally contrasted with the random graphs concept devel-

oped by Erdos and Renyi [1959] due to the underlying processes that form the links

between nodes. However, random and small-world graphs do share some common

properties. The use of random networks to study social network phenomena has

been attempted, but with mixed results [cf. Newman et al., 2002; Newman, 2003;

Borgatti et al., 2006].

2.2.1 Random and Small-World Graphs

In his book, Small Worlds, Watts compares and contrasts the properties of both

random and small-world graphs, often referred to within the literature as exponential

and scale-free graphs, respectively [Watts, 1999]. Watts details the formal definition
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of random graphs, which are essentially “. . . a vertex set, consisting of n vertices,

and an edge set that is generated in some random fashion” [Watts, 1999, pg. 36].

Two prevalent approaches used to develop random graphs are defined as follows.

Definition 1. G (n, M) is a labeled graph with vertex set V (G) = {1, 2, . . . , n},
having M randomly chosen edges (where M usually depends on n). G (n, M) is

frequently abbreviated as GM [Watts, 1999, pg. 36].

Definition 2. G (n, p) is a labeled graph with vertex set V (G) = {1, 2, . . . , n}, in

which every one of the possible Cn
2 edges exist with probability 0 < p < 1, independent

of any other edges. G (n, p) is frequently abbreviated as Gp [Watts, 1999, pg. 36].

Noting that the degree of a vertex (k) is defined as the number of edges incident

to that vertex, the distribution of values for degrees among the vertices is one of the

differences between random and small-world graphs [Albert et al., 2000, pg. 379].

The degree distribution of vertices within networks developed as either GM or Gp

tend to be homogenous, with exponential-like distributions, implying that vertices

with high degree are unlikely [Albert et al., 2000, pg. 379]. On the other hand,

the degree distribution of small-world networks is often described as inhomogeneous,

following the power law distribution described by P (k) ∼ k−c [Albert et al., 2000,

pg. 379]. Consequently, highly connected nodes are statistically unlikely in random

(or exponential) networks and statistically significant in small-world (or scale-free)

networks [Albert et al., 2000, pg. 379].

The term ‘scale-free’ was coined by Barabási and his colleagues during their

investigation of link distribution of the Internet. The power law observation, and

therefore the lack of a ‘bell-shaped’ distribution that was expected, lead to Internet

nodes that “defied explanation, almost as if they had stumbled on a significant

number of people who were 100 feet tall . . . ” [Barabási and Bonabeau, 2003, pg.

53]. As Buchanan explains,

[The] power-law distribution is special in that there is no “typical” num-
ber of links. In other words, the network has no inherent bias to produce
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elements with an expected number of links; rather this number varies
widely over a huge range. That is to say, there is no inherent “scale” for
the number of links, and the network is scale-free [Buchanan, 2002, pg.
215].

Numerous connections between real-world, emergent networks and small-world

(or scale-free) phenomenon have been made. Examples include cellular metabolism,

Hollywood movie stars, Internet connections and world-wide-web page links, protein

regulatory networks within cells, research collaborations, and sexual relationships

[Buchanan, 2002; Barabási and Bonabeau, 2003, pg. 54].

As Buchanan points out, a purely random network has the small-world prop-

erty as far as connectivity is concerned [Buchanan, 2002, pg. 54]. Essentially, the

random networks exhibit the ‘six degrees of separation’ effect. However, Buchanan

also states that “. . . for 1,000 people linked together randomly, the degree of cluster-

ing turns out to be about 0.01, which is not even close to what one finds in a real

social network” [Buchanan, 2002, pg. 54].

Clustering, the main differentiating characteristic between random and small-

world graphs, is a topological consequence that results from the underlying “moti-

vations for why we create, maintain, dissolve, and reconstitute our communication

networks” [Monge and Contractor, 2003, pg. 223]. Such motivations fall into one of

three theoretical mechanisms which include homophily, proximity, and social support

[Monge and Contractor, 2003, pg. 223].

Homophily infers that people are more likely to communicate with others sim-

ilar to themselves, classically referenced by the adage “birds of a feather, flock to-

gether” [Monge and Contractor, 2003, pg. 223]. Additionally, Brass reiterates that

homophily has “been operationalized on such dimensions as age, sex, education, pres-

tige, social class, tenure, and occupation,” and suggested that similarity between two

actors is “thought to ease communication, increase predictability of behavior, and

foster trust and reciprocity” [Brass, 1995, pg. 51].
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Proximity mechanisms assume that closer distances, either physically or, in

light of today’s computer networked world, electronically, facilitate “. . . the likeli-

hood of communication by increasing the probability that individuals will meet and

interact” [Monge and Contractor, 2003, pg. 227].

Lastly, social support theories focus “. . . on the ways in which communication

networks help organizational members to cope with stress” [Monge and Contractor,

2003, pg. 235]. Relationships, and therefore network connections, are developed as

a result of the individual’s need to achieve mental well-being, such as the need to

belong or the need to discuss personal problems, and determine potential solutions,

with an empathetic individual [Monge and Contractor, 2003, pg. 235-6].

In order to more clearly differentiate between random and small-world net-

works, Watts provides definitions of the network properties characteristic path length

and clustering coefficient that, when combined, serve as the accepted technical and

mathematical definition of a small-world network. Such a network is assumed to be

connected.

Definition 3. The characteristic path length (L) of a graph is the median of the

means of the shortest path lengths connecting each vertex v ∈ V (G) to all other

vertices. That is, calculate d (v, j)∀j ∈ V (G) find d̄ for each v. Then define L as

the median of
{
d̄
}

[Watts, 1999, pg. 29].

Definition 4. The clustering coefficient (γ) of a graph characterizes the extent to

which vertices adjacent to any vertex v are adjacent to each other. Therefore, γ = 1

implies that the graph consists of n/(k + 1) disconnected, but individually complete

subgraphs (cliques), and γ = 0 implies that no neighbor of any vertex v is adjacent

with any other neighbor of v [Watts, 1999, pg. 33].

The combination of Definitions 3 and 4 serve as the formal graph-theoretic

definition of a small world network.
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Definition 5. A small-world graph is a graph with n vertices and average degree k̄

that exhibits L ≈ Lrandom

(
n, k̄

)
, but γ � γrandom ≈ k̄/n, where the asymptotic limit

of Lrandom is ln (n) /ln
(
k̄
)

[Watts, 1999, pg. 56, 114].

The small-world definition essentially states that this type of network “displays

considerable local connectedness while also having a low degree of separation with the

other nodes in the network” [Monge and Contractor, 2003]. Interestingly, although

a variety of real-world networks, including some social networks, have been shown

to adhere to the small-world network construct, it does not necessarily mean that all

social networks are small-world networks, particularly when the networks of interest

are non-cooperative by nature.

As an example, Krebs applied SNA to the hijacker network that perpetrated

the 9-11 attacks. The network, discernable only after the fact and composed of 19

individuals, had a measured characteristic path length of Lterrorists = 4.75 and a

clustering coefficient of γterrorists = 0.49 [Krebs, 2002]. The average degree of this

network was k̄ = 3.47. Using this information and Definition 5, a comparable small

world network would expect γrandom ≈ 3.47/19 = 0.183 � 0.49 and Lrandom =

ln(19)/ln(3.47) = 2.36. The clustering coefficient appears to meet the small-world

criteria. However, the path length (Lterrorists) is longer than expected.

After adding six additional links, based upon what Krebs presumed would be

necessary and logical in order for the terrorists to conduct their operations, Lterrorists

was reduced to 2.79–much closer to the value expected by definition. Krebs concludes

that the clandestine nature of this network forced the members to limit their com-

munication and connectivity in order to prevent detection.

This observation is in agreement with the findings of Baker and Faulkner who,

in studying organized crime in the electrical industry, determined that the struc-

tural development of such networks “. . . is driven primarily by the need to maximize

concealment, rather than the need to maximize [information] efficiency” [Baker and

Faulkner, 1993, pg. 837]. Consequently, non-cooperative networks may not necessar-
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ily exhibit the small-world properties, either due to our limited knowledge of their

organizational structure, the inherent nature of their operations, or both. Fortu-

nately, this neither disqualifies them as social networks nor prevents the application

of SNA methods upon them.

2.2.2 Social Network Analysis

The field of social network analysis is often traced back to the work of Moreno

[1953], who developed the sociogram, a pictorial representation of a social group

via a graph. Thus, with the natural connection to graph theory, Moreno devised a

means to quantitatively study the qualitative nature of relationships among individ-

uals within a social grouping [Moreno, 1953]. Subsequently, a variety of tools and

techniques have been developed to study the structural nature of social networks

and the implications of topology and personal characteristics upon overall network

behavior. Most of these techniques perform calculations upon the mathematical

representation of the sociogram, the sociomatrix (X).

The sociomatrix is a two-way matrix, “indexed by the sending actors (the

rows) and the receiving actors (the columns) . . . ,” and is equivalent to the adjacency

matrix of a graph when the sociogram captures dichotomous, symmetric relationships

[Wasserman and Faust, 1994, pg. 77]. For a given relation (�) and the set of g actors

in N = {n1, n2, . . . , ng}, the value xij ∈ X is equal to the value of the tie from ni

to nj on relation � [Wasserman and Faust, 1994, pg. 79-80]. For dichotomous

relationships, this value is either 1 or 0 for actors that are or are not adjacent,

respectively; however, when xij is not limited to this data type, it is a valued relation.

Although the majority of sociometric studies within the literature focus upon a single

relationship during analysis, multiple relationships may be evaluated.

Suppose there exist R relations �1,�2, . . . ,�R, each measured on the same set

of actors. The value xijr ∈ Xr is the value of the tie from ni to nj on relation �r.

This ‘super-sociomatrix’ approach offers a means to capture the layers of relations
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Table 2.1: Meta-Matrix [Carley et al., 2002, pg. 83]
Agents Knowledge Tasks

Agents Social Network Knowledge Network Assignment Network
Knowledge – Information Network Needs Network

Tasks – – Task-Precedence Network

as depicted in Figure 1.1 [Wasserman and Faust, 1994, pg. 86-7]. Note that the

collection of sociomatrices is also a collection of simple graphs, those accounting

for only one relation [Wasserman and Faust, 1994, pg. 145]. A multigraph, or

multivariate graph in the case of directed relationships, is “a generalization of a

simple graph or digraph that allows more than one set of lines” [Wasserman and

Faust, 1994, pg. 146]. The method of storage and subsequent approaches to calculate

measures using this type of multi-dimensional data is one of the key underlying

questions of interest in this research.

Carley et al. [2002] proposed a related concept describing a composite network

that incorporates the multi-dimensionality of interpersonal relations is the meta-

matrix. The meta-matrix concept is based upon the premise that network dynamics

are functions of (1) the social structure, (2) the distribution of knowledge and infor-

mation, (3) the interrelations between domains of knowledge, and (4) the distribution

of work and requirements [Carley et al., 2002, pg. 83]. These network-related as-

pects of an organization within the meta-matrix construct serves as input into an

agent-based network simulation, which evaluates the organization’s ability to per-

form tasks, communicate effectively, and so forth [Carley et al., 2002]. Table 2.1

provides a simplified representation of the meta-matrix concept.

Contained within each of these single-, multi-relational, and multi-dimensional

network constructs are the two fundamental items of interest: the relational ties

and actors. Brass offers general summary of social network measures involving the

relational ties, the actors, and the overall consequences of the network topology

as a result of both [Brass, 1995]. These summaries are shown in Tables 2.2, 2.3,
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Table 2.2: Link Attributes [Brass, 1995, pg. 45]
Attribute Definition

Indirect links Path between two actors is mediated by one or
more others

Frequency How many times or how often the link occurs
Stability Existence of link over time
Multiplexity Extent to which two actors are linked together by

more than one relationship (linkages between two
given actors occur within several contexts)

Strength Amount of time, emotional intensity, intimacy, or
reciprocal services (frequency or multiplexity of-
ten used as measure of strength of tie)

Direction Extent to which like is from one actor to another
Symmetry Also referred to as reciprocity, the extent to which

relationship is bidirectional

and 2.4. Note that essentially all of the link and actor attributes have associated

mathematical definitions and measures. However, only those equations required

as part of the methodological development in this research will be presented. For

a complete review of SNA-specific formulations, Wasserman and Faust [1994] and

Monge and Contractor [2003] serve as comprehensive references.

Despite the fact that a majority of sociological studies and topologically-

dependent measures typically approach relationship in a dichotomous matter, it

can be seen from Table 2.2 that links may clearly hold more information than a ‘yes

or no’ response within a given context. Additionally, as Renfro [2001] and Sterling

[2004] have mentioned, the dichotomous approach to link assessment results in a

non-metric measure when the relationships these links capture are asymmetric, or

‘one-way.’ A metric space is defined as follows.

Definition 6. A metric space is a nonempty set M of objects (called points) together

with a function d from M × M to R (called the metric of the space) satisfying the

following four properties for all points x, y, z in M :

1. d (x, x) = 0
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2. d (x, y) > 0 if x 	= y

3. d (x, y) = d (y, x)

4. d (x, y) ≤ d (x, z) + d (z, y) [Apostol, 1974, pg. 60-1].

If the sociomatrix and its constituent relationships are symmetric, the values

within X form a discrete metric space [Apostol, 1974, pg. 61]. However, if the

relationships are asymmetric, Property 3 and possibly Property 4 of Definition 6 are

violated. Nonetheless, as proven by Renfro, non-metric estimates of interpersonal

strength still meet the assumptions of classic linear network flow models and their

multi-commodity extensions; however, this effect can pose some challenges when

dealing with generalized forms of linear flow models [Renfro, 2001, pg. 89-91]. These

models and the challenges associated with them are addressed later.

The concept of multiplexity is intriguing for a variety of reasons. Relationships

maintained and enforced in multiple contexts offer a potential means for measuring

relationship strength, as noted by Brass, as well as its inherent multi-dimensional

and subsequent multi-layered approach. Other than the work of Gould [1991], who

determined that the solidarity displayed within insurgent ranks was due to the com-

bination of pre-existing informal ties with formal, organizational ties, Monge and

Contractor state that “multiple relations on the same set of nodes are quite rare

in the research literature” [Monge and Contractor, 2003, pg. 296]. They further

explain that . . .

most network researchers believe that many networks are predictive of
other networks, that communication networks, for example, are likely to
be highly predictive of friendship networks. Even more obvious is the
fact that autoregressive networks-the same network at previous points
in time-like other autoregressive processes, are likely to predict current
values of the network. But until these relations are demonstrated with
empirical research using valid statistical procedures, they remain in the
realm of speculation [Monge and Contractor, 2003, pg. 296].

Interestingly, Wasserman and Faust recommend against aggregating multiple

relations into a single sociomatrix unless “there are strong substantive reasons” for
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A B

C

Figure 2.1: Forbidden Triad [Granovetter, 1973, pg. 1363]

doing so [Wasserman and Faust, 1994, pg. 219]. It is an underlying assumption

within this research that there are valuable insights to be gained by investigating

not only each of the relations, but their combined effect, similar to the work presented

by Clark [2005]. However, data collected on non-cooperative networks may not yield

graphs that are connected in each layer. Unconnected graphs often prove to be

problematic when trying to calculate centrality and reachability indices.

An alternative perspective on the combining of relationships is proposed by

Granovetter, who suggested that “the degree of overlap of two individuals’ friendship

networks varies directly with the strength of their tie to one another” [Granovetter,

1973, pg. 1360]. He further defines the strength of a tie as “a (probably linear)

combination of the amount of time, the emotional intensity, the intimacy (mutual

confiding), and the reciprocal services which characterize the tie” [Granovetter, 1973,

pg. 1361]. How such linear combinations are developed remains of theoretical in-

terest. Clark [2005] used a normalized version of the multidimensional centrality

measures between relational graphs, presented by Bonacich et al. [2004] (discussed

in detail later), as a proxy for contextual weighting. Application of this measure,

however, is dependent upon symmetric, unvalued relationship data that comprises a

connected graph. In general, this area poses several opportunities for investigating

trade-offs between aggregate and independent analyses of contextual relationships,

as well as weighting techniques to facilitate aggregation as needed.
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Other areas of interest derived from the concept of multiplexity are due to

implications of strong and weak ties posed by Granovetter [1973]. For example,

consider the relationships depicted in Figure 2.1. Given a strong tie between actors

(A) and (B), if actor (A) also has a strong tie with actor (C), then it is unlikely that

there exists no tie between actors (B) and (C) [Granovetter, 1973, pg. 1363]. As

an example, suppose (B) is a male with a strong relationship with female (A) such

that marriage is imminent. Further suppose that (C) represents a member of (A)’s

family. Ultimately, it is inevitable that (B) will meet and establish a relationship

with (C). The amount of time (A) spends with (B) and (C) separately ultimately

leads to a condition of social ‘pressure’ which can only be alleviated by (B) and (C)

establishing a relationship.

On the other hand, the concepts of strong and weak ties studied by Granovet-

ter [1973] had the underlying assumption of normal, interpersonal interaction, as

opposed to intentionally surreptitious relationships of people involved in dangerous

and anti-social behavior. A classic example could include a male (A) that is mar-

ried to (B) but is also romantically involved with (C). In order for (A) to proceed

(successfully) with this duplicitous behavior, keeping actors (B) and (C) ignorant of

each other’s existence is likely required. A similar relationship may be desirable in

a clandestine network for the purposes of organizational security and therefore must

be considered. Such ties are beneficial in limiting exposure to the remainder of the

organization if one individual is caught and interrogated. However, as Krebs sur-

mised, maintaining secrecy of organizational ties and operational activities is socially

costly [Krebs, 2002].

Complete relational triads or relationships that are comprised of a ‘linear com-

bination’ of the aspects described earlier, serve as strong ties according to Gra-

novetter [1973]. Alternatively, weak ties are composed of casual or intermittent

relationships; however, weak ties are potentially strong themselves. The strength of

a weak tie lies in its ability to bridge communication or influence between two or
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more distinct groups, or promote diffusion of influence and ideas between them [Gra-

novetter, 1973, pg. 1363-7]. This relationship may prove valuable militarily and is

discussed within the next category of measures, actor attributes [Granovetter, 1973,

pg. 1364-5].

Table 2.3 summarizes actor attributes commonly used in the SNA literature.

Note that within the SNA literature, ‘actor attributes’ refers not only to attributes

specific to that actor (gender, age, and education, for example), but also those

attributes that are a direct result of network topology. The latter category char-

acterizes each actor’s location and connectivity to adjacent and/or all other actors

within the organization.

Actor roles, shown in Table 2.4, are of particular interest in the context of

military and national security operations. For example, a bridge may be a member

that has a highly-specialized skill and performs critical services, the development of

biological weaponry, perhaps, for a number of the network’s cliques or cells. Liaisons

may comprise the senior leadership and coordination, whereas gatekeepers could be

mid-level leadership. Isolates with no links will likely comprise new suspects un-

dergoing investigation; isolates with few links may be indicative of the next suicide

bomber, the leader practicing good operations security (OPSEC), or the ‘agent in

place’ awaiting activation to execute instructions established long before surveillance

began. As Krebs noted in his analysis of the 9-11 terrorist group, “Those who were

trained to fly didn’t know the others. One group of people did not know the other

group” [Krebs, 2002, np]. In order for the network to function in such a coordinated

fashion, a few select individuals had to occupy such roles. This suggests that isolates

with few ties may be just as much of interest to intelligence, military, and law en-

forcement agencies as the most central actors. Unfortunately, this paradigm results

in extremely large networks, since an appropriate ‘cut-off’ point is oftentimes un-

available. Nonetheless, identification of the individuals performing such ‘structural’

26



Table 2.3: Actor Attributes [Brass, 1995, pg. 46]
Attribute Definition

Degree Number of direct links with other actors
In-degree Number of directional links to the actor from other

actors
Out-degree Number of directional links from the actor to other

actors
Range (Diversity) Number of links to different others (others are defined

as different to the extent that they are not themselves
linked to each other, or represent different groups or
statuses)

Closeness Extent to which an actor is close to, or can easily
reach all the other actors in the network. Usually
measured by averaging the path distances (direct and
indirect links) to all others. A direct link is counted
as 1 whereas indirect links receive proportionately less
weight.

Betweenness Extent to which an actor mediates, or falls between
any other two actors on the shortest path between
those two actors. Usually averaged across all possible
pairs in the network.

Centrality Extent to which an actor is central to a network. Var-
ious measures (including degree, closeness, and be-
tweenness) have been used as indicators of centrality.
Some measures of centrality weight an actor’s links
to others by the centrality of those others

Prestige Based on asymmetric relationships, prestigious actors
are the object rather than the source of relations.
Measures similar to centrality are calculated by ac-
counting for the direction of the relationship (i.e., in-
degree)
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Table 2.4: Actor Roles [Brass, 1995, pg. 46]
Role Description

Star An actor who is highly central to the network
Liaison An actor who has links to two or more groups that would

otherwise not be linked, but is not a member of either
group

Bridge An actor who is a member of two or more groups
Gatekeeper An actor who mediates or controls the flow (is the single

link) between one part of the network and another
Isolate An actor who has no links, or relatively few links to others

roles may serve as either an initial target set for influence or application of more

elaborate intelligence measures.

Other roles include representative, itinerant broker, and coordinator are de-

scribed by [Degenne and Forsé, 1999, pg. 128-30]. These . The representative is

similar to a liaison; however, the representative takes a more active role in portray-

ing the network to which they claim membership. The itinerant broker “facilitates

intra-group communication,” acting as a third-party that assists two or more groups

in achieving common goals. An example would include an outside consultant that

mediates or streamlines the operations of several divisions within a company. The

coordinator is similar to the itinerant broker but is part of the two or more networks

involved in communication and therefore not acting as a third party [Degenne and

Forsé, 1999, pg. 129-30]. The articulator roles from both Degenne and Forsé [1999,

pg. 129] and Brass [1995] are depicted in Figure 2.2. The Ego, the person or group

of interest or focus within the given social context, in the diagrams indicates the

structural relationship between two or more individuals, subsets of a given network

or entirely separate networks given a specified position.

The final set of measures (see Table 2.5) summarized by Brass assesses the

global structure of the network. These are also descriptive measures, however, some

concepts may prove useful in developing courses of action intended to affect network

performance on a global scale. Examples of interesting uses of these global network
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Figure 2.2: Articulator Roles

characteristics may include actions taken to increase the number of components

within the network. For example, if the negation of a few select links or actors

results in the separation of various terrorist cells, planning and coordination of future

attacks may be more difficult for them. The concept and expectation of transitivity,

considering Granovetter’s forbidden triad, may offer insight into where additional

links should exist based upon current data, but not explicitly revealed due to the

surreptitious nature of the target network. This essentially leads to the notion that

target sets must be developed.

Recent research effort by Borgatti, in an attempt to identify key players within

a network, provides one means to identify potential entry points within a non-

cooperative network. Borgatti defines two ‘key player problems’ (KPP).

Definition 7. (KPP-1) Given a social network, find a set of k nodes (called a kp-set

of order k) which, if removed, would maximally disrupt communication among the

remaining nodes.

Definition 8. (KPP-2) Given a social network, find a kp-set of order k that is

maximally connected to all other nodes [Borgatti, 2003a, pg. 241].
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Table 2.5: Network Attributes [Brass, 1995, pg. 47]
Measure Definition

Size Number of actors in the network
Inclusiveness Total number of actors in a network minus the number of

isolated actors (not connected to any other actors). Also
measured as the ratio of connected actors to the total number
of actors.

Component Connected subset of network nodes and links. All nodes in
the component are connected (either direct or indirect links)
and no nodes have links to nodes outside the component.

Connectivity Also referred to as reachability, the extent to which actors in
the network are linked to one another by direct or indirect
ties. Sometimes measured by the maximum, or average, path
distance between any two actors in the network.

Connectedness Ratio of pairs of nodes that are mutually reachable to total
number of pairs of nodes

Density Ratio of the number of actual links to the number of possible
links in the network.

Centralization Difference between the centrality scores of the most central
actor and those of other actors in a network is calculated,
and used to form ratio of the actual sum of the differences
to the maximum sum of the differences

Symmetry Ratio of number of symmetric to asymmetric links (or to
total number of links) in a network

Transitivity Three actors (A, B, C) are transitive if whenever A is linked
to B and B is linked to C, then C is linked to A. Transitivity
is the number of transitive triples divided by the number of
potential transitive triples (number of paths of length 2).
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Borgatti also relates these problems to those of military interest. For example,

KPP-1 would allow target selection in the classical sense. “Given a network of

terrorists who must coordinate in order to mount effective attacks, and given that

only a small number can be intervened (e.g., by arresting or discrediting), which ones

should be chosen in order to maximally disrupt the network?” [Borgatti, 2003a, pg.

241] Note that network disruption is slightly different than previous efforts targeting

physical networks. Specifically, KPP-1 seeks not only to break the network into as

many components as possible, but seeks resulting components that are as fragmented

as possible, all via the selection and removal of the fewest nodes. Related network

disruption research has primarily relied upon cut-sets that disconnect a source and

sink node [cf. Leinart, 1998; Leinart et al., 2002; Curet et al., 2002]. For KPP-2, the

underlying premise is to find a set of actors that would facilitate “the diffusion of

practices or attitudes . . . ” which, militarily, “translates to locating an efficient set of

enemies to surveil, turn (into double-agents), or feed misinformation to” [Borgatti,

2003a, pg. 241].

The rationale for the development of the KPP methods lies in the fact that

many centrality measures were not developed with the intention of (potentially)

adversely affecting the network under study. Instead, social scientists attempted

to observe, and occasionally predict, behavior. Consequently, the measures that

evolved do not necessarily translate to network disruption or ‘seeding,’ especially if

the objective is to select the optimal set of individuals (k > 1) that accomplishes

these objectives [Borgatti, 2003a, pg. 241-7].

To address these issues, Borgatti develops a heuristic to analyze both problems,

but notes that the solutions are inherently “considerably less than optimal” [Borgatti,

2003a, pg. 247]. Additionally, it does not appear that the measures of ‘goodness’ (of

the solutions) used within the heuristic can account for directed arcs. Variations and

applications of classical covering, partitioning, and p-median problems, discussed

later, address some of these issues [cf. Nemhauser and Wolsey, 1999]. The end
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product is that, as opposed to the heuristic approach currently in use, the application

of mathematical programming techniques are guaranteed to provide the optimal

solution or solutions. However, knowing which actors to target, based upon the

KPP results, implicitly assumes that those actors are accessible.

In their analysis of other network disruption algorithms, Degenne and Forsé

[1999] discuss the actors’ vulnerability as a function of “the risk of becoming iso-

lated if one or more individuals drop out of the relation under study” [Degenne

and Forsé, 1999, pg. 103]. This implies that the higher value targets–those that are

more likely to disrupt (disseminate misinformation) if they are removed (influenced),

respectively–are those with high betweenness centrality and are also those that are

potentially more difficult to reach. This concept is illustrated in Figure 2.3.

Note that ‘high-value targets’ in this context does not necessarily imply a key

leader within an organization (e.g., Osama bin Laden is considered a high-value

target within Al Qaeda). The concept of ‘high-value’ in this case refers to the

potential damage, via destruction or dissemination of misinformation, incurred by

removing or co-opting a particular individual or set of individuals. An example

could include the individual that assembles bombs for the local cell’s operations.

For KPP-1 in particular, the trade-offs between resources required to successfully

engage a highly central, but highly valued, target versus a more easily engaged, but

less valued, target must be assessed. This approach, however, implicitly assumes

centralized control of the network and its activities, which is unlikely the case for

semi-autonomous cells operating within today’s terrorist networks.

The KPP-2 concept is important in that the injection and subsequent spread

of influence (e.g., PSYOP or influence operations) requires an entry point into a

network with “formidable barriers to entry and exit” [cf. Post, 2005; Rothenberg,

2002, pg. 39]. Rothenberg notes that “The breakdown of such a network, whether on

the local or global scale, depends obviously on two factors: money and trust. The US

and other governments are in hot pursuit of the former, but appear . . . befuddled by
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Figure 2.3: Core-periphery partitioning [Degenne and Forsé, 1999, pg. 103]

the latter” [Rothenberg, 2002, pg. 40]. With relatively low-technology tactics such

as suicide bombers and improvised explosive devices becoming terrorists’ weapons

of preference, money may simply be an enabler or perhaps not even necessary for

some operations. Trust, and the corresponding relationships it nurtures, appears to

be the main strength of today’s terror networks. For example, the second lesson

of the Al-Qaeda Training Manual is entitled Necessary Qualifications and Character

for Organization’s Members and details the requisite commitment, attributes, and

willingness to undergo martyrdom [Post, 2005, pg. 25-32]. Consequently, techniques

and theory that contribute to attacking trust are appealing. With strength due

to trust in mind, Rothenberg puts forward a view, in opposition to this research,

summarizing the challenges associated with such an effort.

Sowing viruses of distrust is difficult within a network that has major
obstacles to entry, is highly decentralized, and whose leader’s status as a
symbol is likely to be untouched by what will happen to him. Peripheral
persons play a role, but primarily as purveyors of needed goods and not
as participants; such roles may or may not be useful in infecting the
network [Rothenberg, 2002, pg. 40].

In the absence of actual terrorist networks to conduct experiments in this area,

the influence-related aspects of the methodology proposed in Chapter III may not be

readily verifiable in a formal sense. However, such points do highlight the need to ac-
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count for operational risks when dealing with non-cooperative organizations. Lastly,

Rothenberg notes the complexity of data collection for typical network studies as re-

quiring numerous interviews, ascertaining the levels or strengths of relationships, and

assessing network dynamics [Rothenberg, 2002, pg. 36]. These efforts are even more

problematic when dealing with non-cooperative, adversarial, and adaptive networks

that cannot be easily revealed through open and direct inquiry.

2.2.3 The Challenges of Network Data

Methods traditionally used to collect sociometric data include questionnaires,

interviews, observations, archival records, experiments, and others; this implies that

data sets comprise populations rather than subsets of them [Wasserman and Faust,

1994, pg. 45]. Granovetter notes that “It is clear why network methods have been

confined to small groups: existing methods are extremely sensitive, in their prac-

ticality, to group size because they are population rather than sampling methods”

[Granovetter, 1976, pg. 1287-8]. Due to the potential n (n − 1) number of directed

ties between n individuals, collecting complete and accurate data on large popula-

tions is costly and problematic. Further, Granovetter argues that such studies can

only make implicit connections between the nature of the data collected and the

nature of the true population from which the data came. Ultimately, “. . . we are

left guessing about the representativeness of the patterns of social relations found”

[Granovetter, 1976, pg. 1288].

Unless the individuals that comprise the population are known with certainty,

how representative the sample will be of the true population will always remain

in question. For example, Tsvetovat and Carley [2005] have estimated Al Qaeda

membership to be as high as 120,000. Even if such an extensive network could be

mapped, it is likely that the magnitude would leave most current analysis capabilities

computationally intractable. Hence, samples or subsets of the true networks comprise

currently available data sets.
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Other issues pervading network data that describes non-cooperative networks

includes missing data and potential structural bias as a result of the data gathering

processes available. In order to truly capture the information regarding a relationship

between two individuals, both individuals must be questioned [Stork and Richards,

1992, pg. 194]. When dealing with terrorists, unless both individuals are in custody

and amenable to truthful interviews, this is a difficult process dependent upon the

skills of both the interviewer and the interviewee, as well as some degree of luck. As

a result, analysis must be performed on incomplete data.

Robustness of classical network centrality measures given data errors such as

“. . . edge deletion, node deletion, edge addition, and node addition” has been ex-

plored by [Borgatti et al., 2006]. Unfortunately, the underlying graphs used in their

experiment were random in nature, as opposed to a more representative small-world

network topology. Previous research suggests that random networks, even when

degree distribution is carefully controlled, are not always representative of social

networks due to “. . . non-random social phenomena at work in the shaping of the

network” [Newman et al., 2002, pg. 2571]. Nonetheless, the authors concluded that

responses to error were ultimately a function of error type and network density [Bor-

gatti et al., 2006]. Although similar findings using ‘real’ and experimental network

data are provided in Bolland [1988], the redundant nature of the data may have

biased the experimental results. The sensitivity of other, more general, network

measures such as global efficiency, critical path length, density, diameter, and radius

of scale-free graphs has also been explored by [Thomason et al., 2004]. Whether

these conclusions map to more appropriate network topologies remains to be seen

and, based upon the analysis of network disruption as seen in Albert et al. [2000], is

likely heavily dependent upon where the missing data lies within the network.

As aforementioned, social network studies typically deal with populations as

opposed to samples of a population, for example, all the children in a classroom

[Moreno, 1953], the tribe members occupying a chain of islands [Bonacich et al.,
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2004], family members, and company managers [Wasserman and Faust, 1994, pg.

738] to highlight a few. Three methodologies appear to dominate the literature

regarding the capture of network data. The first two methods, snowball sampling,

also referred to as expanding selection, and fixed list, or fixed selection, assume that

respondents are either somewhat willing or can be persuaded to provide relational

information. The third, targeted sampling, was developed specifically for the study

of transmission of AIDS among intravenous drug users. The fact that the members

of such a network were involved in illicit drug use essentially results in a clandestine

network not totally unlike that of a terrorist organization [Watters and Biernacki,

1989].

Snowball sampling procedures are defined by a predetermined number of s

stages and k names. The steps of the methodology are shown in Table 2.6. Note

that if the ‘random sample’ in step 1 is replaced with ‘detected or detained set,’ this

procedure is essentially the methodology used by law enforcement and intelligence

agencies, with s continuing either indefinitely or until the entire group is discovered

and no longer a threat. However, the respondents in this case, if captured, are

generally unwilling to provide information. Consequently, the approach is similar

but the results may remain limited in comparison to willing responses or biased due

to the reliance upon deceptive information. If information is gathered surreptitiously

(for example, via wiretaps or other forms of electronic monitoring), then unless

the target individuals are cognizant of the surveillance or practicing some form of

operations security, they could be considered ‘willing’ in the sense that they are not

intentionally withholding information. The resultant search pattern, however, will

likely be limited and more sparse compared to an open study simply due to the

inherent security needs of the clandestine organization.

Fixed list sampling entails the provision of a list of other people and getting the

respondents to indicate which ones on the list they consider themselves sharing some

level of relationship within the context under investigation. This is accomplished for
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Table 2.6: Snowball Sampling Procedure [Goodman, 1961, pg. 148]
Step Description

1. A random sample of individuals is drawn from a given finite
population.

2. Each individual in the sample is asked to name k different indi-
viduals.

3. The individuals who were not in the random sample but were
named by individuals in it form the first stage.

4. Each of the individuals in the first stage is then asked to name
k different individuals.

5. The individuals who were neither in the random sample nor in
the first stage but were named by individuals who were in the
first stage form the second stage.

6. The procedure is continued until each of the individuals in the
sth stage has been asked to name k different individuals.

at least all respondents that appear on the original list [Doreian and Woodward, 1992,

pg. 217-18]. In an interrogation setting, detainees may be given such a list and asked

to confirm relationships or are perhaps questioned over time until variations and

inconsistencies arise. These indicators can then be used to draw further information

from the subject.

The most noticeable, implicit assumptions for these methods includes: the re-

searcher must know at least a few of the members of the network; the respondents

are accessible for interview; and, the respondents answer in a truthful manner. All of

these assumptions prove problematic when dealing with non-cooperative networks.

In addition, structural biases may be introduced as a result of sampling technique.

For example, Doreian and Woodward [1992] found that between snowball and fixed

list techniques applied to the same target network, “(1) the [actors] included in the

two selection procedures differ; (2) network-based [measures] differ; (3) the substan-

tive contents of the included ties differ; and (4) the structure of the networks differ”

[Doreian and Woodward, 1992, pg. 216]. Although both snowball and fixed list sam-

pling techniques could be viewed as similar in nature to the interrogation process,

they must begin with a ‘captive’ respondent. As noted in Watters and Biernacki
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however, the responses of captured members of non-cooperative networks and the

subsequent network and member characteristics developed may not be representa-

tive of the network that exists outside of the controlled and persuasive environment

of incarceration [Watters and Biernacki, 1989, pg. 417].

Perhaps the most concrete evidence of a sociometric sampling technique suc-

cessfully resulting in an ‘accurate’ representation of the true (population) network

is the targeted sampling procedure posed by Granovetter [1976]. He suggests “given

a population of size N , the method proposed is to take a number of random sam-

ples from that population, each of size n (with replacement), and within each such

sample ask each respondent some sociometric question about each other respon-

dent” [Granovetter, 1976, pg. 1290]. Granovetter proves that this approach yields

an unbiased estimate of the true network’s density [Granovetter, 1976]. Underly-

ing assumptions are, once again, that network members are known, respondents are

willing to participate, and relations are symmetric (despite the fact that he recom-

mends that respondents be questioned both ways). Granovetter does account for

one-way questioning (that is, relying more heavily on the assumption of symmetry)

but does not discuss to the statistical implications of this approach upon his estimate

[Granovetter, 1976, pg. 1297]. Further, guidelines for the parameters accounting for

“the number of samples taken and the size in each sample” are provided in a similar

fashion to the determination of sample size to meet certain uncertainty criteria [Gra-

novetter, 1976, pg. 1290-95]. However, this again assumes that the true population

membership is known and that the necessary number of samples of the same size of

n individuals is feasible.

Although there are similarities between cooperative and non-cooperative data

gathering, the latter organization will always ‘fight back’ against investigators, pro-

viding either no information or possibly misinformation, the latter of which may

in some cases still be useful. These issues will continue to plague decision-makers

and analysts as long as the target networks are non-cooperative. As opposed to
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Table 2.7: Covertness Factors [Tsvetovat and Carley, 2005, np]

1. Strong religious (in case of Islamic groups) or ideological (in case of Sendero
Luminoso and other South American guerilla groups) views that allow
members to form extremely strong bonds within a cell.

2. Physical proximity among cell members, often to the extent of sharing
living quarters, working and training together.

3. Lack of rosters on who is in which cell.
4. Cell members being given little knowledge of the organizational structure

and the size of the organization.
5. Little inter-cell message traffic.
6. Information about tasks issued on a need-to-know basis, so very few people

within the organization know about the operational plans in their entirety.
7. Cells are often formed on the basis of familial or tribal ties, or strong

interpersonal ties forged in training.

ascertaining the effect upon centrality measures due to errant data, future work

may benefit from approaches that maximize the likelihood of discovering a certain,

hopefully high, percentage of the true network structure. Unfortunately, simply ob-

taining data on these adversarial networks is difficult at best. Tsvetovat and Carley

describe the primary factors that enable a terrorist network to remain covert; these

are provided in Table 2.7. Note that, from a Department of Defense perspective,

the concept of covertness presented by Tsvetovat and Carley actually aligns more

closely with the concept of ‘clandestineness,’ which leverages secrecy to mitigating

potential damage or interruption of operations due to the exposure of members or

activities.

To this point, network topologies, nuances of social networks, and the chal-

lenges of collected data characterizing non-cooperative networks have been discussed.

However, externally affecting such networks involves much more than the topologi-

cally imposed constraints, or opportunities, within which the network members must

work. It is also important to understand how these individuals may react to outside

sources of influence. The next section discusses open source elements of the psycho-
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logical aspects of terrorist decision making, as well as current efforts attempting to

model this phenomena.

2.3 The Psychology of Terrorists

The President of the United States defines terrorism as “premeditated, politi-

cally motivated violence perpetrated against innocents” [The President, 2006, pg. 5].

To better deal with terrorists and terrorist organizations, an understanding of their

underlying psyche, motives, and overall goals is required. This information would,

in theory, allow analysts to model the behavior of such individuals and their orga-

nizations, thus providing an opportunity to learn, predict, and directly or indirectly

thwart this type of threat. Several ongoing efforts attempting to encode behavior

in simulated agents representing terrorists are also reviewed. These simulations are

undertaken in order to gain insight and to provide courses of action that are more

likely to marginalize the threat posed by terrorists.

This section discusses several existing methods that attempt to model the be-

havior of terrorist groups or, more specifically, the terrorists themselves. Potential

benefits of this research thread could include (1) gaining insight into the underlying

causes for motivating an individual to engage in these activities; (2) describing the

incorporation of these concepts into agent-based simulations for study; and (3) il-

lustrating the use of these simulations to evaluate various courses of action, ranging

from close-combat operations to application of other instruments of power and/or

international diplomacy. Although the second and third benefits are beyond the

scope of this research, the first must be addressed when approaching this problem

from either a static or dynamic viewpoint.

Maslow’s hierarchy provides a solid basis for describing behavior “. . . across

cultures, age groups, and generations. . . ” [Johns and Silverman, 2001, pg. 4]. How-

ever, when considering that physiological and safety needs come before all other
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needs, the phenomena of “suicide bomber” presents a dichotomy. Johns and Silver-

man attempt to partially resolve these types of issues by incorporating emotion into

a decision theoretic representation of ‘agent’ behavior. As this work clearly presents

a learning opportunity, the decision theory that underlies this effort requires review.

An effort parallel to that of Johns and Silverman [2001] by Silverman et al.

[2001] extends the agent-based simulation capability by offering a means to ‘dial-up’

an adversary, inferring a capability to choose an adversary and possibly the situa-

tional context with the resulting agent behavior that is tailor-made to accommodate

social, ethnic, and other characteristics that may perturb a basic model of behavior.

These efforts, of course, beg the question of what aspects and underlying psycho-

logical models of decision making, emotion, motivation, and rationality are most

suitable to characterize the adversary of interest, the terrorist.

2.3.1 What should be modeled and why?

Given its inherent complexity, modeling human behavior is in itself a daunting

task. Modeling human behavior that falls within the realm of terrorist activity may

be even more difficult. Some terrorist activities simply fall within what many per-

ceive to be irrational behavior (e.g., suicide bombing) and, very generally speaking,

involves an enemy that ascribes to different ideologies than our own. The “irrational-

ity” of suicide terrorism is a prevalent misconception [Driscoll, 2005]. Terrorists are

not always motivated by fanatical interpretations of religion and do not always origi-

nate from the stereotypical ‘underprivileged’ classes of society. In fact, terrorists are

“deeply committed, maintain excellent intellectual ability, planning, problem solv-

ing, interpersonal skills and self-discipline” [Driscoll, 2005]. It is true that the U.S.

armed forces are willing to sacrifice their lives for our own ideologies (e.g., liberty and

democracy). However, unlike the suicide bomber, Western forces tend to focus on

the capitulation or death of the adversary with minimal loss of friendly forces rather

than intentionally sealing our own troop’s demise during the course of warfare.
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Assuming that this phenomenon can be explained, as attempted by the work

of Sprinzak [2000], what other aspects of terrorist behavior are of interest? Weaver

et al. [2001] and Johns and Silverman [2001] develop models to facilitate military

training, particularly in the area of guerilla warfare within a hostile urban environ-

ment. The ultimate modeling goal may be to predict how a given threat will behave

and consequently understand how to defeat it. From a long-term perspective, im-

proving understanding of terrorist behavior may improve the capability to avoid the

underlying conditions that contribute to the recruitment of future generations of

terrorists.

2.3.2 Rational Decision Making

There are a variety of definitions of rationality in the literature. For example,

in the context of microeconomics, a “rational consumer will choose a market basket

where the marginal utility of the last dollar spent on all commodities purchased is

the same”–essentially where a budget line is tangent to the highest indifference curve

[Mansfield, 1994, pg. 83-4]. In a related, but sometimes more practicable genre,

decision theoretic implementation of multi-objective utility analysis assumes that

once an “assignment of utility numbers to consequences” is complete, the optimal,

and rational, strategy requires selection of the alternative that maximizes expected

utility [Keeney and Raiffa, 1993, pg. 7]. Noting that selection of alternatives may

also be subject to budget constraints, the decision theoretic approach provides a

deeper focus on the derivation of utility. Hence, the economic approach may prove

useful in determining levels of humanitarian aid or standard of living improvements

required to persuade people from succumbing to the appeal of terrorist organizations,

but its role in trying to understand and predict current terrorist behavior remains

unknown. The decision theoretic approach certainly lends itself to implementation

within a decision model of a simulated actor or agent in agent-based simulations,

shown later in this section. However, in the context of both the actions and ideologies
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of terrorists and their organizations, optimal decision strategies may vary drastically

among individuals. Hence, a more fundamental understanding of human behavior

in the context of decision making must be considered. Commonly accepted, albeit

Western-focused, models of human behavior, along with its role in decision making,

are reviewed.

2.3.3 Maslow’s Hierarchy

A. H. Maslow developed the concept of the hierarchy of needs in order to bet-

ter understand human behavior. His construct has been used extensively in business

organizations to assess what may or may not motivate employees to continuously

improving levels of performance. The needs are hierarchical in nature and are sum-

marized in Table 2.8. Another important aspect of this theory is its underlying

assumptions. Costley et al. summarizes these as follows:

1. Motives are highly complex, and no single motive affects behavior in isolation.

A number of motives are always in operation at the same time.

2. There exists in each individual a hierarchy of needs that requires, in general,

that lower-level needs must be partially satisfied before higher-level needs affect

behavior.

3. A satisfied need is not a motivator. When a need is satisfied, another need

emerges, so that the individual always remains in a motivated state. Higher-

level needs can be satisfied in a greater variety of ways than lower-level needs

[Costley et al., 1994, pg. 219].

Considering that Physiological and Safety are two of the most basic needs (and

therefore, generally take priority over all others), it may be hypothesized that once

these are met, the stage is set to fulfill needs generated within the higher levels.

However, in the context of suicide bombing, the obvious question becomes “Would

an individual guarantee the ruin of the most basic needs (Physiological and Safety)
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Table 2.8: Needs Hierarchy [Costley et al., 1994, pg. 219]
Urgency Need Examples

Most Urgent Physiological Food, water, rest, and shelter
Safety Security and protection

↓ Social Belonging, acceptance, and friendship
Esteem Recognition, status, and self-esteem

Least Urgent Self-Actualization Creativity and self-realization

in order to achieve a need in the higher level of the hierarchy?” Another theory,

developed by Alderfer [1969], offers a potential explanation of this dichotomy.

2.3.4 Existence, Relatedness, Growth Theory

Existence, Relatedness, Growth (ERG) Theory was developed to address some

of the questions surrounding Maslow’s hierarchy. ERG differs from Maslow’s theory

in two major areas, specifically its structure and the assumptions linking the struc-

ture. As opposed to the needs categories defined by Maslow, Alderfer clusters needs

into the three categories: Existence, Relatedness, and Growth. Existence needs ac-

count for material and physiological desires, Relatedness includes relationship needs

of significant others, and Growth accounts for the “creative or productive effects on

himself and the environment” [Alderfer, 1969, pg. 145-6]. Clearly, the structure

mirrors Maslow’s to some extent.

However, this particular classification scheme avoids some of the overlap prob-

lems suffered by Maslow’s hierarchy [Alderfer, 1969, pg. 147]. Additionally, Alder-

fer’s hierarchy is not strictly ordered; consequently, “it does not assume lower-level

satisfaction as a prerequisite for the emergence of higher-order needs” [Alderfer, 1969,

pg. 142]. It is this underlying premise that offers a means to explain a terrorist’s

Jihadist aspirations that essentially guarantee their own demise. Lastly, Alderfer

notes that these categories of needs “. . . provide the basic elements in motivation”

[Alderfer, 1969, pg. 145].
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2.3.5 Motivation-Hygiene Theory

A third, relatively mainstream, theory of motivation is due to Herzberg et al.

[1965]. In an attempt to find the key factors that lead to job satisfaction, Herzberg

et al. developed the theoretical bases for a person’s attitude toward their job

[Herzberg et al., 1965, pg. 3]. Factors associated “. . . with conditions that sur-

round the doing of the job,” thereby affecting the psychological health of the work

environment, comprise the “factors of hygiene” [Herzberg et al., 1965, pg. 113]. Ful-

fillment of such factors may prevent dissatisfaction but do not necessarily guarantee

job satisfaction. Hence, the second basis of the theory deals with motivation factors.

Motivation factors are those that “. . . lead to positive job attitudes [because]

they satisfy the individual’s need for self-actualization in his work” [Herzberg et al.,

1965, pg. 114]. Both factors ultimately serve the psychological needs of the worker,

“but it is primarily the motivators that serve to bring about the kind of job sat-

isfaction and . . . improvement in [future] performance” [Herzberg et al., 1965, pg.

114].

Costley et al. compare and contrast Herzberg et al.’s theory with that of

Maslow’s. Essentially, the motivation factors coincide with self-realization and es-

teem needs, whereas the maintenance or hygiene factors coincide with social, safety,

and physiological needs [Costley et al., 1994, pg. 247]. This approach to modeling

the psychological underpinnings of motivation and rationale for behavior was de-

veloped for, and is continuously applied to, business-employee settings. Although

an abstraction of this theory could be applied to the underlying factors in terror-

ist behavior, such an attempt in this specific area is currently beyond the scope of

this research. However, considering each of these theories attempts to explain what

motivates individuals while also accounting for emotional states in one form or an-

other, a complete explanation of suicidal terrorist behavior is likely dependent upon

a combination of both motivation and emotion.
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2.3.6 Motivation

Decision theory states that people base their decisions upon assumptions and

information that describe which of their choices results in the most favorable out-

come. Costley et al. notes that several expectancy theories of motivation all share

one underlying assumption “. . . that people choose behaviors based on their expec-

tations about the outcomes” [Costley et al., 1994, pg. 232]. This expectation and

consequent measure of motivation is a “function of the value placed on potential

rewards (referred to as valence) and the perceived probability that the effort will be

successful (referred to as expectancy)” [Costley et al., 1994, pg. 232]. Given that

different ideological differences may result in different concepts of what is a ‘reward,’

this implies that in order to ascertain a terrorist’s behavior, it must be done so

through their perspective and not our own.

2.3.7 Emotion

Arguments for incorporating emotion within decision making are discussed in

Ellis and Hunt [1993] and Rolls [2001]. Ellis and Hunt state that “. . . it is apparent

that emotional or affective states can very much influence cognitive processes in

important ways” [1993, pg. 333]. Unfortunately, they then illustrate several studies

that have shown that emotional states (e.g., depression) do not necessarily impede an

individual’s ability to make contingency judgments [Ellis and Hunt, 1993, pg. 353-

55]. Counter to this argument, Rolls suggests that “Emotions can usefully be defined

as states produced by rewards and punishers. Rewards are stimuli for which (a

human) will work, and punishers are stimuli that (a human) will work to escape from

or avoid” [Rolls, 2001, pg. 4444]. Consequently, these phenomena are “. . . reinforcers

in that they alter the probability of behavior” [Rolls, 2001, pg. 4444]. That is,

despite the valence and expectancy values described by Costley et al., the resulting

motivation value may be changed or influenced by emotions or the external conditions

that initiated the emotional state and level. This concept is illustrated in Figure 2.4
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Figure 2.4: Factors Influencing Motivation

and appears to be the underlying premise of the modeling efforts pursued by Johns

and Silverman [2001].

Rolls summarizes the functions of emotion. Of these functions, several are of

interest in the context of modeling terrorist decision-making. The first function is

that emotion serves to elicit certain autonomic and endocrine responses, preparing

the body for action [Rolls, 2001, pg. 4444]. A classic example of this function is an

athlete getting psyched up using the external stimuli (the crowd’s roars, for example)

to boost performance. A similar event is the fight or flight response invoked when a

human or animal is in immediate and obviously mortal danger.

Rolls also notes that emotion in itself is motivating; previous experiences lead to

future actions performed. [Rolls, 2001, pg. 4445] Essentially, levels of fear (or gusto)

may influence or facilitate the motivation to achieve a goal. Third, he indicates that

“the current mood state can affect the cognitive evaluation of events or memories,

and this may have the function of facilitating continuity in the interpretation of

the reinforcing value of events in the environment” [Rolls, 2001, pg. 4445]. For

example, fear of disappointing Allah, family, comrades, and friends by failing to

achieve a terrorist act may allow the individual to focus and continue their mission

despite the fact that success will result in their own demise. This is closely related to

the next function of emotion–“by enduring for minutes or longer after a reinforcing

stimulus has occurred, it may help to produce persistent and continuing motivation

and direction of behavior, to help achieve a goal or goals” [Rolls, 2001, pg. 4446].
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Finally, “rewards and punishers, and the emotional states they produce, pro-

vide a common currency for the behavior selection process between competing al-

ternative actions” [Rolls, 2001, pg. 4446]. This provides further justification for the

conceptual model noted in Figure 2.4. Additionally, rationality with regard to the

decisions made by terrorists may not fall within the realm of maximizing expected

utility, at least from a Western, decision-theoretic perspective. Extremists’ defini-

tions of acceptable goals, means, and the underlying emotions and motives employed

must be investigated.

2.3.8 What is a rational terrorist?

As previously mentioned, the modus operandi of terrorist organizations is to

achieve their goals by employing tactics that are “. . . almost supernatural, extremely

lethal, and impossible to stop. . . , ” particularly in the case of suicide bombers [Sprin-

zak, 2000, pg. 66]. Tactically, this method is advantageous in that . . .

[Suicide bombing] is a simple and low-cost operation (requiring no escape
routes or complicated rescue operations); it guarantees mass casualties
and extensive damage (since the suicide bomber can choose the exact
time, location, and circumstances of the attack); there is no fear that in-
terrogated terrorists will surrender important information (because their
deaths are certain); and it has an immense impact on the public and
media [Sprinzak, 2000, pg. 66-8].

Essentially, Sprinzak suggests that martyrdom has become the terrorists’ pri-

mary option against opponents commanding extremely capable military forces. The

notion of suicide bombers is not new, and dates back to at least “as early as the 11th

century; the Assassins, Muslim fighters living in northern Persia, adopted this strat-

egy to advance the cause of Islam” [Sprinzak, 2000, pg. 68]. However, martyrdom

has remained an underlying requirement for this strategy, but it is “. . . not merely

the product of religious fervor,” and it varies “. . . not only by culture, but by cir-

cumstance” [Sprinzak, 2000, pg. 68]. To further complicate the problem of modeling

this phenomenon, Sprinzak’s review concludes that there is “no single psychological
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or demographic profile of suicide terrorists . . . , but several types of people with the

potential willingness to sacrifice themselves for a cause” [Sprinzak, 2000, pg. 68].

Emotions play a key role in leveraging these individuals; specifically, exploiting

religious beliefs and the rewards of an afterlife, “. . . patriotism, hatred of the enemy,

and a profound sense of victimization” [Sprinzak, 2000, pg. 69]. With this in mind,

Sprinzak suggests that the more useful exercise is analyze the leaders, as opposed to

the bombers, that choose this strategy, and indicates that “leaders who opt for this

type of terrorism are usually moved by an intense sense of crisis, a conviction in the

effectiveness of the tactic, endorsement by the religious or ideological establishment,

and the enthusiastic support of their community” [Sprinzak, 2000, pg. 69-70]. It is

these situations that may lend themselves to modeling. For example, application of

various instruments of power or international support may erode the endorsement

and support provided to the terrorist organization. With this in mind, the issue of

mapping such abstract concepts as emotions, their link to motivation, and the result-

ing actions, decisions, and behaviors of terrorist organizations and the individuals

that comprise them is of interest.

2.3.9 Realistic Model of Rationality

Obviously, the task of modeling human behavior and decision-making, partic-

ularly of non-cooperative individuals, is no simple undertaking. Slade notes that

the traditional economic model of rationality requires a great deal of data that is

likely unavailable; even so, if all the data is available, the approach of calculating

the optimal decision may be intractable [Slade, 1995, pg. 126]. In an attempt to de-

velop a more realistic and implementable model of a rational decision-maker, Slade’s

work furthers the concept of bounded rationality developed by Simon, “which in-

corporates information processing constraints in an effort to reflect the limitations

of human cognition” [Slade, 1995, pg. 126]. As opposed to bounded rationality

which presumes a decision-maker must satisfice rather than optimize, Slade’s model
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Table 2.9: Assumptions [Slade, 1995, pg. 126-7]

- An agent (i.e., an individual) has many goals with varying preferences;
some goals are more important than others.

- An agent executes plans (a sequence of actions) in order to achieve specific
goals; this behavior requires resources.

- An agent has limited resources (e.g., time, money, and cognitive capabili-
ties).

- Different agents have different goals and resources; decision-making is sub-
jective.

- An agent allocates resources to achieve their preferred goals.
- Since knowledge is considered a resource, an agent is not irrational if they

fail to achieve a goal due to lack of knowledge.
- Emotions are a reflection of goal states.
- An agent has relationships, positive and negative, with other agents, with

varying strengths.
- Through a relationship, an agent adopts the goals of the other agent with

a preference related to the strength of the relationship.
- Decisions require justification.

requires the decision-maker to justify choice, thus offering a means to incorporate

emotions and motivations with extremists’ decision making processes [Slade, 1995,

pg. 126]. The underlying assumptions for this model are listed in Table 2.9.

These assumptions were used to develop a decision-making model that ex-

plicitly accounts for the “representation of goals, choices, relationships, strategies,

and the use of natural language to produce explanations . . . ” which comprise the

justifications for a given decision [Slade, 1995, pg. 127]. It is important to note

that Slade expanded the traditional focus from a single decision-maker to one that

viewed “decision-making as a social process through the adoption of goals from in-

terpersonal relationships” [Slade, 1995, pg. 129]. Slade suggests that the multi-agent

phenomena of advice, persuasion, and negotiation can be explored by this framework

[Slade, 1995, pg. 129]. Considering that “a suicide terrorist is almost always the last

link in a long organizational chain that involves numerous actors,” this framework

offers a promising modeling approach [Sprinzak, 2000, pg. 69]. In addition, if the

adoption of goals is indeed related to the strength of interpersonal relationships,
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this fact could be exploited when deciding how to develop and execute psychological

operations that seek to influence an organization’s goals. However, just as there are

data issues associated with the traditional economic and decision theoretic approach

(that is, expected utility and single decision-maker assumption, respectively), the

non-cooperative nature of these individuals may pose similar problems. Addition-

ally, the psychosocial aspects considered within an appropriate model are complex.

Harris provides supporting rationale for modeling the decision-making and behavior

(of terrorists) . . .

“We all want to make sense of our world, and at no time more urgently
than when our world is suddenly behaving strangely. But in order to
make sense of such strangeness, we must be able to reduce it to something
that is not strange–something that is already known to us, something we
know our way around” [Harris, 2002, pg. 19].

He also noted, however, that the process of understanding the strangeness

inevitably leads to an analysis from our own viewpoint, and not necessarily from

that of the “culturally exotic” enemy [Harris, 2002, pg. 19]. This likely remains

as one of the most challenging issues to future modeling efforts. The next section

presents an overview and associated challenges of some current, but not necessarily

all-inclusive, agent-based approaches to this problem.

2.3.10 Current Behavioral Modeling Efforts

Today’s demand for realistic video games has promoted the development of

computer science techniques to model virtual, artificially intelligent opponents. These

technologies may serve as a launching point for modeling terrorist behavior. Of

particular interest in the context of modeling decision-making is the agent-based

approach to simulation. This simulation framework “consists of individual agents,

commonly implemented in software as objects. . . that have states and rules of be-

havior” [Axtell, 2000, pg. 2]. Axtell also suggests that the efforts to reduce the

computational challenges associated with agent-based simulation by either limiting
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intra-agent activity or limiting the options available to agents are similar to the

concept of bounded rationality. Unfortunately, the implication is that equilibrium

to a specific answer via this simulation approach may never be achieved. However,

insight is still possible, but one must also consider the accuracy of the input data

when relying upon a definitive answer from this type of model [Axtell, 2000, pg. 9].

Silverman et al. [2001] are actively involved in model development, focusing

on the behavior and decision-making of terrorists and terrorist organizations. One

such effort involves a compilation of Human Behavior Models (HBM). HBM is based

upon diverse, authoritative literature, and attempts to “. . . quantify the impact of

human performance to internal and external stressors, and help to capture the role of

personality and individual differences (within simulations)” [Silverman et al., 2001,

pg. 1]. This approach also incorporates a Performance Moderator Function (PMF),

which relates internal individual or group characteristics and their interaction within

a given environment to estimate a level of performance or behavior as a result of

environmental stressors [Silverman et al., 2001, pg. 1-2]. One of their goals was to

facilitate the difficult task of gathering data useful to mathematical or computational

implementation. Additionally, since the data was to provide a means to simulate

behavior, it had to be collected within the context of a framework. This framework

is illustrated in Figure 2.5.

The steps Acquire, Best-fit Situation, Course of Action, and Direct are anal-

ogous to the well known Observe, Orient, Decide, and Act (OODA) loop and are

described by Silverman et al. as:

• The agent “acquires data and cues from the external world (x, x′); based upon

their prior focus of attention (f) and level of arousal or valence (v), and filters

out noise to produce a set of state variables (s) as output.”

• The agent evaluates the situation based on the cues attended to (s) and pat-

terns recognized from experience, doctrine and value sets, denoted P (s|H).

52



Generic Agent
Meta-Reasoning

Memory (Working, Other)
Guidance,
Missions

Reports,
Requests

Actions,
Suggestions,

Orders,
Queries

Acquire
Best-fit
Situation

Course
Of Action

Direct

Observations,
Feedback,
Reports,
Requests,

Noise

Opponents
Subordinates

Equipment

Collaborators

Environment

P(s|H) , u, v

P(H|s)s

f, v

I

z

Legend
x=vector of input data (x´ is from superiors)
f=focus of attention; v=valence or intensity
s=vector of state variables (cues attended to)
P(s|H)=prob. of those states given situations, H
P(H|s)=prob. of a situational hypothesis (H) being true

=belief set (rules, cases, foe behavior, etc.)
u=desires or utilities of various outcomes
I=intentions or plans to carry out in the environment
z=actions, plan parts
y=vector of outputs to effect the world (y´ to effect superiors)

x´ y´

y
x

Figure 2.5: Decision-Making Agent [Silverman et al., 2001, pg. 4]
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This leads to several plausible hypotheses (H) each with a corresponding like-

lihood of P (H|s).

• The agent then chooses what course of action to pursue by selecting a decision

rule based on doctrine and on the time available to plan and decide. Depend-

ing upon the overall objectives and temporal constraints, the agent applies

“. . . utility or desire levels (u), emotional intensity levels (v), and belief sets

(β), about the effectiveness of their actions over time and space against the

opponent” in order to ascertain the best course of action, denoted the intended

plan or intent (I).

• The agent then maps actions required to achieve the plan to output signals, de-

noted (y, y′), which are enacted by the subsequent steps (z) “. . . needed to carry

out the plan and achieve the intention.” The overall effect is to “. . . optimally

control its portion of the external world including its own behavior as well as

that of others it might be able to influence” [Silverman et al., 2001, pg. 4].

The other aspect of this framework of interest to this research effort is the meta-

reasoning block, shown in Figure 2.6. As illustrated, the meta-reasoning process

begins with an evaluation of the current emotion level of the agent. Given this

influence and information from external and internal sources, the agent tries to

decide what course of action best suits the agent’s needs, evaluated by the emotion

appraiser [Silverman et al., 2001, pg. 5]. It is interesting to note that the authors

“reject (Maslow’s) concept of seriality of needs” (for example, survival needs must

be fulfilled before intellectual fulfillment) [Silverman et al., 2001, pg. 5]. Therefore,

this approach favors the theory proposed by Alderfer [1969] and consequently allows

for the situation where an individual would place martyrdom or a ‘greater cause’

before their own mortality.

As an example, Hudson notes that the fanatic classification of suicide terrorists

implies that ideological and political rewards come before financial security, and

view their actions as ‘istishad ’ (self-sacrifice for Allah) and martyrdom rather than

54



Meta-Reasoner
Emotion Appraiser
•Ideology/Religion/Culture
•Standards, Goals, Prefs
•Belonging & Esteem
•Mission/Task Goals
•Survival (Self, Others)

Stress/Attention
•Inattention
•Avoidance
•Near Panic
•Hyper-Vigilance
•Vigilance

Urgency,
Risk Proximity,

Physiology,
Ability,

Experience,
Info Cost

Decision Mode 
Decider

Vector of
Weighted Emotions

Type of
Problem,
Situation

x,x´,s

Direction
for other

steps

Decision
Mode

Situation,
Affect

M
em

ory
Parameters and states to focus on

Choose
Course of Action

Figure 2.6: Meta-Reasoning Module [Silverman et al., 2001, pg. 5]

suicide [Hudson, 1999, pg. 31-4]. Such behavior could be programmed into the

agent under this assumption. Accounting for how different or specific individuals

adhere to this notion via a generalization of psychological, physiological, and external

situations (e.g., economic and political status) has proved to be problematic in the

past [Hudson, 1999, pg. 23, 30].

Assuming now that this model appropriately characterizes the key motives and

resultant behaviors of terrorists, it is clear that different terrorist groups or individ-

uals may require different behavioral functions in order to accurately account for the

cultural, ethnic, gender, and situational differences. Weaver et al. [2001], in collabo-

ration with Silverman et al. [2001], have developed a means to ‘dial-up’ an opponent

such as a terrorist organization by leveraging the PMF approach. By accounting for

the “(current) situation, organization, population, ideological/motivation, strategic,

and tactical layers of their decision making,” simulation setup of virtual opponents

can be accomplished faster [Weaver et al., 2001, pg. 1].
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Unfortunately, with the exception of painstakingly compiled historical data,

limited information exists to accurately describe these layers. Further, this approach

appears to limit the options of the simulated terrorist to actions that have occurred

in the past (e.g., no surprise tactic of intentionally destroying a hijacked aircraft).

However, given that an adversary constructed from and agent with artificial decision-

making capabilities can be developed, the remaining area of interest is how the

members of this project incorporated emotion into the decision-making process. This

methodology is described by Johns and Silverman [2001].

Emotion, or in some cases the complete lack thereof, appears to play a large

role in the decision-making capacity of terrorists and extremists, in general. Johns

and Silverman attempt to develop a cognitive appraisal model that accompanies the

meta-reasoning model depicted in Figure 2.6, with the goal of enabling agents to

“. . . systematically reflect contextually relevant emotions and personality, and . . . ”

study the affects upon their own decision-making behavior [Johns and Silverman,

2001, pg. 1]. Their work builds a relationship between an agent’s emotions and

the underlying “utility functions that drive decision theory” [Johns and Silverman,

2001, pg. 1]. This approach requires knowledge and understanding of the interaction

between an agent’s concerns and memory, both recent and long-term. Further, they

divide concerns into “goals, standards, and preferences,” which in the multi-objective

context can be interpreted as objectives, costs [or constraints], and preferences [or

value tradeoffs either within a single-dimensional value function or as indicated in a

weight].

The decision-theoretic utility models that form the underlying structure of

the model proposed should be scrutinized. For example, the conversion of emotion

intensities (another, emotion-specific function that appears to be equivalent to a

single dimensional value function) to utility of a course of action is provided by the

following equation, U (c) =
∑
d

(PdEx), where
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Figure 2.7: Goals for Terrorist A [Johns and Silverman, 2001, pg. 6]

Pd is a measure of one of five personality dimensions (surgency, agreeable-
ness, conscientiousness, openness to experience, and emotional stability);
Ex is the “maximum intensity of emotion x (where x could be joy, anger,
relief, etc.) over all possible concern effects times the perceived proba-
bility of this outcome actually occurring [Johns and Silverman, 2001, pg.
4-5].

Although explaining the specifics of these functions are beyond the scope of

this research, a clearer signal that the underlying assumptions of the “pre-existing

decision theory algorithms” claimed to be in use is shown in Figure 2.7. This hierar-

chy of goals is not comprised of mutually independent goals. Overall, the measures,

functions, and weighting schemes do not appear to be of the classical form as seen

in Keeney and Raiffa [1993].

2.3.11 Potential Improvements

Despite the potential theoretical and data acquisition issues associated with the

overall agent-based framework, the goals identified and the realization that emotion

must be incorporated within artificial decision-making systems in order to better

represent and subsequently predict paradoxical behavior are of value. The goals

shown in Figure 2.7 provide an excellent start at identifying the objectives that may
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comprise a terrorist’s value model. The component of emotion, however, could be

included in either the shape of the single-dimensional value functions or, more appro-

priately, the preferences or intensity associated with the sub-goals or sub-objectives.

Due to the inherently non-cooperative nature of terrorist organizations, data

collection will remain challenging but not impossible, as Krebs observed [Krebs, 2002,

pg. 51]. Another possible solution to analyzing the problem of terrorism is to model

everyone else, as they may be either cooperative or at least are not operating within

secrecy and with the constant intent to deceive potential data acquisition efforts. One

of the justifications for this given by Hudson is that “attempts to explain terrorism in

purely psychological terms ignore the very real economic, political, and social factors

that have always motivated radical activists. . . ” [Hudson, 1999, pg. 23]. Hudson

also notes that terrorism and political violence share underlying causes such as

. . . ethnic-, religious-, and ideological conflicts, poverty, modernization
stresses, political inequities, lack of peaceful communications channels,
traditions of violence, existence of revolutionary groups, governmental
weakness and ineptness, erosions of confidence in regimes, and deep di-
visions within governing elites and leadership groups [Hudson, 1999, pg.
15].

Recent evidence that supports this theory is highlighted in an analysis of the

groups responsible for the deadly and disruptive improvised explosive devices plagu-

ing Coalition and Iraqi forces today. The conditions surrounding terrorists and their

organizations, as well as measures to counter their activities may be explored within

a simulation. The overall goal of such a simulation would be to investigate which of

these factors can be addressed as to minimize the spread of terrorist support or the

likelihood of recruitment.

2.3.12 Terrorist Models and 21st Century Warfare

Several authors, such as Johns and Silverman [2001], Silverman et al. [2001],

and Weaver et al. [2001], are focusing on developing the capability to wargame
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courses of action against various terrorist-based representations using agent-based

simulations. Alternatively, these models could be used to predict what a terrorist

might do, given a certain situation, providing insight into courses of action that

might be sought by the terrorists themselves. This could improve prioritization of

force protection efforts, such as securing the most likely target areas against attack.

However, this approach may not provide insight into what the ‘next great attack’

will be, but only individual-individual or group-group agent interaction within a sim-

ulation. The simple act of constructing these methodologies has forced researchers

to bring economic, psychological, and other genres of study together with focused

background investigation of various terrorist organizations. This will inevitably act

as a forcing function to better understand the enemy and possibly provide new means

to defeat them even before they begin, for example, eliminate conditions that pro-

mote recruitment. This leads to another potential role of terrorist decision-making

models, supporting the global war on terrorism.

Terrorism will likely not stop until all of the terrorists either change their

ways or are destroyed. Extinction generally occurs in one of two ways: forced,

such as over-hunting a specific species, or naturally, perhaps due to a sudden and

drastic climate change to which the species cannot cope or adapt. Forced, in this

context, requires the killing of all terrorists, assuming all terrorists could be properly

identified; alternatively, naturally requires a change in the economic, political, social,

and other appropriate climates that results in the destruction of the support structure

and conditions that motivate and encourage terrorism. It has yet to be determined

which of these are (1) more cost effective, including risk, (2) more effective in general,

and (3) required in combination until the end of mankind.

As Harris suggested, researchers tend to model strange phenomena in order

to improve our understanding. To better understand and eliminate terrorists and

terrorist organizations, modeling is an appropriate means to facilitate understanding

of their underlying psyche, motives, and overall goals. The unfortunate catch is that
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efforts are inexorably biased by the analyst’s own perceptions and ideologies, making

it difficult to view decision-making from the target individual’s perspective. As the

theory of Maslow may not be entirely capable of describing terrorist decision-making,

the notion of developing a cognitive appraisal (emotion) model acts as an incentive

to deepen the study of a terrorist’s behavioral characteristics as well as providing an

opportunity to learn, predict, and directly or indirectly thwart this type of threat.

Upon review, several efforts have provided focused research and thought into

these areas, but further work, particularly in the decision theoretic structures imple-

mented within Johns and Silverman [2001], may be required for them to meet the

most general assumptions of decision theory described in Keeney and Raiffa [1993].

Otherwise, current modeling efforts provide potential that it is possible to (1) gain

insight into the underlying causes for motivating an individual to engage in these

activities; (2) incorporate these concepts into agent-based simulations for study; and

(3) use these simulations to evaluate various courses of action, ranging from close-

combat operations, to application of other instruments of power or international

diplomacy.

As a result of their simulation objectives to pit opposing sides against one

another, these methodologies in general do not appear to focus on interactions that

may occur within a terrorist network. Such interactions, often termed influence,

pervade the social sciences literature and may hold a group together, break them

apart, establish authority, and provide constraints upon or opportunities for social

choices.

2.4 The Ebb and Flow of Influence

The seminal work of French described the then–current theory of social power

and analyzed and addressed some of its limitations. In the course of his work, French

defined “the basis of interpersonal power. . . as the more or less enduring relationship
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between (two individuals) A and B which gives rise to power” [French, 1956, pg.

183]. He then described five bases for power: attraction, expert, reward, coercive,

and legitimate [French, 1956, pg. 183-4]. In examining the impact of peer group

influence upon opinion formation, Friedkin’s interpretation of French’s work was

that “[French] first proposed that social influence was a finite distributed resource”

[Friedkin and Cook, 1990, pg. 130]. Within the context of OR methodologies,

Renfro postulated that influence was analogous to a commodity flowing through a

(social) network [Renfro, 2001, pg. 80-1]. These and other works such as Freeman

et al. [1991] substantiate the modeling the flow of influence as a commodity within

a network model.

Measurement of influence in the context of social network analysis (SNA)

is “based upon the importance of relationships among interacting (individuals)”

[Wasserman and Faust, 1994, pg. 4]. Additionally, one of the underlying principles

of SNA is that “. . . individuals view the network structural environment as providing

opportunities for or constraints on individual action” [Wasserman and Faust, 1994,

pg. 4]. This implies individuals take into account opinions of those socially close, or

in positions of authority, for example, when faced with a decision point.

There are a variety of examples in SNA literature that investigate and attempt

to measure this influence [cf. Frank and Yasumoto, 1988; Friedkin and Cook, 1990,

among others]. A predominant concentration of research in this area deals with

determining what conditions, both internal (via the network structure and connect-

edness of individuals) and external (via the outside influences or requirements for a

group-supported decision), are required to bring a group of individuals to agreement

upon a group decision.

Friedkin and Cook discuss social influence in the context of interpersonal re-

lations within a network, and their subsequent role regarding the interpersonal in-

fluence required to enable the “. . . the process of (group) opinion formation” [1990,

pg. 122]. This process utilizes network models to “. . . deal with the attainment of
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collective agreements. . . , usually beginning with a network of fixed and discrepant

opinions” [Friedkin and Cook, 1990, pg. 122]. Modeling the processes of “inter-

personal negotiation” and the subsequent change in individual opinions form the

“unique theoretical thrust of network models of social influence. . . ” [Friedkin and

Cook, 1990, pg. 122-3]. The resulting models essentially attempt to describe the

dyadic interaction required to transform a network of individuals with discrepant

opinions into a network where the individuals’ opinions have coalesced, at least to

some degree. Similar concepts in social network literature based upon an exchange of

influence between individuals include contagion (of behavior) (Leenders [2002]) and

diffusion (the rate of acceptance of innovative and possibly risky ideas or behavior)

[Valente, 1996].

Just as there are many network model formulations within the OR domain,

there exist numerous formulations and approaches within the study of social network

modeling. A recent example, due to Amblard and Deffuant [2004], studied the

propagation of extremist opinions throughout a variety of small-world networks.

Their results suggest that “. . . a critical level of connectivity and some disorder in

the network (is necessary) in order for extreme opinions to invade a population. . . ”

[Amblard and Deffuant, 2004, pg. 738].

However, this phenomenon is not necessarily confined to small-world networks.

As Buchanan states the “infectious movement of desires and ideas from mind to

mind is even the basis of a new theory of advertising known as permission market-

ing” [Buchanan, 2002, pg. 160-1]. Essentially, this connotes the flow of influence

propagating through a general populous, which may not necessarily be a small-

world network in the classical sense. This is an important point because not all

organizations may naturally evolve as small-world networks. However, influence will

inevitably flow regardless of the underlying network structure [Renfro, 2001].

Beginning with French’s influential work, it is clear that the social science re-

search and theory liken the interaction between two individuals or groups to that of
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a commodity that flows between them. Operations Researchers and Social Scientists

generally apply network models differently, a key difference being that social science

models tend to be descriptive, while OR models tend to be both descriptive and

prescriptive, where appropriate. Descriptive models, in general, attempt to describe

how a process or system works via underlying relationships and behaviors. The focus

of prescriptive models is improved decision making by attempting to describe the

best or optimal solution of a given system [Clemen, 1996, pg. 14]. Oftentimes, the

process of obtaining a prescriptive model requires an understanding of the underly-

ing processes or systems inherent to the decision problem and therefore results in a

descriptive model as a byproduct. The next section discusses a few of the seminal,

descriptive measures used within the SNA literature to ascertain individuals of in-

terest. Where appropriate, critiques and potential areas of theoretical improvement

of these measures are offered.

2.4.1 Katz Status Index

In an attempt to improve upon the prevalent status measures, Katz, in the

context of a popularity contest, based individual status not only upon how many

people choose the most popular individual but also accounting for who is doing the

choosing. Katz suggested that this measure may also be “. . . used to study influence,

transmission of information, etc.” [Katz, 1953, pg. 39].

Katz notes that the column sums of X pertain to the number of people that

choose that individual; this form of ‘in-degree’ centrality was the primary means for

assessing status during the time of his research. Further, noting that the elements of

the powers of the sociomatrix, given by Xp, provide the number of directed walks of

length p from i to j, he noted that this equates to the indirect p-step (p > 1) choices

of a given individual by the group [Katz, 1953, pg. 40] [cf. Wasserman and Faust,

1994, pg. 160-1]. All possible walks are accounted for by raising the sociomatrix to

the power of infinity. An additional assumption that longer walks were less effective
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Figure 2.8: Katz Choice Matrix [Katz, 1953, pg. 40]

than shorter ones required an attenuation factor, 0 ≤ α ≤ 1. Accepting these

constructs, Katz’ objective was to find the column sums of the matrix

T = αC + α2C2 + α3C3 + · · ·+ αkCk + · · · (2.1)

Given the computational limitations of the early 1950s, Katz cleverly sought to take

advantage of the geometric series, shown in Equation 2.2, avoiding the computation

of matrix powers:
∞∑

k=1

rk =
r

1 − r
, r < 1 . (2.2)

Consequently, substituting r = αC and applying Equation 2.2 to Equation 2.1 yields

T = (I − αC)−1 − I. (2.3)

Considering that the conventional status index divides the column sums by (n − 1),

the column sums of T are divided by the m value that accommodates the new

construct’s underlying technique [Katz, 1953, pg. 42]. Figure 2.8 illustrates the

choice matrix and accompanying digraph.

m ∼= (n − 1)!α(n−1)e1/α (2.4)
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Given this information, the original status vector (one element for each of the

six actors) is s =
[

0.4 0.2 0.2 0.6 0.2 0.8
]
; essentially, those actors with high

in-degree (that is, actors F, D, and A in descending order) dominate with regards

to status. Alternatively, the status vector using Katz’s measure, with a multiplier

of α = 0.5, is s =
[

0.47 0.04 0.04 0.41 0.22 0.45
]
. Using Katz’s approach,

actor A scores higher than actor F, albeit slightly. Despite the relatively low in-

degree of actor A, his status is highest because both of the actors with the highest

in-degree (actors F and D) choose actor A. Directly stated, “being chosen by a

popular individual should add more to one’s popularity” [Bonacich and Lloyd, 2001,

pg. 192]. The change in status for actors B, C and E from being equivalent to E

differing from B and C is accounted for in a similar fashion [Katz, 1953, pg. 42].

Interestingly, Katz does not offer an interpretation of the elements of the T matrix.

A few points of contention exist: the characteristics of the flow captured or

assumed by the calculations; the potential length of the paths implicitly accounted

for within the measure’s calculations; and, the arbitrary choice of the attenuation

factor. Assuming that this methodology can indeed be applied to the transmission

of information, the matrix powers (p > 2) actually capture a variety of walks that

may not necessarily be conducive to operations security. Deo offers a more precise

definition of the content of the powers of the sociomatrix, which is summarized in

the following theorem.

Theorem 1. The (i, j)th entry in Xp equals the number of different, directed edge

sequences of r edges from the ith vertex to the jth. These sequences fall into three

categories:

1. Directed paths from i to j: those directed edge sequences in which no vertex is

traversed more than once;

2. Directed walks from i to j: those directed edge sequences in which a vertex may

be traversed more than once, but no edge is traversed more than once; and,
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3. Those directed edge sequences in which an edge may also be traversed more

than once [Deo, 1974, pg. 222].

Leenders previously pointed out that the information contained within the

powers of the sociomatrix is often misperceived, depending upon the operative defini-

tion of ‘walk’ [Leenders, 2002, pg. 32]. Additionally, the second and third categories

of information flow are likely contrary to the security goals of a non-cooperative net-

work. For example, with p = 4, a possible walk of four between A to D will include

A-F-A-F-D. If the network of interest is trying to maintain secretive communica-

tions, as in the case of Al Qaeda, the banter between A and F may be unlikely [Post,

2005, pg. 39-48].

In addition, the potential length of walks measured goes to infinity. Again,

this would involve an infinite amount of communication between the individuals,

which would likely be counter to their security objectives. This suggests that a more

direct, path-based approach, limited to the length of the longest path given n actors–

or (n − 1)–would be more appropriate. In fact, although the approximation of the

denominator m (from Equation 2.4) is based upon an infinite series, the elements of

this series reduce to zero when considering powers beyond (n − 1). However, using

(α = 0.5) and the choice matrix discussed by Katz, the summation due to (p ≥ 7)

contributes a significant amount to the overall measure.

Finally, the arbitrary ‘attenuation’ factor has been highlighted by previous

works [Clark, 2005; Borgatti and Everett, 2006]. Although the value for α is likened

to the ‘attenuation’ of a signal or influence as a function of distance traveled, it

is simply required for the series to converge, thereby providing a result. For his

measure, Katz suggests “that reasonable, general-purpose values of α−1 are those

between the largest [eigenvalue of X] and about twice that [value]” [Katz, 1953, pg.

42]. Using the same example discussed by Katz, the largest eigenvalue of X (which

corresponds to Figure 2.8) is 1.68; this implies that 0.298 < α < 0.595. Hence, the

assumption space for ‘attenuation’ within which the analyst can work is restricted
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from the onset. Additionally, even within this recommended range, the most ‘central’

actor is ultimately a function of α.

Note also that this approach assumes that each link (or the strength of a link)

is identical to all others. Hence, computational methods that (1) do not rely upon

an arbitrary input merely for convergence and (2) account for weighted links are po-

tentially of interest. Two examples of such measures include the clique identification

approach by Hubbell [1965] and information centrality developed by Stephenson and

Zelen [1989].

2.4.2 Mechanics of Clique Identification

Hubbell’s objective was to also use the concepts of status and choice in de-

termining cliques within a network. His measure is related to Katz’s in that it

accounts for the status of the chooser, but also incorporates “the strength at which

he chooses” [Hubbell, 1965, pg. 382]. Instead of an arbitrary attenuation factor,

Hubbell requires that the value wij be specified–which may be negative, zero, or

positive–for each pair of actors [Hubbell, 1965, pg. 378]. As noted in Katz’s mea-

sure, the matrix of these weights (W) is raised to powers to account for indirect

paths of influence. Consequently, wp
ij corresponds to “the total strength of j’s in-

fluence upon i at the pth remove” [Hubbell, 1965, pg. 379]. Relying again upon

a geometric series, Hubbell defines the index of association (mij) to “discriminate

intra-clique bonds from inter-clique bonds” [Hubbell, 1965, pg. 379].

yij = δij + wij + w
(2)
ij + w

(3)
ij + . . . (2.5)

mij = mji = min (yij , yji) (2.6)

An additional extension posed by Hubbell permits the incorporation of exogenous

variables (ei) specific to each actor into the status measure. Unfortunately, although

constraints upon wij are specified in order for a solution to exist, the development
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and underlying theory behind all of these values are vague at best. In addition, the

values of mij are compared against a relatively arbitrary threshold in order to discern

pairs within a clique [Hubbell, 1965, pg. 379]. Nonetheless, the notion of strengths

of relationships through the weighted values and the incorporation of information

other than network topology was a substantial improvement over previous measures.

Information centrality, discussed next, offered further improvements.

2.4.3 Information Centrality

Stephenson and Zelen developed a centrality measure based upon the amount

of information (potentially) flowing through “all paths between [all] pairs of points”

[Stephenson and Zelen, 1989, pg. 2]. This approach is attractive in that (1) it ac-

counts for the geodesic as well as the non-geodesic communication or flow of influence

through a network and (2) it easily permits the use of weighted graphs. Further,

the measure is not based upon powers of the sociomatrix, thereby characterizing the

potential flows of influence that are more likely within the realm of non-cooperative

network behavior. The author’s unique approach avoids the necessity to explicitly

enumerate all paths; however, this ultimately restricts application of this measure

to symmetric graphs [Stephenson and Zelen, 1989, pg. 4].

The underlying motivation for developing information centrality was to address

the fact that betweenness and closeness measures essentially neglected “. . .measuring

communication occurring along reachable, non-geodetic pathways” that may be

leveraged by a particular organization [Stephenson and Zelen, 1989, pg. 3]. The

authors had considered that communication “. . .may be intentionally channeled

through many intermediaries in order to hide or shield information in a way not

captured by geodesic paths” [Stephenson and Zelen, 1989, pg. 3]. This aspect alone

suggests that it may be an attractive option for analysis of non-cooperative networks.

Using the length of the path as a distance, the information contained on a

path from i to j is defined as the reciprocal of this distance. The authors based

68



their approach on “theories of the statistical design of experiments and estimation”

[Stephenson and Zelen, 1989, pg. 28]. Ultimately, Stephenson and Zelen posit that

this approach more effectively captures “subtle network infrastructures in complex

situations” [Stephenson and Zelen, 1989, pg. 27]. Such complex situations are

likely those encountered by members in a non-cooperative organization attempting

to limit exposure to their communications. A final genre of centrality measures that

also avoids the common assumption of ‘efficient communications’ is based upon the

eigenvectors and eigenvalues of the sociomatrix.

2.4.4 Eigenvector Centrality

The underlying premise of eigenvector centrality is summarized by Bonacich

and Lloyd.

Being chosen by a popular individual should add more to one’s popularity.
Being nominated as powerful by someone seen by others as powerful
should contribute more to one’s perceived power. Having power over
someone who in turn has power over others makes one more powerful
[Bonacich and Lloyd, 2001, pg. 192].

Mathematically, given the entries in the adjacency matrix, denoted (aij) for this mea-

sure, implies that i contributes to j’s status, and xi denotes the status of individual

i, this concept is shown in Equation 2.7 [Bonacich and Lloyd, 2001, pg. 192-3].

xi = a1ix1 + a2ix2 + . . . + anixn (2.7)

In order to determine solutions to this system, a generalized form is shown in Equa-

tion 2.8, with a specified scalar λ.

λxi = a1ix1 + a2ix2 + . . . + anixn (2.8)

In matrix notation, this is denoted by Equation 2.9, which is commonly known as

the eigenvalue problem. Note that for this particular measure, X is an n× n matrix
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Figure 2.9: Hypothetical Network [Bonacich and Lloyd, 2001, pg. 192]

with columns comprised of the eigenvectors of the adjacency matrix (A) and λ is an

n × n diagonal matrix of the eigenvalues of A [Bonacich and Lloyd, 2001, pg. 193].

ATX = Xλ (2.9)

As expected, network structure plays an important role in the results of this analysis

method. However, there are unique cases where the numerical results may not

capture the more intuitive understanding of centrality. For example, all actors within

each of the hypothetical, directed networks shown in Figure 2.9 have zero status due

to “. . . positions that receive no choices have no status and contribute nothing to

any other position’s status” [Bonacich and Lloyd, 2001, pg. 139].

To get around this conceptual and mathematical issue, Bonacich and Lloyd

proposed “α-centrality” that provides every individual some level of status, inde-

pendent of existing or non-existent connections to others [Bonacich and Lloyd, 2001,

pg. 193]. With the vector of exogenous sources of status (e) and a parameter re-

flecting the “. . . relative importance of endogenous versus exogenous factors in the

determination of centrality” (α), the matrix solution for status is given by

x = αATx + e ⇒ x =
(
I − αAT

)−1
e. (2.10)
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Figure 2.10: Notional Hypergraph [Bonacich et al., 2004, pg. 190]

Note that Katz’s model is similar to this approach, and differs by a constant of one

[Bonacich and Lloyd, 2001, pg. 194]. Although the theoretical development, range,

and magnitude (other than being a vector of ones in their example) of e are not

discussed, the new approach both permits analysis of asymmetric relationships and

is equivalent to the original formulation as α approaches λ−1
max [Bonacich and Lloyd,

2001, pg. 196-7]. Clearly the development of the theoretical nature of the exogenous

vector offers a target of opportunity; for example, an extension of the discriminate

analysis technique used by Clark [2005] to ascertain actor position may provide a

useful first step.

A recent extension to this concept facilitates the determination of centrality for

hypergraphs and hyperedges, which account for the effects of multiple dimensions

within a relationship (e.g., time, place, and group membership) [Bonacich et al.,

2004, pg. 192] [cf. Seidman, 1981, which addresses some methods to deal with

social structures via hypergraphs]. For example, consider the set of four actors with

relationships or interactions captured at three different time periods (see Figure

2.10). Representation of all three graphs simultaneously may be accomplished via

an incidence matrix where “each edge is represented by a row and each vertex by a

column” [Bonacich et al., 2004, pg. 193]. Note that this storage format also prohibits

the analysis of directed and/or weighted graphs. From Figure 2.10, the number in

parenthesis (i) corresponds to the ith row in the incidence matrix shown below. The

first four columns correspond to the actors A, B, C, D and the last three columns
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correspond to the time periods 1, 2, 3. As an example, the first row of matrix E

indicates that actors A and B are connected in time period 1:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0

1 0 0 1 1 0 0

0 1 1 0 1 0 0

0 0 1 1 1 0 0

1 1 0 0 0 1 0

1 0 1 0 0 1 0

1 0 0 1 0 1 0

0 1 0 1 0 1 0

1 0 0 1 0 0 1

1 0 1 0 0 0 1

0 1 0 1 0 0 1

0 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

For the complete set of results, the reader is referred to [Bonacich et al., 2004,

pg. 195]. According to the centrality values and Bonacich et al., one may conclude

that actor A (C) is the most (least) central; time period 2 the most central among all

three time periods; and, hyperedge 7 is the most central [Bonacich et al., 2004, pg.

195]. Unfortunately, the interpretation of the centrality of a network within a set of

networks remains unclear. Clark used multidimensional centrality between networks

as weights, after normalization, as a proxy for the importance of a given contextual

network [Clark, 2005, pg. 3-29].

This technique, like many others, relies solely upon the network topology

present within a given relationship context as opposed to the importance of the

context from a cultural perspective of the actors within that network. For example,

given a set of actors, suppose that known relations within a given context are fewer

in number than another context considered in the analysis. It is hypothesized (and
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therefore an issue that must be addressed in the underlying theory/methodology)

that the lack of data (for one reason or another) will affect the multidimensional cen-

trality score for that contextual network. Suppose further that this smaller network

is a context that plays a significant role in the solidarity of the group, perhaps much

more than any of the other contexts. Using multidimensional centrality of each net-

work context, therefore, has the potential to underweight the key relationships that

exist among multiple contexts. This leads into the next concept of interest within

this research–multiplexity.

2.4.5 Multiplexity and Layered Networks

Given a set of actors, when more than one relationship or context of interaction

is studied the analysis is considered multiplex [Monge and Contractor, 2003, pg. 35].

This term, like many other concepts in SNA, appears to be borrowed from commu-

nications theory, which defines multiplex as combining multiple signals into one to

facilitate transmission, in such a way that they can later be separated as required

[DOD, 2005, pg. 354]. Consequently, communication and interaction between two

individuals will generally transmit through several different contexts simultaneously.

As Haythornthwaite noted, “we operate in a multiplex world, maintaining multiple

roles and relations with others, sustained through a variety of media” [Haythornth-

waite, 1999].

Although interaction between two individuals naturally involves these multi-

ple relations (for example, family, friend, co-worker, fellow student, any combination

thereof, and so forth), surprisingly few articles actually incorporate multiplex re-

lations within their analysis. Such lack of previous studies may be attributed to

the complexity encountered when dealing with multiplex networks. Interestingly,

Wasserman and Faust recommend that commonly used centrality and prestige mea-

sures be calculated for each relation separately and recommend against aggregating

the relations into one sociomatrix [Wasserman and Faust, 1994, pg. 219]. Although
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Figure 2.11: Improper Multiplex Aggregation

rationale for this is not provided, the answer is likely the loss of information incurred

when merely combining occurrences of links among relations.

For example, consider the three possible instances within which two individu-

als can share relations in two out of three contexts (Figure 2.11). Assuming that the

contexts were ‘familial,’ ‘frequently interacts with,’ and ‘is fond of,’ one could posit

examples where all of these possibilities would yield different strengths of relation-

ships. However, a simple summation of dichotomous occurrences results in identical

‘strengths’ and is therefore likely insufficient to capture or infer the strength of a

relationship based upon multiplex data.

Nonetheless, when two people interact, regardless of the value of the rela-

tionship’s strength or a means to quantify it, it is assumed that both actors are

cognizant of the underlying contexts that prevail and make their relationship either

strong or tenuous. This may imply that social network measures, applied to each of

the networks or contexts independently, will fail to capture the combined effect due

to the multiplexity inherent within the relationships. This suggests that, prior to

determination of centrality, prestige, and so forth, an aggregation of contexts would

be analytically prudent. One potential means could comprise a weighted function,

based upon how the actors internal to the network of interest place importance upon

each context. A notional example of this is illustrated in Figure 2.12. Of course,

one could ask the question “Is a familial link equivalent in strength to a tie that

shares both the bonds of fondness and frequent interaction, since the weighted sum
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in either case equals 0.5?” The most likely answer is ‘it depends,’ and is therefore

an underlying question within this research.

In order to begin an understanding of weighting schemes, their limitations, and

their strengths, a review of decision analytic weighting techniques is discussed.

2.5 Weighting and Decision Analysis

Decisions are a “ubiquitous activity,” that involves a “commitment of
resources. Resources need not be financial, natural or even material”
[LaValle, 1978, pg. 3].

In today’s complex and interdependent world, the commitment of resources

LaValle cites is not necessarily limited to implementing a decision. Additionally,

it often entails up-front data gathering, decision maker (DM) and stakeholder in-

volvement, and analysis required of thoughtful and conscientious decision making.

Within the multi-criteria decision making (MCDM) framework, this section focuses

upon one such up-front activity–the construction of weights, also referred to as scal-

ing constants, for additive multi-attribute value functions.

With a few assumptions regarding the decision environment, the nature of

the decision problem, and the expense of up-front costs, a conceptual extension

to a variety of weighting schemes is possible. In the field of multi-attribute value

theory, or more generally, multi-objective decision analysis, there exist a number

of elicitation techniques to weight attributes within a value model. Each technique

has its strengths and weaknesses; however, all are subject to expenses such as time,
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money, and judgment errors and biases due to the requisite decision-maker(s) and

analyst(s) interaction and involvement. One of the focal points of this research seeks

to economize upon this aspect of decision analysis. Beginning with a brief review of

the MCDM approach and the circumstances under which the proposed methodology

shows promise, the evolution and sometimes conflicting paradigms of weighting are

discussed. Extending a few of these techniques to permit a dynamic realization of

weighting vectors is proposed in Chapter VI; this concept proves useful in not only

providing the theoretical underpinnings of weighting the contextual layers of a social

network, but also permitting dynamic weighting of alternatives, of infrastructure

network layers, and other MCDM-oriented applications.

2.5.1 Multi-Criteria Decision Making

MCDM provides a systematic approach for thinking about and structuring

objectives in the context of a given decision problem. Decisions are made to meet an

overall objective where, in general, “an objective generally indicates the direction in

which we should strive to do better. . . ,” in the context of a given decision problem

[Keeney and Raiffa, 1993, pg. 32-4]. Unfortunately, within the context of today’s

multifaceted decision environment, the overall objective may almost certainly be

accompanied by conflicting sub-objectives. This environment comprises the inherent

nature of complex decisions in that trade-offs must be made when selecting a ‘best’

course of action or alternative [Keeney and Raiffa, 1993, pg. 15].

The prescriptive nature of MCDM forces decision makers to think critically

about the various problem dimensions, breaking objectives into sub-objectives, and

continuing this process until each sub-objective may be measured by an attribute.

An attribute “indicates the degree to which alternative policies meet this objective”

[Keeney and Raiffa, 1993, pg. 32]. The desirable properties are summarized in Table

2.10 [Keeney and Raiffa, 1993].
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Table 2.10: Attribute Properties [Keeney and Raiffa, 1993, pg. 50-3]

Complete Attributes cover all important aspects (sub-objectives) of the
problem

Operational Useful and meaningful to the decision maker; facilitates decision
making

Decomposable The nature of the attributes allows simplification of the evalua-
tion process by breaking it into parts

Non-redundant Limits double counting
Minimal Keeps the problem dimension small as possible

The MCDM process seeks to “systematically think about ranking a set of con-

sequences when each consequence is described in terms of performance values on

many attributes” [Keeney and Raiffa, 1993, pg. 28]. For the purposes of this re-

search, it is assumed that this task is achieved via a multi-attribute, additive value

model. Additive models, as opposed to multiplicative models, are not only easier

to understand and analyze, but also perform well despite some of the theoretical

criticisms. For example, Stewart devised a simulation experiment to test the ro-

bustness of additive models and their ability to “reproduce the ‘ideal’ preference

ordering of the alternatives” [Stewart, 1996, pg. 305]. Stewart’s findings indicate

that, with some care exercised by the decision analyst, additive value models per-

form well despite violations of underlying assumptions such as non-linearities in the

single dimensional value functions, additive independence, and inadvertent omission

of a small portion of the model criteria [Stewart, 1996, pg. 308].

2.5.2 Additive Value Model

A value model offers a means to quantitatively measure a decision maker’s

preferences. Assessments of this nature trace back to the psychophysical study of

judgments regarding subjective phenomena (e.g., loudness, pitch, and brightness)

[von Winterfeldt and Edwards, 1986, pg. 209]. Decision science attempts to lever-

age this field, enabling the quantitative measurement of the subjective phenomena–

preference [von Winterfeldt and Edwards, 1986, pg. 209].
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Let the vector, x, represent the characterization of a given alternative (or act),

a, within an n-dimensional consequence space such that x = (x1, x2, . . . , xn). Each

dimension corresponds to a measurable attribute. Therefore, the characterization

is achieved through evaluating the alternative with respect to each attribute. A

single-dimensional value function (SDVF) that evaluates the given alternative with

respect to ith attribute provides the realization of xi, mathematically shown as

Xi (a) ≡ xi, ∀ i. In general, a value function, connoting decision making under

certainty, “associates a real number v (x) to each point x in an evaluation space

. . . , [that represents] the decision maker’s preference structure provided that” the

function output can discern between indifferent and preferred alternatives [Keeney

and Raiffa, 1993, pg. 80]. Given two alternatives denoted x′ and x′′, Keeney and

Raiffa highlight these two requirements mathematically in Equations 2.12 and 2.13,

respectively.

x′ ∼ x′′ ⇔ v (x′) = v (x′′) (2.12)

x′ � x′′ ⇔ v(x′) > v(x′′) (2.13)

These mappings between preference and the value function output, particularly from

Equation 2.12, play a key role in the weight elicitation method proposed by Keeney

and Raiffa [1993], discussed later in Section 2.5.5.2.

Although there are a number of underlying forms for value functions, the model

assumed for this effort is the simple additive value model (cf. [Keeney and Raiffa,

1993, pg. 81] and [von Winterfeldt and Edwards, 1986, pg. 276]). As mentioned

by Keeney and Raiffa [1993], verification of the requisite independence assumptions

for multiplicative models can be difficult with even relatively small models of five

or more attributes. Keeney also notes that “. . . if any of the independence condi-

tions are not appropriate, it is an indication that an objective in addition to those

articulated for the problem is relevant” [Keeney, 1988, pg. 153]. Therefore, another

alternative to implementation of the multiplicative model could include revisiting the
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objectives hierarchy and determining whether or not an additional objective and its

corresponding attribute should be incorporated within the model. Nonetheless, the

dynamic weighting approaches developed later could be applied to either construct.

According to Keeney and Raiffa [1993, pg. 91], in order for the additive pref-

erence structure to hold, the model must be in (or transformable to) the following

form,

v(x1, x2, . . . , xn) = vX1(x1) + vX2(x2) + · · ·+ vXn(xn). (2.14)

From Equation 2.14, Xi, (i = 1, . . . , n) indicates the ith attribute, whereas

xi, (i = 1, . . . , n) indicates the score of a given alternative with respect to the ith

attribute.

Definition 9. The attributes X1, . . . , Xn (n ≥ 3) are mutually preferentially in-

dependent if every subset Y of these attributes is preferentially independent of its

complementary set of evaluators [Keeney and Raiffa, 1993, pg. 111].

Theorem 2. Given attributes X1, . . . , Xn (n ≥ 3), an additive value function of the

form

v(x) =

n∑
i=1

vi(xi), (2.15)

exists if and only if the attributes are mutually preferentially independent [Keeney

and Raiffa, 1993]. Note that for Equation 2.15, the subscripts Xi are simply replaced

with i for notational convenience.

The final component of the value function involves the weights, often referred to

as scaling constants. Given an additive value function of the form shown in equation

2.15, Keeney and Raiffa note that, for purposes of convenience, the overall score,

v(x), as well as the single-attribute [or single-dimensional] value functions, vi (xi),

should be scaled [Keeney and Raiffa, 1993, pg. 117]. This results in the form,

v(x) =

n∑
i=1

wivi(xi), (2.16)
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which is also an additive value function equivalent to Equation 2.15, assuming that

the scaling for both the single dimensional value functions and the weights is consis-

tent [Keeney and Raiffa, 1993, pg. 116-7].

Note that Equation 2.16 also assumes that the weights are normalized such

that
n∑

i=1

wi = 1. It is important to understand the underlying rationale for normal-

izing the weights, and their interpretation, prior to extending the various weighting

methodologies; proposed extensions are discussed in Chapter VI.

2.5.3 Normalization of the Weights

Similar to the reason observed by Keeney and Raiffa, Lootsma suggests that

weight normalization within this modeling approach provides “a uniform scale to

judge the alternatives under the respective criteria, . . . (and to) easily quantify the

gradations of the relative importance of the criteria” [Lootsma, 1999, pg. 36]. Es-

sentially, if the single-dimensional value functions are all scaled consistently (e.g., all

range from 0 to 1, 0 to 10, or 0 to 100, as suggested by the decision environment),

normalizing the weights will result in an overall value function score that is within

the same range. This facilitates interpretation of the overall scores yet does not

change the end result with respect to the preference order of the scored alternatives.

For example, suppose a three-attribute value model, comprised of SDVFs,

vi (xi) ∈ [0, 1] and i = 1, 2, 3, were developed and weights elicited. In Table 2.11,

the Raw weights are the original numbers elicited; the corresponding Normalized

weights carry the same effect but now sum to 1. The scores in Table 2.12, based

upon each set of weights, results in the same rank order by preference. However,

using the normalized scores results in an overall score v(x) ∈ [0, 1], which is the same

range as each of the single-dimensional value functions. This is referred to as the

consistency condition [Keeney and Raiffa, 1993, pg. 271].

Note that unless the value function is a measurable value function, the differ-

ences between alternatives’ scores indicate ordinal preference ranking only. Assuming
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Table 2.11: Weight Normalization
w1 w2 w3

Raw 81 162 15
Normalized 0.31 0.63 0.06

Table 2.12: Consequence of Normalized Weights
v1 (x1) v2 (x2) v3 (x3) Score (Normalized) Score (Raw)

a1 0.50 0.80 0.10 0.67 171.6
a2 0.60 0.70 0.50 0.66 169.5
a3 0.10 0.40 0.30 0.30 77.4

the example in Table 2.12 is not a measurable value function, it can be stated that

the decision maker prefers a3 over a2, but it cannot be stated that the value of a3 is

over twice the value of a2 [cf. Dyer and Sarin, 1979; Kirkwood, 1997, pg. 241-4].

Normalization of the weights subsequently limits the weight-sets, w, to lie

within a bounded polyhedral set such that W = {w : 0 ≤ wi ≤ 1, ∀i}; this was also

observed, and leveraged for their studies, by Wolters and Mareschal [1995, pg. 283]

and Ma et al. [2001, pg. 67]. The weight space for two- and three-dimensional

value functions are shown in Figure 2.13 and Figure 2.14 respectively. Graphically,

the two-dimensional weight space is a line, and the three-dimensional weight space

is the triangular plane. In general, the bounded polyhedral is formed in any n-

dimensional (n ≥ 2) space. Theoretically, and as a consequence of the structure of

W , any combination of weights within the set W is possible, although some are not

as likely, such as having the weight of one attribute equal to zero.

2.5.4 Interpretation of Normalized Weights

When interpreting the normalized weights for each attribute within a value

model, Keeney and Raiffa emphasize that the values derived for the weights do not

indicate the attributes’ relative importance [Keeney and Raiffa, 1993, pg. 271-2].

Interestingly, this common misinterpretation underlies a few of the weighting ap-
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proaches either in use or provided in popular decision analysis texts, particularly the

direct weighting schemes discussed later in Section 2.5.5.1. Several issues contribute

to this quandary.

Theoretically, although Keeney and Raiffa appear to develop the construct of

weights from an economic perspective (i.e., the marginal rate of substitution), the

substitution effect or relationship may no longer be relevant in the context of an

additive value function [Keeney and Raiffa, 1993, pg. 74-77]. Schenkerman, in his

discussion of the general abuse and misunderstanding of weights, concludes that

the weights are “estimates of marginal preferences. . . ” that capture decision-maker

tradeoffs [Schenkerman, 1991, pg. 371-2]. However, Schenkerman also notes that

constant rates of substitution implies all of the single-dimensional value functions

are linear–a circumstance that cannot be guaranteed for all decision models and is

easily accounted for by exponential, piece-wise linear, and other non-linear single-

dimensional value functions discussed in the literature [Schenkerman, 1991, pg. 372]

[For examples, see Kirkwood, 1997, pg. 64-68].

In order to understand the nuances of weighting and the potential issues that

may arise due to dynamic extensions of the weighting methodologies, a few of the

methods prevalent within literature are discussed.

2.5.5 Weighting Methodologies

As shown in Table 2.13, von Winterfeldt and Edwards provide a cogent tax-

onomy of techniques used to construct attribute weights. These techniques have

spawned a variety of specialized procedures, some of which will be discussed; how-

ever, those methods developed since 1986 appear to be a derivation of one or more

of the techniques shown in Table 2.13.

2.5.5.1 Numerical Estimation
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Table 2.13: Weighting Taxonomy [von Winterfeldt and Edwards, 1986, pg. 274]
Numerical Estimation Methods Indifference Methods

Ranking
Direct Rating Cross-attribute Indifference

Ratio Estimation Cross-attribute Strength of Preference
Swing Weighting

von Winterfeldt and Edwards state that ranking and direct rating are simpli-

fied variations of ratio estimation. Ranking generally involves the ordering of the

attributes from most to least important. Rating is often accomplished by the dis-

tribution of a limited number of points to each of the attributes to capture relative

importance [von Winterfeldt and Edwards, 1986, pg. 284]. The family of simple

multi-attribute rating techniques (SMART, SMARTS, and SMARTER) comprise

the ratio estimation, swing weighting, and ranking methodologies. Although, the

numerical estimation techniques are generally the easiest to implement, they are not

without their disadvantages. For example, numerical estimation techniques “explic-

itly involves the notion of attribute importance,” criticized by Keeney and Raiffa

[1993, pg. 271-2] and often fail to capture effects due to subsequent changes within

the attribute ranges von Winterfeldt and Edwards [1986, pg. 285]. Another disad-

vantage, specifically associated with the ranking and rating techniques, involves the

type of numbers involved and the calculations performed on them.

A variety of ranking procedures are described by von Winterfeldt and Edwards

[1986] and Stillwell and Edwards [1979]. Those discussed in detail below include:

the rank reciprocal rule, rank sum, rank exponent, and decision rule ranking. For

each of these techniques, Ri is the rank for attribute i and the model accounts for a

total of j attributes. Decision rule ranking is a two-fold technique that elicits both

an ordering of attributes as well as an estimate for the weight of the most important

attribute. The ranking method chosen is the one that “. . .most closely approximates

the weight elicited for the first dimension” [Stillwell and Edwards, 1979, pg. 11]. All

of these elicitation approaches, shown in Table 2.14, are among the most straight-
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Table 2.14: Ranking & Rating Methods [von Winterfeldt and Edwards, 1986, pg.
284]

Method Formula

Rank Reciprocal Rule wi = 1/RiP
j 1/Rj

Rank Sum wi = (n + 1 − Ri)/
j∑

i=1

Ri

Rank Exponent wi = (n + 1 − Ri)
z/

j∑
i=1

Rz
i

Rank Exponent Weighting
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Figure 2.15: Effect of z upon weight

forward with regards to demands placed upon a decision maker and decision analyst.

The differences lie within the equations used to ascertain the weights themselves.

Note that Rank Exponent method is simply a variant of the Rank Sum method

with z = 1). Further, if z = 0, then the Rank Exponent methods merely distributes

the weights evenly. The parameter z is often estimated from “some convenient pair

of attributes (e.g., the most and least important)” [von Winterfeldt and Edwards,

1986, pg. 284]. For the Rank Exponent method, the effect upon the weights, as a

result of the parameter z is shown in Figure 2.15.

As an example of the decision rank rule, once the DM provided an estimate

of the most important attribute’s weight a chart similar to the one in Figure 2.16
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could be used to compare the ranking schemes, facilitate selection, and illustrate the

implications of the scheme to the DM. For example, the rank sum scheme is linear,

whereas (comparatively) both the rank reciprocal and rank exponent methods will

assign more weight to the higher ranked attribute and possibly less weight to the

least ranked attribute. Again, the focus of such approaches should be insight into

the problem as a whole.

Although these methods are the easiest to elicit due to their intuitive interpre-

tation, it is important to note that the ranks used as input to these functions (Ri)

are ordinal in nature-an inherent limitation in the ranking approach in general. That

is “(1) the data classifications are mutually exclusive and exhaustive and (2) data

classifications are ranked or ordered according to the particular trait they possess”

[Lind et al., 2002, pg. 11]. An example could include ranking targets with priorities

(e.g., priority one, priority two, and so forth). Unfortunately, this also implies that

even though the attributes may be ranked 1 through j, the calculations might as

well operate algebra on ‘one,’ ‘two,’ ‘three,’ . . . , and ‘j.’ In order for these techniques

(specifically the mathematical calculations required) to work, the ranking data must
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Table 2.15: Scale Types [Narens and Luce, 1986, pg. 168]
Scale Admissible Transformations Examples

Absolute x → x John is twice as tall as Bill
Discrete
Ratio

x → kn, constant k > 0, n ∈ Z length in lines of code

Ratio x → rx, r ∈ R
+ age, speed, Kelvin Tempera-

ture
Discrete
Interval

x → knx + s, constant k > 0,
n ∈ Z, s ∈ R

murder rate (based on pop-
ulation proportion)

Log Dis-
crete
Interval

x → sxkn, constant k > 0, n ∈
Z, s ∈ R

murder rate : police force
(per 1000)

Interval x → rx + s, r ∈ R
+, s ∈ R Temperature (Celsius or

Fahrenheit), calendar dates
Log Inter-
val

x → sxr, r, s ∈ R
+ density, fuel efficiency in

mpg
Ordinal x → f (x) , fmonotonic beauty, hardness
Nominal x → f(x), f ∈

1 - to - 1 functions
names, numbering on ath-
letic uniforms

be at least interval in nature. Lind et al. define interval data as having the same

characteristics as ordinal data, plus the “data classifications are scaled according to

the amount of the characteristic they possess, and equal difference in the character-

istic are represented by equal differences in the measurements” [Lind et al., 2002,

pg. 11]. More formal definitions of scale types are shown in Table 2.15.

Therefore, according to Narens and Luce, any monotonic transformation will

retain the order of the weights, but does not imply that information regarding the

interval between the weights after transformation is meaningful. Despite the lack of

a meaningful distance between ranked data, the use of these techniques continues,

likely due to the interpretability and repeatability offered to decision makers who may

not have extensive training in decision analysis theory [von Winterfeldt and Edwards,

1986, pg. 312]. Interestingly, Barron and Barrett, in their study of several ranking-

based techniques (rank ordered centroid, rank sum, and rank reciprocal) concluded

that these methods “. . . represent excellent tradeoffs between ease of assessment and
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efficacy of selection of the best or near best alternative” [Barron and Barrett, 1996,

pg. 1520].

The other major limitation in these ranking techniques is the explicit involve-

ment of “. . . the notion of attribute importance [with respect to each other]” [von

Winterfeldt and Edwards, 1986, pg. 285]. This, as Keeney and Raiffa suggest, is an

inappropriate interpretation of the weights which are (1) solely for the purpose of

providing an aggregate value score and (2) directly dependent upon the range of the

SDVF [cf. von Winterfeldt and Edwards, 1986, pg. 285].

Unless the decision maker is forced or reminded to take into consideration the

attribute ranges during a rank-based elicitation process, the “concept of importance

as a basis for weighting” is problematic [cf. von Winterfeldt and Edwards, 1986, pg.

285-6]. von Winterfeldt and Edwards propose the swing-weighting technique instead,

and suggest that this approach not only “. . . counters the criticisms of using extrane-

ous and perhaps even distorting importance judgments. . . , [but also], given carefully

anchored SDVF elicitation techniques is virtually indistinguishable. . . ” from theo-

retically appropriate indifference methods such as difference measurement, conjoint

measurement theory, and weak order models [cf. 1986, pg. 286-7].

In order to implement these techniques in a dynamic environment, application

of the rating- and rank-based procedures would likely involve an a priori rank or-

dering specified by the DM (e.g., a ranking of attributes or objectives applicable to

the targeting cycle for each phase of the war). The rank reciprocal rule, from Table

2.14, may also be applied in a fashion similar to the approach taken by Pruitt [2003].

For example, in an effort to improve U.S. Homeland Security, the decision model

implied a preference for improving capabilities that were at currently inadequate or

low levels [Pruitt, 2003]. Subsequently, an alternative that scores high implies that it

meets the DM’s needs to improve upon current capabilities. For the rank reciprocal

rule, these percentages may be substituted for the rankings. A lower percentage

level of current capability will result in a higher weight–implying that the DM will
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Table 2.16: Example Rating Techniques [Bottomley and Doyle, 2001, pg. 553-554]

Direct Rating Rates each attribute on a scale of 0 to 100; scores are
normalized to produce weights

Point Allocation
(Max100)

Assigns the most important attribute a rating of 100;
rates subsequent attributes relative to the most impor-
tant one on a scale of 0 to 99; scores are normalized to
produce weights

Point Allocation
(Min10)

Assigns the least important attribute a rating of 10; rates
subsequent attributes relative to the least important one
with no specified scale; scores are normalized to produce
weights

prefer to focus first on what objectives need improving the most. As this scheme

is dependent upon the current state, it is philosophically but not mathematically

similar to the method proposed by Li et al. [2004]. However, a potential limitation

of this approach is that, over time, weights would tend to be distributed equally,

as opposed to having a distribution representative of their true preferences among

the different objectives. At the point where this occurs, the DM should revisit the

model and resort to a method that more closely represents his or her preferences.

Three examples of rating methods are described and compared in a case study

in Bottomley and Doyle [2001]; the methods are summarized in Table 2.16. Again,

in order to implement these in a dynamic weighting fashion, the ratings should be

accomplished in advance, with a rating corresponding to a particular phase or period

of time during with the decision model will remain applicable.

Another popular family of weight elicitation methods comprises the rating,

ranking and swing-weight techniques–SMART, SMARTS, and SMARTER [Edwards,

1977; Edwards and Barron, 1994]. SMART is a ten-step method, described in detail

in Edwards [1977] and summarized in Table 2.17. Acknowledging the theoretical ties

between attribute preferences, ranges, and the weight values, Edwards and Barron

actually recommend against the further use of SMART since “the procedure ignores

the fact that range as well as importance must be reflected in any weight” [Ed-
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Table 2.17: SMART Methodology [Edwards, 1977, pg. 327-9]

1. Identify the person or organization whose utilities are to be maximized.
2. Identify the issue(s) to which the utilities needed are relevant.
3. Identify the entities to be evaluated.
4. Identify the relevant dimensions of value for evaluation of the entities.
5. Rank the dimensions in order of importance.
6. Rate dimensions in importance, preserving ratios.
7. Sum the importance weights and divide each by the sum (i.e. normal-

ization).
8. Measure the location of each entity being evaluated on each dimension.
9. Calculated the utilities for entities.
10. Decide.

Table 2.18: SMARTS Methodology [Edwards and Barron, 1994, pg. 307-9]

1. Identify the purpose and decision makers.
2. Elicit a value tree.
3. Identify the entities to be evaluated (alternatives).
4. Formulate an alternatives-attributes matrix.
5. Eliminate ordinally dominated options.
6. Reformulate data from step 4 into single dimensional values (SMARTS

assumes all single-dimensional value functions are linear).
7. Implement swing weighting.
8. Normalize weights and calculate overall scores.
9. Decide.

wards and Barron, 1994, pg. 316]. Interestingly, a proposed solution to this initial

theoretical shortcoming, SMARTER also ignores this connection. SMART, Point

Allocation (Max100), and Point Allocation (Min10) are examples of ratio estimation

techniques. To remedy the problems associated with SMART, SMART using Swings

(SMARTS) was developed. The steps for this process are summarized in Table 2.18.

Swing-weighting (required for step 7) “. . . refers to the operation of changing

the score of some object of evaluation on some dimension from one value to a different

one” in order to compare two hypothetical alternatives [Edwards and Barron, 1994,

pg. 316]. The other proposed improvement the authors suggest is SMART Exploiting

Ranks (SMARTER) [Edwards and Barron, 1994]. This methodology is identical to
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that of SMARTS, with the exception of step 7. In lieu of swing weighting, a rank

order centroid approach is taken, which defines the weight set by

wi =
1

n

n∑
k=i

1

k
. (2.17)

Clearly, other than specific guidance from the analyst to the DM during the elic-

itation process, the weights derived from SMARTER do not directly account for

the associated attribute ranges. Nonetheless, it is easy to see that a multitude of

numerical estimation techniques for attribute weights (ranking, direct rating, ratio

estimation, and swing weights) offer straightforward estimates of attribute weighting.

Although these methods are not without their shortcomings, Stillwell and Edwards

investigated and reassessed previous multi-attribute case studies, finding that vari-

ous rank-based weighting techniques (other than equal weights) as “approximations

to ratio weights provided remarkably good results” [Stillwell and Edwards, 1979, pg.

28].

Indifference methods are discussed next, primarily to round out the discussion

of weighting methodologies available to the decision analyst. However, these elic-

itation techniques are more complicated and time consuming. Consequently, their

application within a dynamic environment may be even more limited.

2.5.5.2 Indifference Methods

Indifference methods systematically explore either indifference judgments, as

seen in [Keeney and Raiffa, 1993], or the strengths of preferences among attributes,

illustrated in [von Winterfeldt and Edwards, 1986, pg. 287]. Three classes of these

techniques are discussed by von Winterfeldt and Edwards [1986], which are sum-

marized in Table 2.19. As opposed to the numerical estimation methods discussed

earlier, the indifference methods yield weights that are ratio in nature. Consequently,

further mathematical operations may be justified in the context of dynamic weights.
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Table 2.19: Indifference Methods [von Winterfeldt and Edwards, 1986, pg. 287-98]

Method Description
Difference Measure-
ment

Indistinguishable from SMARTS; assumes independence
and additivity of attributes; this approach may be ex-
tended to multiplicative models [cf. Kirkwood, 1997, pg.
71-2 for an illustrative example]

Conjoint Measure-
ment

Assumes additive model; does not require strength-of-
preference judgments; requires preference and indiffer-
ence judgments; may be extended to multiplicative mod-
els;

Weak Order Model Requires no underlying assumptions regarding attribute
additive or independence; “Exploits the assumption of
transitive indifferences to trade multi-attribute alterna-
tives off sequentially until they become comparable;” use-
ful for complex (i.e., non-additive models); extremely dif-
ficult in elicitation and expectation of DM to make con-
sistent tradeoffs

Recall that Gabrielli and von Winterfeldt theoretically interpret weights as

“how much a (value) unit in one attribute contributes to overall worth relative to

a unit in another attribute” [Gabrielli and von Winterfeldt, 1978, pg. 2]. This in-

terpretation confounds the value of the weight with the somewhat arbitrary ranges

specified for the single-dimensional value functions [Gabrielli and von Winterfeldt,

1978, pg. 2]. Since the derivation of weights via an indifference method explicitly

incorporates information regarding the range of the SDVF, the requisite implicit

assumption follows that any change in the range of a SDVF must result in a con-

comitant change in its associated weight [Gabrielli and von Winterfeldt, 1978, pg.

2]. The following example demonstrates the theoretical connections, and explores

areas where the change is not always as expected.

Suppose a value model has two attributes, each of which has a corresponding,

linear SDVF function represented as v1(x1) = (x1)/30, x1 ∈ [0, 30] and v2(x2) =

(x2 − 20)/40, x2 ∈ [20, 60]. Further suppose that the objectives are preferred such

that v2 � v1, which implies that w2 � w1, and the following value tradeoff (taking
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advantage of requirement 2.12 was made by the decision maker.

v(0, 40) ∼ v(30, 20) ⇒ w1v1(0) + w2v2(40) = w1v1(30) + w2v2(20)

⇒ w2v2(40) = w1v1(30)

⇒ w2 = 0.5w1

⇒ w =

[
1

3
,
2

3

]

In order for the expected phenomena to occur, the SDVFs involved must (1)

both be anchored at a natural or proxy zero that cannot decrease and (2) are both

either monotonically increasing or monotonically decreasing. Assuming that the

value of x′
2 remains the same regardless of the range change, several cases of the

SDVF for v2(x2) are exhibited in the Figure 2.17.

As shown in Figure 2.17, an increase to the right in the range increases the

value of w2, shown by

w2v2(40) = w1v1(30) ⇒ 0.33w2 = w1 ⇒ w =

[
1

4
,
3

4

]
.
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However, an increase to the left in the range decreases the value of w2, given

by

w2v2(40) = w1v1(30) ⇒ 0.67w2 = w1 ⇒ w =

[
4

10
,

6

10

]
.

Experimentally, von Nitzsch and Weber note that a number of “empirical stud-

ies indicate that weights are not adjusted properly to changes in range” due to the

decision maker, the analyst, the elicitation process itself, or a combination of these

elements [von Nitzsch and Weber, 1993, pg. 937-8]. The authors attempt to capture

to what degree this type of error promulgates within the decision analysis process.

Once a value function is elicited using a given scale (worst to best or endpoints),

changing the scale is often problematic, which leads to the tendency to “choose end

points very likely to include any possible future alternatives” [von Winterfeldt and

Edwards, 1986, pg. 230]. von Winterfeldt and Edwards also recommend the use of

an ‘acceptable’ range, described by the relationship: actual ⊆ acceptable ⊆ available

⊆ theoretically feasible [von Winterfeldt and Edwards, 1986, pg. 230-1].

The model of interest within the experiment conducted by von Nitzsch and

Weber was an additive value model under certainty, comprised of linear value func-

tions. They studied three ranges: an initial range based upon the decision makers

intuition, a smaller range half of the initial range, and a larger range twice the initial

range. For each range, the authors elicited weights via direct-ratio, described in

[Edwards, 1977, pg. 328], and a regression technique called conjoint analysis that

explores implicit tradeoffs between attributes during the decision maker’s evaluation

of hypothetical alternatives [von Nitzsch and Weber, 1993].

The authors mentioned the value trade-off recommended by Keeney and Raiffa

[1993], but noted that “the derivation of weights from these statements can be done

to guarantee the range sensitivity to be equal to one” [von Nitzsch and Weber, 1993,

pg. 939]. This implies that the value trade-off approach is the most theoretically

appealing when trying to ensure that the decision maker accurately accounts for
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changes in ranges during the development and communication of the weights. They

mathematically define range sensitivity as s = (memp − 1)/(m − 1).

This measures percentage change in range accounted for by the decision maker

during the development of the new weights ([von Nitzsch and Weber, 1993, pg. 938-

9]. Using an increase in the range of attribute 1 as an example, m is defined by the

ratio in Equation 2.18. [von Nitzsch and Weber, 1993, pg. 938].

m =

(
w′

1∑
n
j=1w

′
j

)/(
w1∑
n
j=1wj

)
(2.18)

The modified weights (w′) result from using essentially the original information

elicited to construct the initial weights (w). For example, if preference trade-offs

were used, the original indifference point elicited would be used to calculate the new

weights associated with the larger range for attribute 1. Once the ranges are com-

municated to the decision maker, weight elicitation is re-accomplished, new weights

(w′′) are calculated, and the final piece of information is available for Equation 2.19

[von Nitzsch and Weber, 1993, pg. 938].

memp =

(
w′′

1∑
n
j=1w

′′
j

)/(
w1∑
n
j=1wj

)
(2.19)

Note that m and memp are essentially the theoretically required and empir-

ically observed changes in weights respectively [von Nitzsch and Weber, 1993, pg.

938]. Ultimately, von Nitzsch and Weber concluded that both weighting methods

employed resulted in s < 1, implying that “subjects only partially adjusted their

weight judgment to the change in range,” and that this “process was especially bad”

when the direct ratio elicitation method was used, often resulting in biased weights

[von Nitzsch and Weber, 1993, pg. 942].

In practice, Lootsma suggests that “criteria have emotional or social values

which neither depend on the actual decision problem itself nor on the method of
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analysis” [Lootsma, 1999, pg. 33]. Therefore, it appears to simply be a human

tendency to infer a certain level of relative importance from the values of the weights.

In their early experimentation, using an approach similar to that adopted by von

Nitzsch and Weber [1993], Gabrielli and von Winterfeldt note,

. . . that people can give importance orderings without specified alterna-
tive and ranges may mean that they have some plausible set of alterna-
tives and ranges in mind, when judging importance. According to this
interpretation the importance judgments should only change when the
environment radically changes the plausible set of alternatives [1978, pg.
28].

This finding is also observed by Bottomley and Doyle, who state that “intuitive

weights reflect a subject’s general attitude towards an attribute, and an implicit

range of outcome values, . . . ” thus enabling decision makers to specify attribute

preference (weights) without specific knowledge of attribute ranges [Bottomley and

Doyle, 2001, pg. 554].

2.5.6 Weighting Issues Summarized

With respect to the requisite change in weight as a result in the change of at-

tribute range, the gap between the theoretical and practical results remains. Keeney

cites “assessing value trade-offs independent of the range of consequences” as one

of the ‘top 12’ mistakes in decision analysis [Keeney, 2002, pg. 940]. The results

of Gabrielli and von Winterfeldt indicate that subjects found it difficult to adhere

to the theoretical requirements in practice and attribute these findings to either an

inherent flaw in their test problem or the complexity of the task (or both) [1978,

pg. 20, 22]. Unfortunately, in an effort to resolve this issue, another experiment led

them to conclude that. . . “Even in an absurdly simple problem subjects apparently

had problems appreciating the sensitivity of importance weights to a change in the

range of an attribute” [Gabrielli and von Winterfeldt, 1978, pg. 25-7].
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Pöyhönen and Hämäläinen, who provide a more recent study of a variety of

weighting techniques, not only arrive at this same conclusion, but also suggest that

weight values are more dependent upon the number of attributes rather than the

elicitation process [2001, pg. 581]. Resolving this long-standing issue is beyond

the scope of this research. Ultimately, any modeling effort should be undertaken in

order to improve the fundamental understating of the decision problem, in which the

weighting process provides the most benefit [Hämäläinen and Salo, 1997, pg. 340].

As there are several interpretations of weights, there are several techniques used to

elicit them. The general context in which these weighting techniques will be applied

is presented next, followed by example applications of various dynamic weighting

schemes.

2.5.7 The Dynamic Decision Environment

Space is more or less tangible and/or visible, but time and preference are
volatile. Living creatures have a surprising ability, however, to control
a time-dependent series of rhythmic actions like walking, running, and
tapping, which are controlled by a timekeeper. Many living creatures also
have a biological or physiological clock to measure the time which elapsed
since a particular moment. So, if time can subjectively be measured, the
gradations of preference may be measurable as well [Lootsma, 1999, pg.
9].

As Lootsma suggests, the theoretical underpinnings of the field of decision

science not only deals with preference, but time-dependency of preference as well.

Indeed, he argues that the values and weights are situation-specific, essentially be-

coming irrelevant once the decision of interest is made [Lootsma, 1999, pg. 33].

He also presents the counter argument in that decision makers seek consistency

“. . . over a coherent collection of decision problems” [Lootsma, 1999, pg. 33]. Dy-

namic weights, then, appear to lie within these bounds, their values dependent upon

time, the decision environment (and consequently the collection of decision problems

addressed), or both [cf. Keeney and von Winterfeldt, 1989, pg. 86]. Either way, the

common denominator for both perspectives is the assumption that the weights are
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valid for a given period of time, either instantaneously or during a phase of closely

related decision problems.

Edwards posits two general types of decision theory–static and dynamic [1962,

pg. 59]. Static represents the traditional, one-time use of a decision model garnered

from approaches such as multi-objective decision analysis, value focused thinking,

multi-attribute utility analysis, and others. Dynamic represents the enactment of

a sequence of related decisions, where each subsequent decision may (or may not)

benefit from either the results or the information obtained via the consequences

of the previous decision [Busemeyer, 2002, pg. 3903], [Edwards, 1962, pg. 59-

60]. Interestingly, Busemeyer notes categories of decisions within this realm include

“. . . fighting fires, navigational control, battlefield decisions, medical emergencies,

etc.” [Busemeyer, 2002, pg. 3903]. Busemeyer also suggests that dynamic decision

making is characterized by three features:

1. A series of actions must be taken over time to achieve some overall goal;

2. The actions are interdependent so that later decisions depend on earlier actions;

and,

3. The environment changes both spontaneously and as a consequence of earlier

actions [Busemeyer, 2002, pg. 3903].

The notion of dynamic decision making plays an important role in Bayesian

networks, decision support systems, and expert systems. Mussi discusses the incorpo-

ration of utility theory (value models under uncertainty) to measure (and compare)

consequences analyzed in such systems and includes an approach to dynamically

weight the models used to facilitate selection of the next course of action [Mussi,

2004, pg. 95-6]. However, the dynamic nature of his model is essentially the selec-

tion of a pre-determined weight set (elicited in advance), based upon the current

system state [Mussi, 2004, pg. 95]. Figure 2.18, adapted from Busemeyer [2002],

illustrates the general flow of information, feedback, and uncertainty within the dy-

98



Environment

Decision
Policy

Natural
Dynamics

Observed
State

Desired
State

Figure 2.18: Dynamic Decision Environment [Busemeyer, 2002]

namic decision environment. The environment is (potentially) affected by general

uncertainty as well as decisions made in the past-a complicating factor not found in

the static realm of decision theory [Edwards, 1962, pg. 60]. Ultimately, a decision

maker will implement a decision policy, enacting decisions to shape the environ-

ment, in order to ‘close the gap’ between the current, observed state and a desired

end state.

Another study somewhat related to this research is the work of Weisbrod et al.

[1977]. Weisbrod et al. developed a decision aid that complemented a decision

maker’s decision process by incorporating information from a simulated environ-

ment. The next set of calculations was predicated upon the previous actions which

determined what information would be available at the time of the next decision.

However, this approach focused upon an expected utility or probabilistic approach

rather than the deterministic assumption taken here Weisbrod et al. [1977].

A more closely related approach is described by Li et al. [2004], who interpret

the weights as indicators of relative importance, develop the transformation from a

single weight vector to one that is dependent upon the current system state Li et al.

[2004, pg. 163-5]. Despite the extremely detailed development of the fuzzy math

underlying the “state dependent weight vectors” they propose, neither a means to

elicit nor a means to tie these states directly to the environment is suggested Li
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et al. [2004, pg. 168-78]. In his research in dynamic decision making, Busemeyer

concludes the following:

[Subjects] who perform best are those that set integrative goals, col-
lect systematic information, and evaluate progress toward these goals.
Subjects, who tend to shift from one specific goal to another, or focus
exclusively on only one specific goal, perform more poorly [Busemeyer,
2002, pg. 3907].

Therefore, the overarching assumption is that a decision model is developed

that captures a decision maker’s preferences in extraordinary detail, but at extraordi-

nary cost. The multi-objective decision modeling approach strives to avoid the latter

reason for poor performance while careful selection of the time period to which this

model applies will help avoid the former reason for poor performance. As opposed

to a ‘one-time’ decision, suppose also that this model could be used to evaluate al-

ternatives in the same decision context, but in a different time period, allocating

potentially different weights to the objectives. In order to clarify the decision prob-

lems and contexts in which this approach may apply, a few illustrative examples are

provided.

2.5.8 Examples of Interest

Although value models are not explicitly constructed, the following examples

are intended to illustrate the decision situations that may yield deterministic multi-

attribute value models applicable to a series of related decision problems, with the

only change in structure being the weights over time.

2.5.8.1 Company Valuation

A recent improvement was proposed to the process of fundamental analysis,

which examines “the underlying forces that affect the well being of the economy,

industry groups, and companies. . . ,” with the goal of predicting future performance
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Table 2.20: Levels and Focus of Fundamental Analyses
Level Areas Examined

Company Financial data, management, business concepts,
and competition

Industry Forces of supply and demand
National Economic data permitting assessment of present

and future economic growth

and profitability [Anonymous, 2005]. This analysis typically involves three economic

components, summarized in Table 2.20.

DeGraw noted that these types of analysis are generally based upon the two

following assumptions–“that each of the three components is weighted equally and

that their relative importance doesn’t change over time” [DeGraw, 2001, pg. 78].

However, he notes that “Since [initial public offerings] are smaller, less liquid and

considerably more dynamic, industry differences appear to be considerable, and the

relative influence of the valuation components appears to vary across industries”

[DeGraw, 2001, pg. 78]. This is an ideal example of the underlying situation assumed

for the proposed dynamic weighting approach. The result is a decision model with

objectives applicable to the range of alternatives (initial public offerings to blue-

chip companies) that can accommodate different weights based upon the context

of the analysis (i.e., the time-line associated with the company’s level of financial

maturity). Of course, it could be argued that a different model could be developed for

each industry’s level of maturity. However, in defining such models, their specificity

will naturally limit their applications as well incur more development and analysis

costs in the process. Another potential modeling situation, also financially oriented,

is consumer preference.

2.5.8.2 Preferences for Consumption

Consumer demand for various goods and services may also fit the genre of

dynamic weighting methodologies. For example, the distributions associated with
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portfolio asset allocation will (generally) change over time based upon the preferences

for a given objective (capital gains, steady growth, etc.) and its corresponding value

in the context of that investor’s age. Similarly, building upon the classic ‘choose the

best automobile’ example, there are clear areas where time will affect the distribu-

tion of weights, given that the remaining structure of the model remains constant.

For example, consider the objectives “comfort and refinement, fuel consumption,

safety and security features, ride and road handling, performance, aesthetic appeal,

reliability, running and maintenance costs, and space and practicality” examined by

[Bottomley and Doyle, 2001, pg. 555].

An excited, newly licensed driver (also likely to be a hormonal teenager) is

prone to value performance-related objectives over comfort and practicality. Whereas,

the older, more mature driver, particularly one with a family, may value safety- and

practicality-related objectives over those associated with high-performance vehicles.

(An exception to this may involve an individual enduring a ‘mid-life crisis,’ during

which their values would revert back to that of the teenage decision maker.) Next,

a military example is posed, where the time-lines potentially associated with a dy-

namic weighting approach occurs on much shorter intervals-minutes to months, as

opposed to years.

2.5.8.3 Joint Targeting Cycle

According to Joint Publication (JP) 3-0, the joint targeting cycle (JTC) has

six phases:

1. Commander’s Objectives, Guidance, and Intent;

2. Target Development, Validation, Nomination, and Prioritization;

3. Capabilities Analysis;

4. Commander’s Decision and Force Assignment;

5. Mission Planning and Force Execution; and,
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Figure 2.19: Phases of the Joint Campaign [DOD, 2001, pg. III-19]

6. Combat Assessment [DOD, 2001, pg. III-28].

Although a decision model that takes advantage of dynamic weighting may

have application in all phases of the JTC, phases (4) and (6) are specifically discussed.

Within the “Commander’s decision and force assignment” phase, available as-

sets are assigned to various missions based upon operational, and generally time-

dependent, needs. This assignment is accomplished through a process called appor-

tionment, defined by Air Force Doctrine Document (AFDD) 2-1, Air Warfare, as

follows.

Apportionment is the determination and assignment of the total expected
aerospace effort by percentage, priority, weight of effort, or some other
appropriate means, that should be devoted to the various aerospace op-
erations and geographic operations for a given period of time [USAF,
2000, pg. 50].

Generally, the time periods are either the duration (or a subset thereof) of a

phase in the campaign. These phases are highlighted in Figure 2.19. The process

of air apportionment assists Joint Force Commanders in ensuring “. . . the weight of

the joint force air effort is consistent with campaign phases and objectives” [DOD,

2001, pg. III-29].

The efforts to which these weights are assigned (apportioned) are defined as

functions, which comprise the “broad, fundamental, and continuing activities of
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aerospace power” (e.g., Counter-air, counter-space, counter-sea, counter-land, strate-

gic attack, and counter-information, among others) [USAF, 2000, pg. 5]. As progress

is made throughout the phases of the campaign, there will be requisite shifts in levels

of effort placed toward these functions. Ultimately, major changes in weights (i.e.,

apportionment) may occur at each campaign phase. However, due to the dynamic

nature of war and the interaction with an adversary that has goals and objectives

contrary to our own, the associated weights may change even more frequently. The

feedback process of the phase (6) of the targeting cycle, combat assessment, will

likely employ a dynamic weighting process that is dependent upon the operations

tempo, which involves time periods from minutes to weeks.

Combat assessment (CA) is the evolution of the traditional process of battle

damage assessment (BDA) within today’s complex battlefield, and is formally de-

fined as “the determination of the overall effectiveness of force employment during

military operations” [DOD, 2001, pg. IV-17] The underlying uncertainty involved in

this type of information lends itself to multi-attribute utility models instead of their

deterministic counterpart–multi-attribute value models. Nonetheless, CA plays a vi-

tal role in the use of limited resources (e.g., fuel, sorties, time to complete objectives,

weapons, and so forth) and essentially affects the apportionment process to ensure

that the commander’s objectives are met. One possible use would be to improve the

Time Critical Targeting (TCT) process. TCT occurs when a Time Sensitive Target

(TST) (e.g., location of enemy leader becomes known) is found and the ATO needs

to be updated to put resources on the TST.

2.5.9 Conclusions Regarding Weighting

Indifference methods offer a theoretically sound approach to establishing at-

tribute weights that not only account for attribute importance, but also accommo-

date the range of the attribute’s SDVF as well. However, this section has highlighted

several studies that suggest decision makers have difficulty in responding with appro-
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priate weight changes as a result of changes in ranges. Additionally, several studies

have determined that the overall decision recommendation is somewhat insensitive

to the preference indifference methods recommended by Keeney and Raiffa [1993]

and other, less theoretically-pure methods often categorized as numerical estimation

techniques [cf. Pöyhönen and Hämäläinen, 2001].

The ease of use suggests that numerical estimation techniques are likely more

suited to dynamic weighting in an operational setting. Further, several researchers

have concluded that “None of the more complicated weighting procedures performed

any better than the simple technique of directly assessing the rank ordering and

arithmetically transforming the ranks into weights” [John et al., 1980, pg. 22], [cf.

Stillwell and Edwards, 1979, pg. 28]. Overall, “The maxima of utility theory are

very flat, which means that modest errors in changing numbers are unlikely to affect

orderings” [Gabrielli and von Winterfeldt, 1978, pg. 20]. As always, it is important

to remember that the purpose of decision analysis is to provide insight. Through

the process of making judgments explicit, “it is easier to identify weaknesses in

the reasoning behind a decision” [Keeney and von Winterfeldt, 1989, pg. 86]. An

automated (or semi-automated) method to dynamically weight value models may

limit the benefits associated with the process-critical thinking. Then again, thinking

about a particular decision problem within current and future contexts may prove

beneficial to the analysis process, yielding an advantage to those who have a dynamic

process implemented within today’s dynamic environment. Ultimately, higher level

trade-offs must be made between the DM’s time, their amount of involvement, and

the acceptance of the assumptions regarding the nature of weights over time.

Dynamic weighting for several weighting methodologies is developed in Chap-

ter VI; such techniques would lend themselves to the dynamic scenarios discussed

earlier. This concept is further leveraged for the aggregation, as required, of mul-

tiple, contextual layers of social networks in order to facilitate other computational

analyses. The next section discusses mathematical programming formulations that
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may serve as a means to quantitatively analyze the networks in situ as well as the

effects of influence operations applied to the network.

2.6 Mathematical Programming Approaches

Mathematical programming (MP) plays an important role within this research,

which extends some of the concepts initially developed by Renfro [2001] and applies

this modeling technique to other, traditionally sociological types of problems. These

efforts further the analysis capabilities within this field of research. For example,

slight modifications of the adjacency matrix serve as a direct input into a variety of

mathematical programs, thereby offering prescriptive analysis capabilities. As dis-

cussed earlier, a modified version of the node-edge incidence matrix of the same social

network is useful in studying the literal flow of influence [Clark, 2005; Renfro, 2001]

as well as estimation for the potential of influence flow to ascertain actor centrality

Freeman et al. [1991]. Extensions, both theoretical and applied, of these works are

included within the primary research goals. Several mathematical programming for-

mulations and their roles within this research are briefly reviewed. Other than the

works previously mentioned, very limited substantive connections between mathe-

matical programming and social network analysis have been made.

Recall that a given social network is typically described by a graph, G =

(N, E), where N is the set of nodes (or individuals in this setting) within the network

of interest and E is the set of relations upon which the context of G has been

constructed. For example, if G is the network of ‘who knows whom,’ then an edge

or relation, eij ∈ E implies that individual i knows individual j [Wasserman and

Faust, 1994, pg. 150]. The sociomatrix, denoted X, is one of the primary tools used

by sociologists and is equivalent to the network’s corresponding adjacency matrix.

If actor 1 is adjacent to actor 2 within a particular context of study, then x12 = 1,

zero otherwise [Wasserman and Faust, 1994, pg. 150]. Generally, X is symmetric,

but asymmetric relationships can be indicated whenever xij 	= xji.
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In addition to direction, sociometric data may be valued, rather than simply

indicating the existence (1) or non-existence (0) of a contextual relationship between

two individuals within a social network. This necessitates a valued, directed or undi-

rected, graph to accurately represent the social network, as opposed to the symmet-

ric and dichotomous relationship oftentimes assumed in past sociometric studies. As

Buchanan noted, “In a social network, the bonds between good friends are not the

same as those between weak acquaintances” [Buchanan, 2002, pg. 145]. Means to

numerically estimate the potential of such bonds has been posited by Renfro [2001]

via a social closeness function–the stronger the bond, the greater the value of social

closeness. More recently, Clark [2005] suggested another potential influence function

based upon multi-network structures as well as external, demographic-oriented data

of the individuals comprising the network.

This suggests that potential opportunities lie within the theoretical improve-

ments to be made in the merging of these two sciences, sociology and operations

research. Each problem of interest is summarized and followed by findings available

in literature, if any, and potential applications of these techniques in the endeavor

of studying social networks are posited.

2.6.1 Minimum Spanning Tree Problem

Since several elements of this research deal with network flow formulations,

spanning trees in general are clearly of interest due to the relationship between rooted

spanning trees and non-singular bases in network flow programs [Ahuja et al., 1993,

pg. 450] [Nemhauser and Wolsey, 1999, pg. 77]. Renfro also posited the use of

spanning trees, from either a minimum or maximum perspective, to ascertain the

social connectivity of members within a network, using social closeness as the arc

weights [Renfro, 2001, pg. 48].

As discussed earlier, Borgatti defines KPP-2 as the subset of members maxi-

mally connected to the entire network [Borgatti, 2003a, pg. 2]. The impetus behind
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Borgatti’s key player problem is realization that some traditional SNA measures,

such as closeness or betweenness, that attempt to measure the importance of a spe-

cific individual do not translate well when a subset of the individuals are of interest

[cf. Wasserman and Faust, 1994]. Consequently, improving upon this methodology

by combining the measures developed by Renfro and Clark, as well as those within

this research, may allow solutions to improved, ‘operational’ constructs of the key

player problem. The minimum spanning tree and forest concepts are extended to

KPP-2 to achieve this goal.

Note also that the KPP-2 concept may be abstracted beyond that of social

networks. Suppose, for example, that the branches of the maximal spanning social

tree served as communications- or influence-interdiction targets. Diffusion of inno-

vations, rumor theory, and other related literature and methodologies may benefit

from the use of such a tree as an initial starting point from which to generate an

external influence upon a network. For example, if the objective were to reach as

many individuals within a network as possible, targeting the well connected individ-

uals or frequently used (or heavily relied upon) communications channels would be

of interest. However, individuals could comprise populations and networks of com-

munications channels could be comprised of major cities, street intersections within

a town, popular web pages, and so forth.

2.6.2 Covering and Partitioning Problem

Borrowing from Nemhauser and Wolsey [1999, pg. 6-7], a problem with a

constraint set Ax ≥ 1,x ∈ {0, 1} (Ax = 1,x ∈ {0, 1}) is generally referred to as a

covering (partitioning) problem, respectively. It will be shown that a modified ver-

sion of the reachability matrix results in a covering problem that solves the KPP-2

problem. This MP approach provides several benefits over the heuristic approach

developed by Borgatti. These benefits include: a guaranteed optimal solution, in-

corporation of directed networks, ability to incorporate valued relations, ability to
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Table 2.21: GFP Variable Definition
Variable Definition

cij ≡ the cost per unit flow induced from node i to node j
xij ≡ number of units of flow from node i to node j on arc

(i, j), xij ∈ [0, uij]
bi ≡ 0 if node i is a transshipment, or ‘pass-through,’ node;

< 0 if demand is required by node i; and, > 0 if supply
is provided from node i

gij ≡ a rational value > (<)1 that indicates if arc (i, j) is gainy
(lossy); if gij = 1, then the arc (i, j) is neither one

N ≡ the set of nodes (individuals) within the network
A ≡ the set of arcs (i, j) (connections between individuals)

that form the network

discount actors not reachable by external influences, ability to encompass multiple

dimensions of relationships, and so forth. Further modifications, leveraging the use

of slack variables, may yield a partitioning problem that permits the selection of a

set that attains a percent goal, such as a subset, of the population reached. This

mirrors an aspect of Borgatti’s research and offers another element of flexibility to

the MP approach.

2.6.3 Generalized Network Flow

As seen in [Renfro, 2001; Clark, 2005; Freeman et al., 1991], network flow

models provide a useful methodology for the study of influential actors within a net-

work. These works, however, focus upon the development of interpersonal measures

that serve as capacities of inter-personal influence. Suppose in addition to this in-

formation, inter-personal measurements provided differential influence assessments–

specifically, gains, losses and thresholds of persuasion. The generalized network flow

problem (GFP) has the ability to mathematically accommodate such phenomena.

Variants of this problem include the maximum flow and minimum cost formulations.

Ahuja et al. [1993] provide a general formulation for the GFP. Variable definition

and problem formulation are briefly reviewed below [Ahuja et al., 1993, pg. 567-8].
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Minimize
∑

(i,j)∈A

cijxij (2.20)

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
gijxij � bi ∀i ∈ N (2.21)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A (2.22)

The objective function, given by Equation 2.20, seeks to minimize the total cost of

flow through the network, subject to the constraints, given by Equations 2.21 and

2.22. Constraint 2.21 is an extension of the mass balance constraint that allows for

potential violations of traditional conservation of flow assumptions. This extension,

a relaxation of the original formulation of Equation 2.21, replaces the equality, “=”,

with “≥” as shown. Typical minimum cost maximum flow problems further specify

that the sum of flow entering the system must equal the sum of flow exiting the

system. This relaxation facilitates feasibility, particularly when gains and losses

affect flow (e.g., 1 unit enters and, due to gains, say 2 or more must exit) and when

arcs are capacitated (e.g., there exists a maximum amount of flow that may traverse

the arc-the social closeness serving as an upper bound in this case).

As previously mentioned, a variant of the GFP is the maximum flow problem.

The formulation, modified from [Ahuja et al., 1993, pg. 168] to incorporate gains

and losses, follows.

v ≡ value of the flow (the sum of all sources must equal the sum of all sinks)

s ≡ value of the flow provided by a source

t ≡ value of the flow demanded by a sink

Maximize v (2.23)
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∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
gijxij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v ∀i ∈ s

0 ∀i ∈ N − {s ∩ t}
−v ∀i ∈ t

(2.24)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A (2.25)

This formulation is useful in determining whether or not a flow between two targets

(or target sets) of interest through the network is even possible, implying that the

course of action (to induce a flow of influence between two or more nodes of interest)

offers an opportunity for achieving its objectives.

The GFP and its variations provide a means to deal with a variety of real-world

problems. Various processes that undergo degradation or improvement over time or

distance may be modeled. As an example, picture a ditch irrigation system. In hot

weather, evaporative processes diminish the volumes of water as it flows though the

system. Alternatively, precipitation (rain, snow, etc.) may increase the volume of

water. These are losses and gains in flow, respectively. Further, ignoring losses and

gains for a moment, at any point in the system, a junction, the law of conservation

of mass dictates that the amount of water flowing into the junction must equal

the amount flowing out. Gains and losses at a junction are then modeled by the

right hand side, where (bi > 0) and (bi < 0) respectively. Using the work of Renfro

[2001] and Renfro and Deckro [2003] as a launching point, continued development

of parallels between the flow of commodities in the physical world and the flow of

influence in the behavioral realm are sought.

A recent work delineating the types of flows through social networks offers a

complicating factor to several network formulations. Borgatti developed a typology

of flow processes observed in social networks for various ‘commodities.’ Gossip, for

example, “spreads by replication rather than transference . . . [and] normally does not

pass the same link twice, but can pass the same node multiple times.” [Borgatti,

2005, pg. 57] Current formulations as described above of network flow within social
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networks are incapable of modeling this phenomenon and others within Borgatti’s

typology. This is primarily due to the mass balance constraints as well as the nature

of the solutions in general.

2.6.4 P-Median Problem

Another potential approach to apply to the KPP-2 issue is that of the p-

median problem. Suppose key players are viewed as facilities that serve, or influence,

themselves and other members not within the key player set–all of which are viewed

as customers. The objective, in general, is to minimize demand-weighted distance

between the facilities and customers. Let dij be the distance from actor i to actor j;

let (Xj = 1) if actor j is selected as a key player, zero otherwise; let (Yij = 1) if actor

i is ‘influenced’ by actor j, zero otherwise; and, let P be the size of the kp-set. Note

that, due to the nature of the variables, both symmetric and asymmetric graphs can

be evaluated. Additionally, distances no longer need be limited to two steps away.

In fact, any non-zero distance may be incorporated, as well as weighted (e.g., with

social closeness or aggregated multiplex values) networks are available for analysis.

Assuming the demand is a constant (unity), the formulation is as follows. (Modified

from [Bozkaya et al., 2002, pg. 180-1])

(P-Med) Min
∑

i

∑
j

dijYij (2.26)

Subject To
∑

j

Yij = 1 ∀ i (2.27)

∑
j

Xj = P (2.28)

Yij − Xj ≤ 0 ∀ i, j (2.29)

Yij ∈ {0, 1} ∀ i, j; Xj ∈ {0, 1} ∀ j (2.30)

Constraint 2.27 ensures that each actor is assigned to only one key player; Constraint

2.28 specifies the number of key players to be used; and Constraint 2.29 ensures that
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an assignment cannot be made to an individual j unless that individual is indeed a

key player. Various extensions of this formulation could be applied. Unfortunately,

unless advanced techniques are applied (e.g., Lagrangian relaxation), solving a large

problem of this nature to optimality may be computationally challenging.

2.6.5 Disconnecting Sets

Recalling the KPP-1 definition and the current interest in disrupting vari-

ous aspects of terrorist networks–such as the financial, support, and communication

layers–disrupting the overall functionality of a non-cooperative network by discon-

necting it into distinct components (e.g., isolating cells from one another to impede

planning efforts). Several works have examined disconnecting sets in the context of

adversarial networks, physical and social. The research of Jarvis [1968] and Green-

berg [1968] discuss aspects of optimal attack strategies of command and control

networks, both from a multi-commodity perspective. More recently, Leinart [1998];

Leinart et al. [2002] and Pinkstaff [2001] have explored essentially the same topic,

but from a cut-set enumeration and valuation approach, generally focusing on a

single-layered network. Lastly, Kennedy developed a methodology to evaluate cut

sets and optimize the targeting process for multi-layered infrastructure networks.

[Kennedy, 2003]

Renfro posited two forms of multi-contextual analyses: multi-criteria and multi-

commodity. The former incorporating relational aspects or contexts independently,

whereas the latter considers multiple contexts but assumes that all contexts share

a given capacity of potential influence between any two individuals. [Renfro, 2001,

pg. 67] Such concepts are of interest due to the layered network approach of this

research.

Unfortunately, the transition from single- to multi-commodity networks poses

some challenges, as the max-flow, min cost cut set easily found for the former does

not generalize to the latter. [Jarvis, 1968, pg. 40] In addition, “. . . in general, for
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multi-commodity graphs the minimum disconnecting set is not necessarily a cut-set”

[Jarvis, 1968, pg. 40]. Given a graph with m nodes and r commodities, enumeration

of all chains of all possible lengths can equal r2(m−n+1), resulting in cut-set verification

or enumerative methodologies computationally problematic when applied to large

single-commodity or reasonably-sized multi-commodity networks [Jarvis, 1968, pg.

47]. Further, the technique of replacing an undirected arc with an equivalent set of

two directed arcs does not extend well to the multi-commodity network problem as

“. . . only the forward arcs contribute to the capacity of a single-commodity cut-set”

[Greenberg, 1968, pg. 13-15].

2.6.6 Path Enumeration Techniques

Although path (or chain for undirected graphs) enumeration may be com-

putationally expensive, there may be reasons that support such an endeavor. For

example, the promising approach by Stephenson and Zelen [1989], described earlier,

is capable of analyzing valued graphs, but is limited to symmetric networks. This

essentially eliminates the possibility of incorporating gains and/or losses, as well as

aggregate values capturing multiple dimensions that are not necessarily symmetric

in nature. The method is unique in that it avoids path enumeration. However, it is

posited that since explicit path enumeration of a symmetric, dichotomous graph is

demonstrated to be equivalent to the information centrality measure, then explicit

path enumeration may provide a more flexible (but potentially computationally in-

tractable) measure. Several path enumeration methods exist-from one node to all

others Misra and Misra [1980], all paths of a given length Parthasarathy [1964], and

all paths between two specified nodes Migliore et al. [1990], are just a few prominent

examples within the literature.

Clearly, given the current context, operations research offers an array of models

that can be used to analyze social networks.
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2.7 Summary

To this point, a number of methodologies and theories dealing with both open

and non-cooperative social networks have been presented. These works include a va-

riety of Operations Research, Sociological, and Behavioral Theory efforts, all of which

provide the bases for this research. The overall goal of which is that new and useful

theory, and concomitant methodologies, describing and analyzing social networks of

non-cooperative organizations will be realized. Given the improved understanding

and insights provided by the proposed research, decision makers can then be offered

better courses of action that impute influence upon the network in order to achieve

a target influence, perception, or outcome to one or more actors within the network

through either direct or indirect means. The next chapter presents an overview of

the methodology proposed to accomplish these tasks.
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III. Research Approach

3.1 Overview

This chapter outlines the research activities seeking to improve the theoretical

and methodological approaches available to analyze layered social networks. A series

of approaches are developed to investigate aspects of social networks. The layered

concept primarily provides a means to (1) derive a measure of relationship strength

and (2) offer insight into potential courses of action that may increase the fragility of

the target network or disrupt it entirely through the use of information operations.

In addition, the use of exogenous data characterizing the individuals within the

network to ascertain power or persuasion differentials is explored. This measure of

persuasion, also referred to as influence, of one individual over another is used as a

multiplier in generalized network flow applications, again to explore various courses

of action as well as supporting a new social network analysis measure.

Recall the layered network diagram presented in Chapter I and repeated in

Figure 3.1. In this figure, each layer represents a context within which the actors

may or may not be affiliated. Context examples could include familial relationships,

training camps attended together, known friendships, business interactions, known

animosities, resources shared, specialized skills or training, and so forth. For each

layer or context, if an actor is connected to any other actor in the same context, those

actors and that link are recorded. Given that the network of interest is comprised of

N individuals, each layer can include no more than the same set of N individuals.

Examining the diagram from directly overhead, an actor appearing in more than one

context would be aligned vertically, as noted by the ‘unique actor’ indicator.

It is assumed that human interaction simultaneously accounts for multiple,

underlying relationships or contexts within which those relationships were developed.

For example, two complete strangers may be treated differently based upon the

known contexts that comprise a newly formed relationship. Such a case could involve
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the difference between a random individual standing beside you on a sidewalk and the

lady just introduced to you as the new fiancée of your brother. Both are strangers,

yet an inevitable difference between the strengths of the two relationships occurs due

to the implied trust gained from a familial context. Consequently, it is suggested that

by increasing or at least acknowledging the dimensionality of information gathered

on individuals of interest, a better understanding of the overall network behavior

can be achieved.

It should be noted that this approach has at least two potential drawbacks.

First, methods attempting to measure strength of ties are generally criticized when

applied to non-cooperative networks, such as terrorist organizations, in that increas-

ing sophistication of analysis methodologies “may still not yield a more useful map”

towards understanding the underlying network behavior [Fellman and Wright, 2003,

pg. 5]. Nonetheless, ignoring this type of information automatically presumes all

interpersonal ties are homogenous. When considering leaders, followers, and actors

that serve as bridges, liaisons, and gatekeepers, knowing not only which particular

individual may successfully be exploited, but which of their interpersonal relation-

ships is important when evaluating the efficacy of information operations courses of

action.
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The second potential drawback deals with the natural tendency for individuals

to cognitively account for multiple relationship contexts simultaneously. This implies

that when attempting to ascertain a flow of information or influence throughout a

social network, decomposition-like techniques are likely inappropriate models of the

way individuals conduct interpersonal relations and exchanges. However, if a decision

maker were interested in leveraging weaknesses or strengths within a specific context

so as to disrupt or affect overall network connectivity, strength, and so forth, single-

context analyses may lend themselves to such objectives. Both problem aspects,

model formulations, and potential applications are discussed in later chapters.

The dilemma then is that the second drawback suggests that multiplexity must

be considered as a combined effect between two individuals, whereas the first draw-

back maintains that it should not. The impasse can be resolved when considering

the statement that “[multiple relations should not be combined] unless there is a

substantive reason for doing so” [Wasserman and Faust, 1994, pg. 219]. For this

research, the ‘substantive reason’ is the proposition that multiple, interpersonal ties

contribute to relationship strength in the manner proposed by Granovetter, suggest-

ing a probably linear combination of contexts [Granovetter, 1973, pg. 1361].

It is hypothesized that, in general, the more individuals have in common, the

stronger the relationship between them, as suggested by Haythornthwaite [1999].

Chapter VI explores a number of combination techniques and their implications,

some of which involve the allocation of weights for each layer. The weighting corre-
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sponds to the importance that the target network in toto places upon a particular

relationship context. As the majority of this data is unlikely to be directly measur-

able, expert opinion familiar with the culture, indoctrination procedures, and insti-

tutional foundations will always play a vital role in providing guidance regarding the

weights. However, the use of a dynamic weighting can help ascertain the impact of

information operations upon the network relationships. For example, compare the

bottom layer to the top two in Figure 3.2. If information operations marginalized the

weight of the top two layers from the individuals’ point of view, a fissure between the

network members may be observed. Therefore, despite the ability to measure exactly

how much each context contributes to the strength of interpersonal relationships, the

sensitivity of a given network to perturbations of the weight set, and the subsequent

impact upon associated measures can be explored. As today’s terrorist organizations

are increasingly multi-cultural, extensions allowing for individual-specific weight sets

are also examined.

An additional measurement aspect of this research is the theory of gains and

losses. This research effort attempts to extend the work of French [1956] and Fried-

kin [1986] regarding social power. Couched in the goal of explaining the dynamics

of opinions among individuals, both works essentially suggest that “the influence

process in groups can be explained in terms of patterns of interpersonal relations”

[French, 1956, pg. 81]. French defines interpersonal power as “the power of A over

B (with respect to a given opinion) is equal to the maximum force which A can in-

duce on B minus the maximum resisting force which B can mobilize in the opposite

direction” [French, 1956, pg. 183].

This research suggests that such interpersonal power, or lack thereof, is anal-

ogous to gains or losses. Interestingly, French mentions bases of power that are not

necessarily related to network topology as focused upon by both French [1956] and

Friedkin [1986]. The bases are attraction, expert, reward, coercive, and legitimate
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power. All of these bases connote factors extending beyond network topology, such

as personal characteristics or formal and informal organizational roles.

For example, attraction power may be dependent upon the charisma, appear-

ance, and professional, educational, and religious backgrounds of the individuals.

Within the context of a generalized network flow model, any two given individuals

perceiving each other as their peer would result in the power of one over the other to

be the same, resulting in a multiplier equal to one. Alternatively, an individual may

demonstrate a greater influence, pressure, or power over another due to a socioe-

conomic or status differential, resulting in a multiplier > 1. Lastly, communication

emanating from an individual that is perceived as an underling, unreliable, untrust-

worthy may carry a negative undertone, resulting in a multiplier < 1. However, the

only basis French elaborates upon is that of attraction, noting that cohesiveness has

been ‘operationalized’ in past studies to account for attraction between individuals

within a network [French, 1956, pg. 185]. Figure 3.3 depicts the general notion of

this concept, which is further detailed in Section 3.3.4 and Chapter VII.

It is therefore hypothesized that the combination of tie strength and measure-

ment of gains and losses of influence provides a more robust and capable model of

network behavior. Additionally, the act of seeking this information inevitably con-

tributes to an improved understanding of the extent and nature of the interpersonal

relationships of the target network. A new social network analysis measure, and

new techniques derived from its application, to accomplish this in a more efficient

manner, is developed in Chapter IV.
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When it comes to affecting the network in some way, presumably via infor-

mation operations that may involve kinetic and non-kinetic means, the evaluation

of potential target sets and courses of action must be accomplished. Chapter V

builds upon and extends the analytic capabilities of the key player concept through

mathematical programming techniques. Chapter VII combines the measurement

of multiplex relations discussed in Chapter VI with the measurement of gains and

losses. These new techniques facilitate a generalized network flow model of influence

similar to that described by Renfro [2001], which can be used to evaluate influence

courses of action.

The overarching goal of this research is to use these combinations of models to

improve understanding of potential behavioral patterns that belie the target network,

and their reactions to the information operations that may be imposed upon them.

Subsequently, such understanding may be used to develop improved courses of action

to effectively achieve a specified change in behavior in one or more actors within the

target network. These efforts, and the research endeavors presented within this

dissertation, require several underlying assumptions.

3.2 Assumptions and Limitations

As discussed in Chapter I, it is assumed that the data required for the method-

ologies presented is available and known with certainty. The mathematical nature of

the approaches presented permit the investigation of relaxations to this assumption

via sensitivity analyses, involving both ‘one-at-a-time’ and parametric approaches

to the impact of uncertainty. However, these techniques may not always avail them-

selves to determining the potential effects when uncertainty pervades the entire net-

work.

Since one of the objectives requires the forced flow of influence through a

network, specific paths upon which the influence travels result. As with many social
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network analyses, independence is assumed, potentially contrary to typical social

interactions. For example, when one person passes on a message, information, or

influence to another, that person may also provide the previous source, either for

informational purposes or for emphasis. As an example, in reality there may be

a different influential impact between “our co-worker said we need to do. . . ” and

“our boss said we need to do. . . .” This scenario implies dependence and, despite a

potentially closer tie to reality, is assumed not to hold for computational convenience

[cf. Friedkin, 1986].

The other major assumption underlying this research is the static approach to

network topology, both the structure and the perceived strengths of relationships. It

is certain that over time, some individuals may change their opinions or strategies,

relationships evolve and devolve, and the overall social network structure changes due

to recruitment of new individuals, new opportunities for interaction, and departures

from the network. However, given the nature of available intelligence information

and the near-term focus to which these techniques are amenable, it is assumed that

key changes in the network are primarily due to the actions or influence imposed

upon it. With the possible exception of dynamic programming, this appears to be the

preferred way to deal with other, albeit open, social networks in current sociological

and anthropological literature. Other efforts are pursuing the capability to simulate

dynamic network behaviors, Carley [2003], for example; however, this also requires

collecting a great deal more information that may or may not be available.

3.3 Approaches

The theoretic and applied contributions from this research involve successive,

conceptual steps that may, as applicable, build upon each other or provide compli-

mentary analyses. The steps may either be used stand-alone or combined to provide

a theoretically sound analysis methodology for the study of layered social networks.

As mentioned earlier, some concepts are more amenable to layered networks than
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others. The social networks of particular interest are comprised of adversarial and

non-cooperative individuals; however, the proposed methodologies are not necessar-

ily limited to such organizations.

The most benefit gained from the approaches developed occurs when there

exists data characterizing both (1) the dimensions of interpersonal relationships and

(2) individual attribute data. Although the most detailed level of analyses requires

both classes of data elements, some approaches may still be used if only limited

data is available. Each of these approaches are generally described in the following

sections; detailed discussion and notional analyses of each are presented in following

chapters.

3.3.1 Screening

A new social network analysis measure is offered that attempts to assess an

actor’s position from the standpoint of centrality, power, or prestige. The position

type is dependent upon the sociometric data available. Use of symmetric adjacency

matrices yield actor centrality. Use of asymmetric adjacency matrices can yield both

power and prestige positions. This reach-based measure builds upon concepts such as

information attenuation as a function of path length [cf. Katz, 1953; Stephenson and

Zelen, 1989] and reach type [Valente and Foreman, 1998]. Although this measure is

restricted to the analysis of dichotomous networks, it has several analytic advantages

over similar, traditional social network measures. The mathematical development

of this measure, its theoretical bases, and the characteristics that make the measure

amenable to the study of non-cooperative networks are provided. Methods to apply

this measure to layered networks are presented.

3.3.2 Targeting

The appealing concept, from a military perspective, of the KPP-2 problem

discussed in Section 2.2.2 is extended in a variety of ways. New mathematical pro-
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grams are developed to provide a more robust alternative to the insightful, but ini-

tial, heuristic approach devised by Borgatti [2003b]. Assuming that some individuals

within a target network are accessible, or can be made accessible, the models and

techniques developed in this research offer a means to build and evaluate possible

target sets. There are, of course, advantages and disadvantages of this approach.

Advantages over Borgatti’s approach include: (1) the ability to address asym-

metric networks; (2) the ability to solve to optimality the kp-set; (3) the collection

of multiple optimal solutions; and, (4) the ability to extend the problem aspects to

other dimensions of interest. Relationships between classic operations research mod-

els such as covering and partitioning problems, dominating sets, and the p-median

problem and the sub-objectives of the KPP-2 concept are established. This not only

offers improved solutions, but enables improved capabilities through the blending of

models and the incorporation of specialized constraints.

Examples of such capabilities include the use of goal programming to evaluate

trade-offs between competing objectives (e.g., kp-set size and network coverage); the

a priori designation of individuals as accessible or inaccessible; the incorporation of

costs, real or perceived, to access and co-opt a key player; and, the enumeration of

multiple optimal solutions, thus providing more viable and optimal alternatives for

the decision maker. These methodologies and illustrative examples are provided.

3.3.3 Measuring Multiplexity

There are few sources within the literature to date that deal directly with

attempts to measure quantitatively relationships that vary in strength, other than

those that, for convenience, assume or hypothesize the researcher could obtain those

values. Of those that do acknowledge the dimensionality of interpersonal relation-

ships, none, with the exception of Renfro [2001] and Clark [2005], have thus far been

uncovered that attempt to take multiple contexts or characteristics and formally
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develop an approach to differentiate quantitatively relationships between pairs of

individuals.

Measuring the strength of a relationship by incorporating a number of appro-

priate contexts comprises the first step and provides inputs for other model formu-

lations. Contexts of interest are drawn from Marsden and Campbell [1984] and Hite

[2003] (as discussed in Chapter VI) as starting points. However, depending upon the

nature of the intelligence collection process, contextual analyses may only be feasible

after an initial set of individuals has been established and a common set of contexts

that comprise their relationships have been discovered.

Note also that multiplexity is only one of many aspects that could contribute

to the strength of a tie. Previous works such as Granovetter [1973], suggested dura-

tion and frequency serve as proxies for multiplexity. Consequently, a model defining

the theoretical building blocks that contribute to the ‘strength’ of a relationship is

developed. Other works such as [Carroll, 2006; Friedkin, 1990, 1980; Gould, 1991;

Marsden and Campbell, 1984] are analyzed, summarized, and synthesized to serve

as a basis for the theoretical model. This effectively builds upon the seminal work of

Granovetter, who stated the general definition of the strength of an interpersonal tie

is “. . . a (probably linear) combination of the amount of time, the emotional inten-

sity, the intimacy (mutual confiding), and the reciprocal services which characterize

the tie” [Granovetter, 1973, pg. 1361]. Areas left ‘for future study’ by Granovetter

include the “operational measures and weights attaching to each of the four ele-

ments. . . ” [Granovetter, 1973, pg. 1361]. Such weighting schemes that accompany

the model of tie strength are discussed in Chapter VI.

Renfro [2001] evaluated pair-wise comparisons of individual psychological states

to determine asymmetric social closeness values. Clark [2005] developed a weighted

combination of structure-based, pair-wise centrality results that were further weighted

by a method accounting for individual characteristics. The article by Friedkin dis-

cusses the construction of a Guttman scale–where different stages or assessments can
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imply others–that incorporates claims of frequent discussion, of seeking help, and of

close friendship [Friedkin, 1990]. Friedkin’s work, however, assumes that each of

these claims contributes equally to the tie strength. This may ultimately be a con-

sequence of the Guttman scale approach. Other than these, none of the preliminary

works mentioned directly address this concept in any reasonable detail, especially if

an analyst wanted to associate a value indicating strength with an edge in a social

network graph using different types or classifications of network data (e.g., familial,

training, and so forth).

Therefore, this research effort incorporates the use of decision analytic tech-

niques to capture the essence of the model initially proposed by Granovetter, while

accounting for the taxonomies provided by Hite and the findings that may have

changed initial perceptions of what makes a strong tie; for example, Marsden and

Campbell found that “there are difficulties with frequency and duration of contact

as indicators of strength” [Marsden and Campbell, 1984, pg. 482].

It is presumed that such a contextual aggregation technique involves weights

that, from the adversary’s perspective, indicate the importance a given context plays

within interpersonal relationships [cf. Clark, 2005]. In addition, if psychological oper-

ations are applied to one or more layers, but not necessarily all of them, investigation

of how these weights may change over time and the affect upon the network per-

formance and exchange of influence (or power, or status, etc.) in response to these

external forces–courses of action–are performed. Determining the contexts or layers

of interest is potentially one of the more difficult areas of this research, as the types

of ties that result in the strong, trusting relationships are likely dependent upon

the origins of the organization and the scenario under analysis, or simply predicated

upon the available intelligence information.

Regardless of the technique chosen to perform future analyses, a key aspect that

must be considered in this area is that of data acquisition, particularly when dealing

with non-cooperative networks. Consequently, a secondary goal of this research,
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regardless of the area, is to develop the theory and requisite methodologies amenable

to information that must be gathered from a distance.

All of these efforts serve as an ideal input for an extension of Renfro’s flow

model formulation from a single, possibly multi-commodity network to a multi-

layered network is planned. Although Renfro proposed a multi-commodity flow

formulation, characterization and analysis of non-cooperative networks as layered,

inter-dependent network formulation is investigated in greater detail.

3.3.4 A Generalized Social Network Model

The overall goal of this research thread is to quantify an individual’s power of

persuasion over another. Renfro suggested that gains and losses within a generalized

network model were analogous to preconceived notions or poor communication. This

research contends that these effects are due to a person’s ability, or lack thereof,

to persuade other individuals. Ultimately, this research effort relies upon works

such as persuasion theory [Seiter and Gass, 2004]; methods incorporating individual

attribute data [Clark, 2005]; and, the bases of interpersonal power [French, 1956].

Two immediate benefits are derived from a measure of interpersonal persua-

siveness. First, this measure is incorporated into a generalized network flow model of

a social network. This provides a means to examine the efficacy of potential courses

of action in further detail. These courses of action, in general, seek to influence

specific, and presumably inaccessible, actors within a target network. The influence

is indirectly transferred by using accessible actors and the target network’s own re-

lations. Analysis methods and techniques taking advantage of sensitivity analysis

procedures are discussed with the objective of improving insight into the adversary.

Another immediate use for the gains and losses measure–as well as the measure-

ment of relationship strength discussed earlier–is the incorporation into information

flow centrality measures as presented by Freeman et al. [1991] and Brandes and

Fleischer [2005]. For example, Freeman et al. [1991] developed a centrality measure
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by evaluating various maximum flow characteristics of the network. The flow model

required arc values, representing the strength of a relationship, which were assumed

to be available. Elaborating upon these ‘strength’ values via the aggregation of con-

textual layers benefits this research area in a fashion similar to that of Renfro [2001]

and Clark [2005]. However, the inclusion of gains and losses due to persuasion also

provides an extension of Freeman et al.’s centrality measure, incorporating a general-

ized, and assumed to be more representative, network flow model. Justifications for

inclusion of this aspect of interpersonal behavior are discussed and, as accomplished

by Freeman et al. [1991], comparisons to the initial network flow centrality measure

and other measures of betweenness is explored.

All of these measures and methodologies are expected to provide information

and insight regarding actors of interest or the implications of imposing external

influences upon a target network. The assumptions and flow processes underlying

network flow models of social networks, however, must be carefully considered.

3.3.5 Analysis of Layered Social Networks

Verification, comparisons to other techniques, and demonstrative analyses can-

not be performed without data. Subsequently, notional networks are evaluated

throughout the document, illustrating the various aspects of this research. The

application of all techniques developed within this dissertation to a subset of the Al-

Qaeda terrorist network is presented in Chapter VIII. This case study demonstrates

the various theories and associated methodologies developed within this dissertation.

3.3.6 Summary

The overall framework for this research effort is depicted in Figure 3.4. The

flow of research tasks is from left to right; the arrows indicate predecessors and

relations between activities. This framework not only serves as an overall analysis
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methodology, but also helps to identify and tie together the theoretical aspects of

this research.

This framework, composed of an interrelated and complimentary suite of anal-

ysis approaches, facilitates the gaining of insight into the adversarial network. Such

insight can be leveraged in a number of ways. For example, the development and

estimation of the efficacy of courses of action against the network and improved capa-

bilities to forecast roles and responsibilities of individuals within a non-cooperative

network–all despite limited information. The next chapters provide the details of

the research approaches that have been, very generally, described.
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IV. Screening

4.1 Chapter Overview

A number of centrality measures that rely upon the structural characteristics

of a social network to assess the importance of each actor within the network exist

[cf. Wasserman and Faust, 1994]. In the context of evaluating non-cooperative,

clandestine networks, measures that can be efficiently calculated and perform well

despite limited information are of increasing interest to counter-terrorist applications

of social network analysis.

The measure developed in this chapter is designed to serve as a screening

tool to identify individuals within a given adversarial, clandestine network (an ac-

tive terrorist organization, for example) who may play important roles in achieving

organizational objectives. Those actors with such roles are of interest and are can-

didates for focusing intelligence surveillance and analysis resources. Importance is

assumed to be positively correlated with how easily or efficiently a given actor can

communicate, directly or indirectly, with all other actors in the group.

In the context of typical network analyses, the nature of such roles is often

predicated upon network topology. For example, network data that captures di-

rected relationships invokes the notions of prestige and power. A prestigious actor

is “one who is the object of extensive ties” [Wasserman and Faust, 1994, pg. 174].

Alternatively, a powerful actor is one that “influences the behavior (either overtly

or covertly) of others in accordance with his own intentions” [Goldhamer and Shils,

1939, pg. 171]. Power thereby implies a focus upon ties emanated. Symmetric

(undirected) data simply fall within the study of, and have accompanying measures

to assess, actor centrality [cf. Wasserman and Faust, 1994, Chp. 5]. This measure is

shown to be applicable to all three of these analytic categories (prestige, power, and

centrality), assuming that appropriate steps are taken to ensure that the measure is

indeed capturing the information or influence flow of interest [cf. Borgatti, 2005].
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Reach-based assessment of position (RBAP) was initially motivated by the

concepts within the status measure of Katz [1953], discussed in Chapter II. This

effort ultimately resulted in computational and theoretical changes making Katz’s

measure potentially more suitable for analysis of clandestine networks that rely heav-

ily upon secrecy for their operational success [cf. Post, 2005; Baker and Faulkner,

1993]. In addition, RBAP is conceptually related to the radiality measure developed

by Valente and Foreman [1998], which “refers to the degree an individual’s relations

reach out into the network providing access to many and diverse others” [Valente

and Foreman, 1998, pg. 90].

This initial development of RBAP is focused upon screening a clandestine net-

work, characterized by a binary (i.e., denoted by 1 if there exists a relationship

between two individuals, 0 otherwise) and not necessarily symmetric adjacency ma-

trix, for actors with the most power or influence over all other actors. Thus, the

measure can be viewed as (1) a variant of out-degree centrality [Wasserman and

Faust, 1994, pg. 199]; (2) a modification of the status measure by Katz [1953]; and,

(3) a modification of eigenvalue-based centrality measures that are similar to Katz’s

measure [Bonacich, 1987; Bonacich and Lloyd, 2001, pg. 195]. The screening pro-

cess attempts to identify the most interesting actors by virtue of very high, or very

low, RBAP scores. This group of actors would then serve as the focus of limited

intelligence resources.

In the following sections, the aspects and criticisms of related works are briefly

reviewed, and the theory underlying RBAP is developed. The chapter concludes

with a demonstrative example and discussion on how this measure may be applied

to layered social networks.
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4.2 Background

Given a dichotomous representation of an adversarial, clandestine network, a

measure that seeks to identify actors that are able to reach or influence all other

actors within the network as quickly as possible is desired. In the context of a

dichotomous network, quick refers to the number of steps between actors within a

network. This automatically invokes a common underlying assumption prevalent

in many social network analysis measures–that influence or information propagates

through a network via shortest, or geodesic, paths. Recall that the geodesic path is

defined as “the (not necessarily unique) shortest path through the network from one

vertex to another” [Newman, 2003, pg. 173]. The definition, however, implies that

there could be multiple shortest paths of a given distance between any two given

actors, a phenomena leveraged in the classic betweenness centrality measure as well

as RBAP [Wasserman and Faust, 1994, pg. 188-91].

From a communications point of view, flow via the shortest path may minimize

the likelihood and impact of errors or misperceptions that often plague human in-

teraction. However, as several authors have contended, communication or influence

between individuals within a clandestine network may not necessarily flow along the

shortest path. For example, regarding the impetus behind their centrality measure

that accounts for all possible paths between any two individuals, Stephenson and

Zelen [1989] point out,

it is quite possible that information will take a more circuitous route ei-
ther by random communication or may be intentionally channeled through
many intermediaries in order to ‘hide’ or ‘shield’ information in a way
not captured by geodesic paths [Stephenson and Zelen, 1989, pg. 3].

Other previous works suggest that when an organization is faced with trade-

offs between efficiency and concealment, the subsequent network structure evolves in

a manner that may be contrary to classical sociological expectations [Krebs, 2002;

Baker and Faulkner, 1993, pg. 856]. However, the actual interpersonal communica-
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tion may still follow the shortest path relative to the secretive network, despite the

fact that such a path could be shorter if the network were operating and evolving

freely without recourse. If secure communications are required, one can assume that

longer communication chains offer more opportunity for interception of message traf-

fic and associated operational risk. Hence, communication among paths other than

the geodesics is (potentially) contrary to the organizational goals of secrecy [e.g.,

Post, 2005, Chapter 2].

The following sections discuss existing measures that lead to the development

of RBAP. These measures include the status index of Katz [1953], the radiality and

integration measures proposed by Valente and Foreman [1998], and the centrality

measures for asymmetric relations developed by Bonacich [1987]; Bonacich and Lloyd

[2001]. For a more comprehensive comparison between the related measures, the

reader is referred to Wasserman and Faust [1994, pg. 198-219] and Borgatti and

Everett [2006].

4.2.1 Contributing Measures

Recall the discussion of the status measure proposed by Katz in Section 2.4.1.

Katz’s recursive status measure, taking advantage of the convergence of a geometric

series, captured ‘all possible walks’ of infinite length with a relatively easy calculation

and the reasonable assumption that the effect of communication or influence along

a path decreased as a function of the path’s length. However, this measure suffers

several conceptual and theoretical problems, particularly when considering and ana-

lyzing the behavior of non-cooperative social networks. These problems include: the

characteristics of the flow assumed and actually captured by the calculations; the po-

tential length of the paths implicitly accounted for within the measure’s calculations;

and, the arbitrary choice of the attenuation factor.

As mentioned in Section 2.4.1, the flows captured by Katz’s index include not

only all possible walks, but all possible paths, as well as directed edge sequences

133



that fit neither the walk nor the path definition–an observation previously noted by

[Leenders, 2002, pg. 32]. To further complicate the potential application of this

measure to non-cooperative networks, directed edge sequences of infinite length are

also incorporated within the status values. These sequences do indeed contribute

to the status scores of the individuals and effectively measure phenomenon that is

contrary to the behavior inherent within the networks of interest. Recall Theorem 1,

due to Deo [1974], which categorizes the entries within the powers of the sociomatrix

as either directed paths from i to j, directed walks from i to j, or directed edge

sequences that are neither paths nor walks.

Directed edge sequences that fall within the second category, walks, could

be perceived as inefficient communications practices among network members. For

example, suppose actor A wanted to transmit a message or influence to actor D. With

other actors B and C, a valid walk, assuming the network connectivity exists, from

A to D could include A-B-C-A-D. In this particular example, it is more efficient for

actor A to communicate directly with D instead of routing the same message through

B and C only to have it return to actor A.

Similarly, directed edge sequences that fall within the third category essen-

tially include repetitive banter between two or more individuals. For example, with

two actors A and B, a directed edge sequence of length 3 (p = 3) could include

the path A-B-A-B. With three actors A, B, and C, directed edge sequence of length

5 (p = 5) between A and C could include the path A-B-A-B-A-C. Assuming that

each interaction or period of communication imparts a potential risk of being uncov-

ered, captured, or providing an adversary with additional and sensitive information,

Katz’s status measure is inappropriate for analysis of non-cooperative or clandestine

networks.

In addition, the potential length of walks measured goes to infinity. Again,

this would involve an infinite amount of communication exchanges between the indi-

viduals, which would likely be counter to operational security objectives. Note also
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that, given a graph with n vertices, the maximum length of a path is n − 1. The

maximum length of a walk given the same graph and assuming that the path A-B

is considered different from the path B-A is n(n− 1). Unless the network of interest

is an infinite graph, Katz’s status index provides an unrealistic characterization of

information or influence patterns within an organization. This suggests that a more

direct, path-based approach, limited to the length of a worst-case scenario–a path of

length (n − 1).

The final points of contention include the arbitrary nature of the attenuation

factor, α, as well as the restricted range of its acceptable values being predicated

upon the network structure. These facts detract from the overall analytic power

of this concept and resulting measure. Even within the ranges recommended by

Katz, the most ‘central’ actor is often dependent upon the value of α; explaining

this phenomenon is even more complicated when dealing with an infinite number of

paths, walks, and directed sequences levied upon a finite graph.

As an example, using the notional network in Figure 2.8, Figure 4.1 depicts the

results of Katz’s measure with varying levels of α within the recommended range.

The graph simply captures the rank order of the status for each of the six actors,

with the values 6 and 1 indicating the highest and lowest ranking status scores,

respectively. Interestingly, two crossover points exist, resulting in actors A and D

exchanging status rankings around α = 0.36, and actors A and F exchanging status

rankings at around α = 0.48. If the value of α is likened to the attenuation of

influence or status as a function of distance, the range, and therefore the possible

range of assumptions regarding the amount of attenuation, is unfortunately limited

by necessity in order to determine a solution to the system of equations.

Related approaches, based upon the eigenvectors of X, due to Bonacich and

Lloyd [2001] and Bonacich et al. [2004] are frequently used within the sociological

literature. Recall from Section 2.4.4 that eigenvector centrality views the nature

of power or status from recursive standpoint, thus sharing similar conceptual and
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Figure 4.1: Change in status with attenuation

mathematical underpinnings to the measure developed by Katz. Consequently, this

measurement approach suffers similar difficulties regarding the types and lengths of

flows of information, status, or influence between a network’s individuals. Although

there is an α component of eigenvector centrality, it is used to tradeoff the impor-

tance of exogenous (e.g., actor attributes) and endogenous (i.e., network topology)

factors as contributing to status. Ultimately, the value and permissible range of this

particular parameter is also predicated solely upon network structure.

Valente and Foreman [1998] developed a dual-purpose measure based upon a

reverse geodesic distance approach. Given that the measures of interest are integra-

tion (“can be reached by many others rapidly”) and radiality (“the degree to which

an individual’s relations reach out into the network”), the measure is dual-purpose in

that the input is either the adjacency matrix or its transpose, respectively [Valente

and Foreman, 1998, pg. 90]. The integration measure for a given actor k is formally

defined by

I (k) =

∑
j �=k

RDjk

n − 1
, (4.1)
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where n is the total number of actors within the network, RDjk is the reverse geodesic

distance, computed by subtracting the geodesic distance between j to k from (1+D)

[Valente and Foreman, 1998, pg. 92].

To calculate radiality, the measure is applied to the transpose of the adjacency

(or nomination) matrix [Valente and Foreman, 1998, pg. 93]. Note that there is

no attenuation factor associated with longer geodesic paths. In addition, RDjk only

counts single instances, if they exist, of a geodesic path between any two given actors.

Consequently, radiality may not truly capture “the degree to which an individual’s

relations reach out into the network” if multiple shortest paths implies more potential

for the exertion of influence or power.

Lastly, a reach-based measure of centrality that “counts the number of nodes

each node can reach in k or less steps” is offered by Borgatti et al. [2002]. This too

can be applied to directed and undirected networks, as well as give indications of

status or power. However, this particular measure does not accommodate multiple

shortest paths and, from the documentation available, the method of attenuation, if

any, is neither immediately apparent nor theoretically justified.

Although the measure developed by Katz is easy to implement, Katz’s mea-

sure captures network behavior that goes beyond the circuitous paths posited by

Stephenson and Zelen. Therefore, a new measure is sought that assesses the po-

tential influence an individual can propagate throughout the network via efficient

information channels (i.e., shortest paths), which also accounts for the number of

options available for information flow via multiple shortest paths. From these previ-

ous efforts, an opportunity clearly exists to (1) enhance the concept of radiality and

integration posited by Valente and Foreman [1998] and (2) separate the concept of

‘attenuation’ from the conditions required for system solution.
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4.3 Assumptions and Development

What differentiates RBAP from existing measures of power is (1) the use of

multiple instances of shortest paths; (2) the process of accounting for the options

available, if any, to the actors regarding alternative shortest paths; and, (3) uncou-

pling the concept of ‘attenuation’ from conditions necessary for a system solution.

Recall that the shortest path between any two individuals of a connected net-

work ranges between 1 and (n − 1). Deo’s theorem is extended via Corollary IV.1

to enumerate the number of all pair-wise shortest paths, by raising the adjacency

matrix to powers ranging from 2 to (n − 1). Note that this approach requires a

dichotomous representation of the network; therefore, this measure assumes that all

links are of length 1.

Corollary IV.1. Given an adjacency matrix X, by raising it to the power p, p =

(1, . . . , n − 1), the first non-zero element xp
ij , i 	= j of Xp yields the number of shortest

paths of length p from i to j.

Proof. ∀ xp
ij ∈ Xp, i 	= j, xp

ij > 0, and xk
ij = 0, k = 1, . . . , (p − 1) ⇒ no directed edge

sequences of length 1, . . . , (p − 1) exist. Therefore, the shortest path between i and

j must be of length p and further implying that the value xp
ij must fall in the first

category stated by Deo, which is the number of directed (shortest) paths from i to

j.

Use of Corollary IV.1 facilitates the enumeration of shortest paths and their

lengths between all actors. From this, the following definitions serve as the basis for

RBAP.
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α � an attenuation factor, with a similar, penalizing purpose to

that used in [Katz, 1953]; however, for RBAP there is no re-

striction other than α ∈ [0, 1]

RXi � (n × n) matrix that stores the number of shortest paths of

length i from any two given actors where the criteria of Corol-

lary IV.1 are satisfied

r(k)i � number of other actors reached by actor k via a shortest path

of length i

ri � (n×n) diagonal matrix where ∀ r (m)i > 0, ri(m, m) = r (m)−1
i

for m = 1, . . . , n; zero otherwise

One other underlying assumption of this measure is that the highest level of

power is obtained when an actor is adjacent to all other actors within one step.

Consequently, the numbers provided in the matrices (RXi) must be normalized to

avoid actors with numerous but indirect paths to all other actors scoring higher

than actors that can reach all other (n − 1) actors within one step. This process is

accomplished with the variable, r(k)i.

For example, consider the network in Figure 4.2. Actor i, reaches three other

actors via a shortest path of length 1. Therefore, to reach any other actor, j, the

maximum number of shortest paths of length 2 is bounded above by r(i)1 = 3. If

the three dashed paths existed in the network, the value of RX2(i, j) would be 3.

This value and all other values in the ith row of RX2 are normalized by dividing by

r(i)1 = 3.

Suppose further that from node i, two new nodes were reached via a shortest

path of length 2 (nodes d and e in Figure 4.3). Therefore, to reach any node j via

a shortest path of length 3, there are at most 3 × 2 = 6 possibilities, given by the

paths (i− a − d − j), (i− a − e − j), (i− b − d − j), (i− b − e − j), (i− c− d− j),

and (i− c−e− j). Consequently, this requires that the value RX2(i, j), as well as all

other values in the ith row of RX2 , be divided by r(i)1 × r(i)2 = 6. To facilitate this
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calculation, the matrix satisfying the conditions of Corollary IV.1 is pre-multiplied

by the matrix ri.

An attenuation factor, α ∈ [0, 1], not unlike those seen in related works, rep-

resents the diminishing effectiveness of communication or influence as a function of

path length. However, unlike the works of Katz [1953] or Bonacich and Lloyd [2001],

calculating the RBAP measure is not predicated upon finding a specific value for α.

While this does not resolve the ambiguity issue regarding the effects of longer path

lengths upon power or status, it does offer some analytical freedom, as α can take

on any value within its range without negating the measure’s results. Additionally,

the attenuation is assumed not to begin until p ≥ 2. Therefore, RBAP simply re-

duces to degree centrality (simple, in-, or out-degree depending upon the data and

application) when α = 0 and is bounded above by the total number of other nodes

that can be reached from any given node when α = 1. Hence, both ends of the
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range offer both conceptually and mathematically meaningful interpretations. The

range from 0 to 1 can also be interpreted as an actor’s position relative to all others

from a local to global perspective, respectively. Additionally, α may be varied in

order to perform sensitivity analyses, potentially gaining insight into the positions

and possible roles various actors serve within their organization. With 1 being an

(n × 1) vector of ones, the (n × 1) RBAP result is

RBAP = [RX + αr1RX2 + α2r1r2RX3 + . . . + αn−2(
n−2∏
i=1

ri)RXn−1 ]1. (4.2)

A proxy measure for α could include the clustering coefficient of the network,

denoted γ (G), which is the average of the clustering coefficients for each of the

actors within a network. The clustering coefficient for a given actor i is denoted

γi (i). Given the number of neighbors of i (bi), the individual-specific clustering

coefficient is the “ratio of actually existing connections between the bi neighbors and

the maximal number of such connections possible (b2
i − bi)” [Sporns, 2002, pg. 178]

[cf. Watts, 1999, pg. 32-3]. Consequently, higher clustering coefficients may imply

more cohesive and interactive groups and therefore lower communication or influence

losses (i.e., higher values of α).

Although not a necessary condition to perform the calculations, application of

this procedure assumes that the network of interest is connected. Considering that

this measure is reach-based, the centrality calculated for isolates is 0, as expected.

However, if the graph is comprised of more than one component, all output will be

relative to the specific components and not to the network in total. Subsequently,

caution must be taken to avoid misinterpretation of the output by unknowingly

comparing results among two or more components rather than across all actors,

particularly if the values are normalized. If the graph is comprised of several compo-

nents, analysis should be accomplished on the component(s) of interest, rather than

applying this measure to a number of disconnected components at once.
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Table 4.1: Katz and RBAP Comparison (α = 0.5)
High Rank (value) Low

Katz A (0.47) F (0.45) D (0.41) E (0.22) B and C tie (0.04)
RBAP F (4.25) D (3.50) A (3.25) E (2.37) B and C tie (1.00)

Katz (mod) F (0.25) A (0.24) D (0.22) E (0.11) B and C tie (0.04)

Finally, since the RBAP value for any given actor is bounded above by (n−1)

regardless of α, this measure may be normalized for a given network using

RBAP′ =
RBAP

n − 1
. (4.3)

Without normalization, the interpretation of RBAP is the number of other

actors that can be effectively communicated with, persuaded, influenced, and so

forth, ranging in value between an actor’s immediate contacts, to the entire network

of individuals. With normalization, the interpretation is similar, but is in the context

of percent of the other (n−1) actors. Some examples to explore the resulting nature

and meaning of this measure are now discussed.

4.4 Discussion

As an initial investigation, RBAP was applied to the transpose of the choice

matrix specified by Katz [1953]. This permits a comparison between Katz’s status

results and the status (as opposed to power) use of RBAP. With α = 0.5, the Katz

and RBAP status rankings are shown in the first two rows of Table 4.4.

Observing that there are similarities, and differences, between the two ap-

proaches, a more equitable comparison was sought between the two methods. Recall

that in Equation 2.1, Katz allowed infinite path lengths. Considering that, in the

context of influence or communication among clandestine networks, this may be an

unrealistic assumption, suppose a limit identical to that imposed for RBAP (n − 1)

(while still normalizing by the original definition of m) is applied to the Katz mea-

142



0 0.5 1
0

0.5

1

1.5

2

2.5

3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
1

1.5

2

2.5

3

3.5

4

Attenuation

R
B
A
P
 
S
c
o
r
e

Network 1 Network 2 Network 3

1 and 2

3

4

5

B, C, D, and E

A a, b, c, and d

e

Figure 4.4: RBAP applied to Bonacich and Lloyd [2001] networks

sure.

s mod =
(

1
m

)
1(1×n)

n−1∑
i=1

αiXi. (4.4)

The results, denoted ‘Katz (mod)’ in Table 4.4, show improved comparisons

between the two approaches. Spearman’s coefficient of rank correlation between

Katz and RBAP and between Katz (mod) and RBAP are 0.83 and 0.94, respectively;

both are statistically significant at the α = 0.05 level of confidence [cf. Lind et al.,

2002, pg. 605]. The differences are essentially due to Katz’s inclusion of directed

edge sequences other than shortest paths. However, given the underlying differences

between the measures, perfect correlation between RBAP and any other existing,

path-based measure is not one of the research objectives.

Applying the sensitivity analysis procedure for RBAP to all three hypothetical

networks discussed by Bonacich and Lloyd [2001] (from Figure 2.9) the results are

shown in Figure 4.4 and are as expected. For example, from the perspective of

radiality, actors 1 and 2 in Network 1 are more effective than all others in reaching out

to the remaining actors. Whereas, actor 5 has no outward connections and therefore

has no capacity to influence others. Note that the original purpose for RBAP was to

determine the potentially most influential individuals; the results should therefore
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1 N32

Figure 4.5: Line graph of size N

be considered from the perspective of power. However, to apply this measure with

similar objectives as Bonacich and Lloyd [2001] and Valente and Foreman [1998],

performing the RBAP measure on the transpose of the adjacency matrix for the

same network yields insight from a perspective opposite to power, status. The results

generally agree with that of Bonacich and Lloyd [2001], where “unchosen individuals

are ignored and have no effect on the status of others” [Bonacich and Lloyd, 2001].

A logical concern for the RBAP is that of computational efficiency. From

Equation 4.2, the time required for calculation is dominated by the term, RXi , which

is worst-case O(N3). Since the measure calculations are complete when all actors

have been reached, the worst-case times required for evaluating a given network are

dependent upon the network’s diameter. To quantify this characteristic, RBAP was

applied to a number of line graphs (as shown in Figure 4.5), ranging in size from

N = 10 . . . 1330, so that the measure must continue to the largest diameter possible,

(N − 1). The performance (in seconds) is compared to N in Figure 4.6.1 The solid

line in Figure 4.6 represents the polynomial (of degree three) equation fit to the data;

this can be used as a rough estimate of the worst-case time required to compute the

RBAP measure given a network of size N . Noting that the polynomial is increasing

substantially with N , and that the size of clandestine networks, particularly terrorist

networks, can be much larger than 1330 individuals, worst-case run times may be

prohibitive. This limitation is also unfortunately shared by other social network

analysis approaches, which use O(N3) algorithms to determine related measures,

such as all-pairs shortest paths and reachability [e.g., Cyram, 2004].

1Machine used: Pentium 4, 3.4 GHz, 1GB RAM, running Windows XP Pro.
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However, the line graph represents an extreme, and unlikely, topology of a

social network, even if the members are engaged in clandestine activity. As an ex-

ample, the trusted prior contacts of the 9-11 hijacker network analyzed by Krebs had

19 (known) individuals; the diameter of this network, based upon the relationships

ascertained from open source data, was 9 [Krebs, 2002, pg. 46]. The relationship

between population size and network diameter has been of interest since Milgram

traced correspondence paths, wherein the famous six degrees of separation between

ostensibly distant and unconnected actors was observed [Milgram, 1967]. Such a six-

degree graph would yield a variation of the polynomial in Figure 4.6, and would result

in dramatically reduced computational requirements as illustrated in Figure 4.7. Re-

lated works have popularized this small-world property [Barabási, 2002; Buchanan,

2002; Watts, 1999].

Numerous connections between real-world, emergent networks and small-world

network behavior have been made. Examples include cellular metabolism, Holly-
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wood movie-stars, Internet connections and world-wide-web page links, protein reg-

ulatory networks within cells, research collaborations, social networks, and sexual

relationships [Buchanan, 2002; Barabási and Bonabeau, 2003, pg. 54]. As a result

of the small-world property, “their diameter is O(log N) instead of O(N)” [Eppstein

and Wang, 2004, pg. 40]. Similar findings have been made in analyzing networks

evolving via preferential-attachment mechanisms described by Barabási and Albert

[1999] [Liben-Nowell, 2005, pg. 16-8]. In addition, more recent research by Leskovec

et al. [2005] has shown diameter to actually decrease with increased network size.

These observations translate directly to corresponding savings in RBAP computa-

tional performance. Figure 4.7 summarizes the run time required to perform the

RBAP measure for networks ranging from 100 to 1400 nodes with varying diameters

as opposed to the worst-case diameter of (N − 1). As expected, if D � N then

the computation time required is reduced significantly. For example, the 1300-actor

network with D = 1299 required 1344.9 seconds to complete. A comparable 1300-

actor network with D = 30 required 38.8 seconds. Therefore, in lieu of real-world,

large, terrorist network data sets, initial experimental results indicate that this is a

promising approach with regards to computational efficiency.

The equivalence between social networks and network data gathered to charac-

terize actors and relationships enmeshed within clandestine activity remains an open

question. The object of study is still comprised of people with links indicating some

form of interaction. Fortunately, previous authors have addressed some of the issues

that often plague the application of social network analysis techniques to clandestine

networks. For example, several efforts have studied the implications of network sam-

pling upon classic centrality measures using social network data Costenbader and

Valente [2003] and random networks Borgatti et al. [2006]; the former concluding

that the stability of measures is dependent upon network topology, and the latter

indicating stability, using random graphs, is somewhat predictable, particularly for

denser networks. In addition, there is increasing interest in applying social network
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analysis techniques to terrorist organizations [cf. Krebs, 2002; Carpenter et al., 2002;

Carley et al., 2002; Fellman and Wright, 2003; Thomason et al., 2004, to name a few]

Consequently, for this research, it is assumed that clandestine networks are indeed

social in nature and will ultimately exhibit the small-world property such that the

diameter (D) will be much less than the number of actors within it (N). Since the

practical computational bounds of RBAP are dependent on D, this property alone

will contribute to improved performance, given reasonably-sized networks.

Given that the underlying motivation for this measure is to provide a means to

identify potential actors within an adversarial network that exhibit greater amounts

of power or influence among the others (i.e., leaders, potential leaders, coordinators,

liaisons, etc.), an analysis of the hijacker network presented by Krebs [2002] is of

interest. Analysts must always consider that the adversarial network is constantly

trying to either avoid detection or steer our resources in their favor [cf. Sparrow,

1991; Xu and Hsinchun, 2004; Baumes et al., 2004].
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Figure 4.8: RBAP and Katz Network

4.5 Examples

Applying the RBAP measure over the range of α to the Katz network shown in

Figure 2.8. The results in Figure 4.8 show similar behavior to Katz’s measure in that

the most influential individual is dependent upon the level of attenuation selected.

However, for RBAP, all values of α provide valid results, given that the attenuation

level is justified by careful analysis of the network as a whole. Note that at α = 0,

the RBAP measure reverts to simple out-degree centrality. At α = 1, the RBAP

scores are bounded above by the number of reachable actors. The most influential,

actors B and C are able to reach all other actors but have limited options in doing

so. Such topological consequences are captured by ri and therefore results in scores

less than (N − 1 = 5) for these actors.

Turning now to the 9-11 hijacker network studied by Krebs [2002], the network

of trusted prior contacts was extracted from open source information and is shown

in Figure 4.9. To facilitate analysis an identifying number, shown in parenthesis by

each hijacker’s name, was added. Note also that the resulting graph is undirected;
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Figure 4.9: Trusted Prior Contacts [Krebs, 2002, pg. 46]

therefore applying RBAP to this data is in the context of centrality rather than

status or power.

An initial look at the rank orderings based upon RBAP scores and varying

levels of α are provided in Figure 4.10; higher RBAP scores result in higher rankings

which for this network range from low (1) to high (19). As observed with the Katz

data, determining the most central individuals according to the RBAP measure is

predicated upon the amount of attenuation assumed. Mohammed Atta (actor 5),

the purported ring leader, is initially tied with seven other individuals, all having a

degree of 3, for rank 9. However, as α is increased to 1, meaning less attenuation

with longer paths, Atta’s rank goes down substantially. Crossovers such as these
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Figure 4.10: RBAP and Hijacker Network

may reveal individuals that are strategically connected from a local perspective, but

effectively cut off from the remainder of the network from a global perspective. Such

an individual could serve as a cell or team coordinator practicing good operational

security techniques, or may be a specialist kept at a distance to the main group. If

they correspond to a critical skill or capability, they may be the trigger mechanism

for an impending operation.

Other interesting results from Figure 4.10 are those actors who remain low

(or high) regardless of the level of α as well as those who start low at α = 0 and

move up with increasing α. Consider actors 1 Suqami and 2 Wail Alshehri whose

RBAP measures tend to stay relatively low over the range of α. These terrorists are

not only in the periphery of the network, but they are both connected via actor 3,

150



Waleed Alshehri, who is also somewhat isolated from the network and whose RBAP

measure exhibits similar behavior to that of Atta (decreasing with α).

In contrast, two other apparently isolated actors, A. Alghamdi (12) and S.

Alhazmi (16), are connected directly to two of the most central actors (11 and 15)

from a betweenness, information centrality, eigenvector, and Katz perspective [veri-

fied by Cyram, 2004]. Consequently, despite the low degree of actors (12) and (16),

they are connected directly to the core of the network which significantly improves

their corresponding RBAP scores as the impact of attenuation is diminished. Note

also that the most central actors, H. Alghamdi (11) and N. Alhazmi (15) not only

begin with a high rank (due to their high degree) but maintain their relatively high

ranking throughout the range of α.

4.6 RBAP and Layered Networks

When considering layered networks, let Xr denote the sociomatrix for the

relationships r ∈ R of interest to the decision maker or analyst. By this very

construction, each Xr is considered to be a separate network, disconnected from the

others due to the different context in which those individuals interact; additionally,

some layers may be comprised of multiple components. Recall that RBAP should

be applied only to connected networks to facilitate interpretation of the results.

Nonetheless, two different approaches to the use of RBAP on layered networks are

conceived.

The first, is to apply RBAP to each, presumably connected (i.e, a single com-

ponent) layer independently. Actors demonstrating high centrality, power, or status

in each layer could be candidates for further scrutiny. Actors demonstrating these

characteristics in more than one layer would therefore be of even more interest. Di-

rect comparison of RBAP results between two or more layers, specifically the values,

should only be accomplished if each of those layers is connected and has the same
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number of actors, N . This is due the the connectedness requirement as well as the

limiting path length of (N − 1).

The second approach involves an aggregation of network layers prior to imple-

menting the RBAP measure. Since the input required is merely a dichotomous rep-

resentation of the network, information characterizing the contexts and potentially

different contributions to the strength of interpersonal relationships is regrettably

lost, a criticism of all other social network analysis measures using similar inputs

within the literature. Nonetheless, the underlying motivation of serving as an initial

screening methodology, it is assumed that this is a reasonable tradeoff in some situa-

tions. Methods such as the derivation of multiplex-indices may be used to aggregate

layered networks into a single, dichotomous representation of the network, captur-

ing the overall effects of multiple relationship contexts [Wasserman and Faust, 1994,

pg. 219]. As an example, a simple boolean summation, denoted x⊕, of all relation-

ships, r ∈ R, for each possible relationship, x(i, j) ∈ X is mathematically shown in

Equation 4.5.

x (i, j)⊕ =

⎧⎨
⎩ 1

0

if

if

∑
r x (i, j)r � 1∑
r x (i, j)r = 0

(4.5)

Borrowing from Wasserman and Faust [1994], a conditional boolean summation

would require a threshold for a relationship to exist between two individuals i and j

in m or more contexts; this approach is mathematically defined by Equation

x (i, j)⊕ =

⎧⎨
⎩ 1

0

if

if

∑
r x (i, j)r � m∑
r x (i, j)r = 0

(4.6)

This second technique essentially acts as a filter, including only those interpersonal

ties that may be significantly stronger than others due to their inherent multiplexity.

Suppose that if certain patterns of interaction, represented by a subset or

combination of subsets of relationships, were sufficient (or required) to indicate an

interpersonal tie that should be included in further analysis. These patterns could
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also be used to filter the necessary relationships for input into RBAP. For example,

assume that a relationship pattern of interest, {℘}, is defined as a subset of the

individuals relations, r ∈ R, such that {℘} ⊆ {R}. This subset {℘} could be

comprised of one or more of the relations, r. In addition, there may be one or more

patterns of interest, p = 1, . . . , P . Therefore, a third method to aggregate multiple

contexts into a single sociomatrix for input into RBAP is defined:

x (i, j)⊕ =

⎧⎨
⎩ 1 if x (i, j)r = 1 ∀ r ∈ ℘p, ∀ p ∈ P

0 otherwise.
(4.7)

RBAP may be compared to the results of other measures through the use

of nonparametric statistics such as Spearman’s coefficient of rank correlation [Lind

et al., 2002, pg. 605]. With n denoting the number of paired observations and d

denoting the difference between the ranks for each pair, the coefficient is defined as

rs = 1 − 6
∑

d2

n (n2 − 1)
. (4.8)

To test the statistical significance of rs, assuming the network size is comprised

of 10 or more individuals, the test statistic, t, is calculated by

t = rs

√
n − 2

1 − r2
s

(4.9)

and then compared to the Student-t value with a desired level of significance and

(n − 2) degrees of freedom [Lind et al., 2002, pg. 607].

The Wilcoxon signed-rank test seeks to find statistically significant changes

in the rank orderings of a given set of individuals. This nonparametric method is

“based on the differences in dependent samples, where the normality assumption

is not required” [Lind et al., 2002, pg, 591]. Since the null hypothesis is defined

as no difference in the rankings, a rejection of this hypothesis could be used in at
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least two different ways. The first would facilitate arguments about the specified

level of α desired as input for the RBAP measure. If uncertainty or argument

regarding a specific value for α is prevalent, then this statistical technique may

assist in ascertaining whether the subsequent changes in individual rankings due to

a minor change in α is significant. If the hypothesis is rejected, then argument and

further analysis of α is warranted due to its impact upon the statistically significant

differences in actor rankings. If the method fails to reject the hypothesis, there is

insufficient evidence to conclude that there is a statistically significant difference

between the two rank orderings. However, decision makers must assess the tradeoffs

between further data collection or continuing with an agreed-upon level of α in the

interim.

The second potential application of this method would facilitate change de-

tection. Suppose that the α level was agreed upon and constant data collection

regarding the relations among a set of actors was being collected. Increased or de-

creased activity, and the concomitant links created or removed among the members,

could result in changing positions (RBAP values) among the set of actors of inter-

est. Changes in roles, responsibilities, communication activity and patterns, and so

forth, may then be captured by these varying RBAP values. Statistical comparisons

between previous and new rankings based upon the RBAP values offer a means to

detect a statistically significant change in actor centrality, ceteris paribus. Detection

of this event would then facilitate when further analysis and/or intelligence resources

are required.

4.7 Summary

The measure presented in this chapter shares some aspects of other walk and

path-based approaches to gaining insight into an actor’s potential for influence or

power based upon their position within a given network. However, RBAP provides

more analytic freedom regarding the common assumption of attenuation as a function
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of distance between individuals. In addition, the small-world property often inherent

to social networks provides a degree of computational efficiency to the measure.

Consequently, assuming that the network of interest is reasonably sized (e.g., 3000

actors or fewer) this measure should be responsive to changing information.

The intended purpose for RBAP is to facilitate the investigation of adversarial

non-cooperative networks, particularly if the network consists of large number of

actors. Actors of interest may be identified by consistently high or low RBAP scores

as well as those that improve or decrease significantly with a corresponding change in

α. Those individuals that are identified through this process can then be subject to

increased intelligence scrutiny, either to improve the accuracy of the network data,

or to set the stage to affect the organization for political purposes.

Such political endeavors often involve persuading an organization to change

position on a given issue, to modify the inherent approach used to achieve their goals,

or to even disband entirely. Given that an adequate amount of information regarding

the individuals and their associated relationships has been obtained, courses of action

to achieve these political endeavors could include persuading the entire organization

from within. For example, assuming the clandestine network is adversarial, one

must first determine those individuals that are accessible. Among this set, those

with higher RBAP scores, and who are consequently more effective at reaching or

influencing others, would make attractive participants of collusion.

Although α has been specified as a scalar to this point, a possible extension

of this measure could incorporate a matrix of individual-specific attenuation fac-

tors. Therefore each individual i would be assigned an attenuation factor, αi. The

scalar α in Equation 4.2 would simply be replaced by the diagonal matrix A, where

A(i, i) = αi, zero otherwise. A possible means to estimate these values could be

derived via a decision analytic model using the five bases for power—attraction,

expert, reward, coercive, and legitimate—specified by [French, 1956, pg. 183-5] or

individual characteristics such as charisma, appearance, and so forth. This data
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could then be used to gain insight into the effort required to discredit (or support) a

specific individual, thereby diminishing (or increasing) their relative power or influ-

ence within the network. Holding all other individuals’ attenuation factors constant,

sensitivity analysis of the attenuation factor of the individual of interest would yield

the concomitant change in power structure based upon the RBAP scores.

From a counter-terrorism perspective, the RBAP measure offers another means

to gain insight into adversarial, clandestine networks such as Al Qaeda, Ansar al Is-

lam, and the many others that threaten peace. Due to the secretive nature inherent

to these organizations, methods that provide useful information despite limited or

uncertain data are of interest. From a social networks perspective, this measure is

not intended to be a direct competitor to the numerous, classical measures in exis-

tence, but a complement to enhance the structural study of network data. It should

be noted that the RBAP measure may also be applied to physical networks–layers of

interrelated infrastructure networks, for example. Identifying well-connected, crit-

ical nodes in such networks is a key operational consideration in today’s security

environment.

The MATLAB code developed to perform the RBAP measure, which accom-

modates either the scalar α or the matrix A, and a sensitivity analysis procedure

for α is provided in Appendices A and B, respectively.

Suppose now that sufficient information has been obtained on the network

of interest, accurately identifying the individuals of interest and the interpersonal

relationships among them. A next step could include the evaluation of targeting

options. Although targeting in the military traditionally refers to a process that

ultimately results in the physical disruption, or more often destruction, the focus

instead is upon the application of influence operations upon individuals within a

target network. Such operations seek to affect an adversary’s decisions through

various means of influence. An analysis methodology to ascertain which subset of
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actors should be targeted in order to influence the overall network is discussed in

Chapter V.
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V. Target Development

5.1 Chapter Overview

Consider the objective of indirectly influencing an entire network of individuals

by directly influencing a subset of its actors. One possible means of achieving this

objective is the application of the second of the two key player problems. Recall from

Section 2.2.2, the key player problem (KPP) involves finding certain key individuals

within a given social network. How key these players are is dependent upon one of two

objectives. The first objective, denoted KPP-1, determines which set of individuals

that, once removed, would cause the most damage to network. In this context,

Borgatti [2006] defines damage as either increasing the number of components within

the graph or, if that is not possible, significantly increasing the distance between

all pairs of nodes. The second objective, denoted KPP-2, determines which set of

individuals that, if successfully convinced to do so, can reach out and influence the

majority or, if possible, the entirety, of the other members within the network.

Clearly, both of these problems have military applications. However, the focus

of this research is KPP-2 and its use in efficiently propagating influence via direct

or indirect contact among individuals within a target network, hence the key player

influence problem. From Definition 8, KPP-2 seeks a kp-set of order K that is

maximally connected to all other nodes [Borgatti, 2006].

As an example, KPP-2 could be used to select individuals that serve as the

optimal targets of influence operations [cf. Borgatti, 2003a, 2006]. In this context,

optimality is based upon minimizing both the cardinality of the set as well as the

distance the influence emanating from an individual must traverse to reach the as-

signed contact. An example of propagated influence could include the execution of

a psychological operation (PSYOP) or a more specific application of PSYOP, an

influence operation or campaign. PSYOP is formally defined as
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“. . . planned operations to convey selected information and indicators to
foreign audiences to influence the emotions, motives, objective reason-
ing, and ultimately the behavior of foreign governments, organizations,
groups, and individuals” [DOD, 2003, pg. ix].

KPP-2 offers a means to select such a set of individuals in an efficient manner,

essentially supporting the target development and target value analysis processes.

The target development process, from the perspective of Joint Doctrine, “exam-

ines potential adversary military, political, or economic target systems to identify

subcomponents or elements and interrelationships” [DOD, 2002, pg. C-6]. Target

value analysis “establishes criticality of a target or target system in order to select

candidate aimpoints that should be attacked to achieve desired effects and accom-

plishes the defined objectives” [DOD, 2002, pg. C-6]. After a brief description of

the underlying motivations behind the KPP measures and the current solution ap-

proaches proposed by Borgatti [2006], several mathematical programming extensions

and examples are offered and discussed in detail.

5.2 Background

Borgatti [2006] and Everett and Borgatti [1999] note that the preponderance

of social network measures focus on the characterization of individual actors and

their role or position within the network. Consequently, when the role or position

of a group of actors is sought, the traditionally actor-specific measures fail to pro-

vide analysts with the proper insights for group-specific results. In particular, the

traditional social network analysis measures cannot account for the effects of redun-

dant and structurally equivalent actors in a group, a subset of the social network.

Therefore, the key player problem construct was devised.

Both maximal disruption and maximal connection are topics of military inter-

est. For example, application of KPP-1 could result in the disruption of terrorists’

social networks, thereby (potentially) impeding their ability to coordinate, plan, and
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execute future operations. It should be noted, however, that the fracturing of some

networks into components may actually reduce decision and reaction times if the

group members are no longer required or do not feel compelled to coordinate with

central authority. It is important to understand the groups’ operating doctrine prior

to pursuing any destructive efforts. Nonetheless, what is of primary interest in this

research is KPP-2, the application of which could include identifying a group of

actors, a subset of a larger target network, to serve as a conduit to the remaining

members.

Such an approach would seek to influence, via the spread of a message or

information operations product or campaign, the entirety of network membership in

an efficient manner. Of course, KPP-2 could also be viewed in an abstract fashion

with regard to the type of network under study by seeking to efficiently influence

networks beyond those strictly limited to interpersonal interaction. For example,

demographic strata within a population, cities within a country, countries within

a region, or components within physical infrastructure, could all be represented by

nodes within a network within which information or influence flows.

Similar approaches have been studied in the area of viral marketing, essentially

an electronic or Internet-based version of “word of mouth” advertising techniques.

The underlying premise of this approach is that

“. . . by initially targeting a few influential members of the network–say,
giving them free samples of the product–we can trigger a cascade of
influence by which friends will recommend the product to other friends,
and many individuals will ultimately try [the product]” [Kempe et al.,
2003, pg. 137].

Determining which individuals serve as ideal initial targets in the context of mar-

keting has been studied by Domingos and Richardson [2001], among others. For

example, comparing the marketing costs incurred to reach a given individual to “the

expected profit from the sales to other customers she may influence to buy, the cus-

tomers those may influence, and so on recursively” would facilitate the cost-effective
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selection of key individuals [Domingos and Richardson, 2001, pg. 57]. Extending

similar problem aspects within the setting of an influence campaign, such as cost

to access, surveil, or turn a specific individual to do another’s bidding, offers an

opportunity to further develop the key player problem paradigm.

Although these efforts share common themes, note that the specific definition

of efficiency may vary between applications and decision makers. Borgatti’s ap-

proach and concomitant assumptions, discussed next, serve as the initial basis for

comparison against the proposed mathematical programming formulations.

5.3 Heuristic Approach and Objective Function

The current options available within the published KPP software attempt to

satisfy KPP-2 from three approaches. The first two are derived from different ap-

proaches to the number of nodes reached criterion. The third option seeks to min-

imize the measure Borgatti refers to as reciprocal distance reach. For the number

of nodes reached criterion, the user specifies the maximum number of degrees of

separation allowed between a key player and its assigned member as well as either

a specific kp-set size or a maximum allowable size for the kp-set. The specific size

setting then seeks to reach as many of the other actors as possible, given the kp-set

and reach constraints. The maximum allowable size option selects members until

either the entire network is reached, given the conditions specified, or the maximum

allowable group size has been allocated. For the reciprocal distance reach approach,

the user specifies a kp-set size, and the software seeks to optimize the measure of

efficiency described in Equation 5.1 via a greedy heuristic approach [Borgatti, 2006].

Max DR =
1

N

∑
j

1

dKj
(5.1)

For each actor k in a given kp-set (K), the distance from all actors j to the

closest key player is denoted dKj. Distances between a key player and itself are
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assumed to be 1; the measure is normalized by dividing the summation by the total

number of actors in the network (n) [Borgatti, 2006]. Regarding the maximum dis-

tance between key players and other actors, Borgatti also recommends limiting this

distance to within two degrees of separation. This is not an unreasonable assumption

as it has been observed in a variety of communications literature that the farther

that information must travel, the more likely that the information content can be

misinterpreted, subject to errors or transmission failure, or a combination thereof

[cf. Katz, 1953; Stephenson and Zelen, 1989]. This restrictive assumption also limits

the possible solutions available; however, it may be relaxed up to a reach of (n − 1)

for all of the models presented in this chapter. For a more complete discussion on

the heuristic methodology, the reader is referred to Borgatti [2006].

Since Equation 5.1 normalized by N , Borgatti contends that DR ∈ [0, 1]. How-

ever, while the distance assumption of unity between key players and themselves

along with the assumption that dKj = ∞ for any actor unreachable by any key

player suggest that lim
dKj→∞

1
dKj

= 0 for unreachable actors, the appropriate range is

actually DR ∈ [(K/N), 1]. Nonetheless, the overall objective is to maximize this

function.

For the number of nodes reached criterion, it is shown that equivalent integer

programs, specifically the minimum covering and fractional covering problems, can

be formulated and solved to optimality in reasonable amounts of time. For the re-

ciprocal distance reach criterion, variations of the p-median and the related facility

location problem can be applied to address various aspects of this problem, as well

as optimize the objective given in Equation 5.1. However, since it is assumed that

a decision maker seeks to influence a particular network, potential comparisons be-

tween different networks, and therefore the normalization of Equation 5.1 by N , is

no longer necessary. Additionally, DR meets the (applicable) assumptions of pro-

portionality and additivity required of linear programming [Hillier and Lieberman,
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1995, pg. 38-43]. Applying the information contained within the adjacency matrix

X towards a mathematical programming approach is discussed next.

5.4 Mathematical Formulations

Recall that, given a network of interest, the cells x(i, j) ∈ X are defined as

x(i, j) = 1 if there exists an arc or relationship between actors i and j, 0 otherwise,

constituting a simple adjacency matrix in operations research terms. Consequently,

each nonzero entry in X implies that i can reach j in one step. Similarly, the cells

of the square of the adjacency matrix, denoted X2, indicate the number of directed

edge sequences of length two from i to j. In this particular case, these sequences

are equivalent to paths. Therefore, for all i 	= j, x(i, j) > 0 ∈ X2 implies that there

exists a path from i through some intermediary node or actor, and then on to j [Deo,

1974].

The transpose of the matrices described above (denoted X′) does not change

the graph, but it does change the interpretation of the information contained within

X. Given the transpose, the columns (as opposed to the rows) of X′ correspond

to whom the individual can reach in one step (e.g., adjacent actors). Let R1 =

X′ + I denote the modified one-step reachability matrix. Note that the ith column

of R1 captures the nodes that are adjacent to actor i, including itself. Additionally,

taking the transpose is only necessary if the graph is asymmetric, which implies that

this approach can be readily extended to directed graphs–an improvement over the

current methods proposed by Borgatti [2003b].

This approach may also be applied when a reach of more than one step away

is allowed. For example, let R2 = δ[(X′)2 + R1] denote the two-step or less reacha-

bility matrix, where in general δ(a) = 1 if a > 0, zero otherwise. Consequently, the

ith column of R2 captures the nodes that are at most two-steps away from actor i,

including itself. This could be extended for reachability via longer path lengths using
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Figure 5.1: Notional Network and Coverings

the technique described in Wasserman and Faust [1994, pg. 160]. These matrices can

then be used to form the constraint matrices of the various mathematical programs

(MP) proposed in this study which address the two variants and extensions of KPP-

2 investigated by Borgatti [2006]: the number of nodes reached and the reciprocal

distance reach. The multitude of extensions via mathematical programming tech-

niques, several of which are presented here, enable a more comprehensive analysis

capability.

5.4.1 Number of Nodes Reached

Borgatti likens the number of nodes reached approach to the classical graph

theoretic vertex cover problem, which is “a subset of vertices that includes at least

one vertex incident on every edge of [the graph]” [Deo, 1974, pg. 193] However, KPP-

2 is actually more closely related to the edge covering problem, which is defined as

a set of edges to which every vertex in the graph is incident to at least one edge

[Deo, 1974, pg. 182]. Consequently, the edges induced from the kp-set and their

assignments to the remaining members generates the edge cover. To illustrate these

subtle differences, consider the graph in Figure 5.1.

A vertex cover for this graph is the set {b, c}; at least one of these two nodes

is incident to all edges within the graph. However, there are two optimal KPP-

2 solutions, from both the number of nodes reached and the reciprocal distance
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perspectives, comprised of either {b} or {c}. Node b, for example, can reach all

other actors within one step. Assuming that b is selected as the key player, note

that edges (a, c) and (c, d) are not incident to b, therefore the kp-set solution is

not a vertex cover. However, assume again that node b is selected as the kp-set

solution; the edges used to assign node b to the remaining individuals in the network

{(b, a), (b, c), (b, d)} form an edge cover, since all vertices are adjacent to at least one

of these edges.

Borgatti also relates dominating sets to KPP-2, but suggests that this method

fails due to . . .

“The focus of graph-theoretic research has been on finding the smallest
cover or dominating set that achieves the goal (reaching all nodes) per-
fectly. [The KPP-2] problem is the reverse: finding a set of fixed size
that achieves the goal as well as possible. In addition, we would prefer
to measure the extent to which a set reaches all nodes, so that we can
evaluate our success” [Borgatti, 2006].

Viewing the graph theoretic approach of dominating sets from a different per-

spective, however, may still yield valuable insight into KPP-2. First, recall that a

dominating set is “a set of vertices that dominates every vertex [in a graph] in the

following sense: Either [a vertex] is included in the dominating set or is adjacent to

one or more vertices included in the dominating set” [Deo, 1974, pg. 172]. Further,

a minimal dominating set is “a dominating set from which no vertex can be removed

without destroying its dominance property” [Deo, 1974, pg. 172]. Note that minimal

dominating sets can be of varying sizes, the smallest of which is generally referred to

the minimum dominating set whose cardinality represents the domination number

(or domatic number) of the graph [Deo, 1974, pg. 173]. An extension of the dominat-

ing set, and an accompanying distributed algorithm to solve it, is the k-dominating

set presented in Penso and Barbosa [2004]. Given an integer k ∈ [1, (N − 1)], all

nodes are either in the dominating set, or at most a distance of k steps away from the

nearest node within the dominating set [Penso and Barbosa, 2004, pg. 243]. Con-
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sequently, the k-dominating set is another means of describing the KPP-2 problem,

where a reach distance of more than one step is allowed.

Given that the KPP-2 problem seeks to maximally connect a kp-set to the

remaining network with as few key players as possible, the minimum dominating and

the minimum k-dominating sets are appropriate methodologies to analyze KPP-2.

Next, relations between the dominating set and the minimum set covering problem

(MCP) formulations are reviewed. Additionally, Borgatti’s concerns regarding a

‘perfect’ or ‘complete’ cover can be addressed by modifying the MCP to represent a

fractional covering problem (FCP), respectively.

The minimum covering problem seeks to select a minimum number of objects

that can cover a set of interest. Examples include the minimum number of personnel

required to meet shift requirements or the determination of facility locations in order

to meet certain demands (e.g., fire stations and minimum response times for various

sections of a city) [Nemhauser and Wolsey, 1999, pg. 6-7]. In this case, the decision

is to designate a portion of individuals within the network, the kp-set, to ‘cover’

themselves and as many of the other network members by having the ability to

communicate with them either directly or through at most one intermediary. The

general formulation for the minimum cover is

(MCP) Min {z = cx : Ax ≥ 1, xi ∈ {0, 1} , ∀i} . (5.2)

When the constraint matrix A in Equation 5.2 is simply replaced with R1, the

MCP solution provides the minimum dominating set for the graph [Christofides,

1975]. Note that this approach also lends itself to k-dominating sets via the use of

Rm where m > 1, as well as directed graphs due to the incorporation of X′ within

Rm.

For a majority of the formulations presented in this chapter, the main decision

variable is xim , which equals 1 if actor i is chosen as a key player and must reach its
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assigned members within m steps and 0 otherwise. For notational convenience, let

the vector xm represent xim for all i = 1 . . . N . Taking the number of nodes reached

approach, determining the kp-set that is no more than one step away from all other

actors is accomplished by the mathematical program in Equations 5.3 and 5.4. This

approach is denoted (NR1), the kp-set that satisfies the number reached approach,

for all actors, within one step. Note that the cost associated with selecting any given

actor is assumed to be 1, so that this approach seeks to minimize the cardinality of

the kp-set. Consequently, this approach also finds the minimum dominating set.

Since all of the formulations presented are essentially variants of the covering

problem, the cost coefficients are not required to be 1. As an example, the (DNR1)

formulation, shown later, distributes the workload among key players as evenly as

possible by taking into account a member’s adjacent nodes (see Equation 5.18).

Therefore, when trying to choose members as key players, all formulations presented

in this chapter are amenable to extensions that incorporate various costs that may

be associated with designating a key player or not being able to cover a particular

individual.

For the network shown in Figure 5.2, there are multiple optimal solutions to

the (NR1) problem, namely, {a, c, e}, {a, c, f}, {a, d, e}, {a, d, f}, {b, c, e}, {b, c, f},
{b, d, e}, and {b, d, f}. Although a majority of mathematical programming software

suites typically only output a single solution (among multiple optima), there are

straightforward techniques to identify the existence of and to enumerate multiple

optima. Additionally, a method for enumerating all minimal dominating sets using

Boolean arithmetic can be found in [Deo, 1974, pg. 173]. Since a key player is

expected to be part of the influence operation, (NR1) will always be feasible despite
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the existence of isolated nodes or analysis of a graph with multiple components.

(NR1) Min

N∑
i=1

xi1 (5.3)

Subject To R1x1 ≥ 1 (5.4)

xi1 ∈ B ∀ i

If the requirement that the key players must be adjacent to the remainder of the

network can be relaxed, then a covering problem representation of the minimum k-

dominating set can be applied. Letting the vector x2 represent xi2 for all i = 1 . . .N

and incorporating the matrix R2 described earlier, this approach permits indirect

influence to occur between key players and other network members as long as all

members are two steps or less from a key player. This mathematical program,

denoted (NR2), also exhibits the same goal of minimizing the cardinality of the kp-

set and is shown in Equations 5.5 and 5.6. Applying this approach again to the

network shown in Figure 5.2, the (only) optimal kp-set is comprised of actor {d}.
The objective functions of (NR1) and (NR2) specify which actors should comprise

the kp-set and the extent of reach that is required of them in order to maximally

connect to the entire network. Applying techniques used to evaluate reachability in

dichotomous social networks, any distance m ∈ [1, (N−1)] could be used [Wasserman
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and Faust, 1994, pg. 160].

(NR2) Min

N∑
i=1

2∑
m=1

xim (5.5)

Subject To [R1 |R2 ] [x1 |x2 ] ≥ 1 (5.6)

xim ∈ B ∀ i, m

As suggested previously, a fractional covering problem approach may be used to

account for situations when the entire network cannot be reached within m steps or

less if the size of the kp-set is limited (e.g., constrained resources limit the number

of individuals that may be coopted). Borrowing from the work of Gandhi et al.

[2004], let yi = 1 if node i is covered, 0 otherwise. The resulting fractional covering

problem approach to (NR1), denoted (FNR1), Equations 5.7 through 5.9, where U

is the maximum number of actors that may be missed or not covered by at least one

of the key players.

(FNR1) Min

N∑
i=1

xi1 (5.7)

Subject To R1x1 + y ≥ 1 (5.8)
N∑

i=1

yi ≤ U (5.9)

xi1 , yi ∈ B ∀ i

The primary difference between (NR1) and (FNR1) is the option to not cover

a given number of nodes U in the event that the size of the kp-set does not permit

full access to all actors within the network. Of course, this approach can be applied

to the number of nodes reached problem where more than one degree of separation
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is permitted. The formulation for no more than two degrees of separation is:

(FNR2) Min

N∑
i=1

2∑
m=1

xim (5.10)

Subject To [R1 |R2 ] [x1 |x2 ] + y ≥ 1 (5.11)
N∑

i=1

yi ≤ U (5.12)

xim , yi ∈ B ∀ i, m.

The objective functions of (FNR1) and (FNR2) specify the smallest set of

actors that should comprise the kp-set and the extent of reach that is required of

them in order to maximally connect a portion of the network. In this fractional

case, the kp-set can miss no more than U
N

% of the membership. Note that when

U = 0, both (FNR1) and (FNR2) reduce to (NR1) and (NR2), respectively. Further

insights may be gained from the optimization results, such as the search for multiple

optima, discussed earlier. Costs associated with designating an individual as a key

player, as well as those incurred due to missing an actor may also be included into

either (FNR1) or (FNR2). For example, using the (FNR1) formulation, suppose the

cost to co-opt an actor i is denoted ci and the cost to miss an actor i is denoted mi.

Then the objective function, Equation 5.7, would have the form

Min

N∑
i=1

(cixi1 + miyi). (5.13)

Another formulation that leverages the fractional set covering problem, and

also closely mirrors the key player approach suggested by Borgatti [2003a], maximizes

the amount of network members covered via a kp-set of a specified size, K. Using

the 1-step assumption as an example, this problem, denoted (FNRK1), is shown

in Equations 5.14 through 5.16. The objective function minimizes the number of

actors missed or not covered given that the size of the kp-set restricted to exactly
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K members. It is assumed that K is less than the cardinality of the minimum

dominating set; therefore, the decision maker seeks to take as much advantage as

possible via limited resources. If K is greater than or equal to the cardinality of the

minimum dominating set, then the restriction imposed by specifying K no longer

applies, and (FNRK1) essentially solves (NR1).

(FNRK1) Min

N∑
i=1

yi (5.14)

Subject To R1x1 + y ≥ 1 (5.15)
N∑

i=1

xi1 = K (5.16)

xi1 , yi ∈ B ∀ i

With the exception of (FNRK1), the optimization focus thus far has primarily

been upon minimizing the cardinality of the kp-sets while covering as many of the

other network members as possible. Consequently, such solutions tend to heavily rely

upon a few, oftentimes well-connected, individuals to influence the remainder of the

network. There are potential drawbacks to these types of solutions; for example, they

do not take into account actor characteristics (e.g., known roles within a network,

shared or familial ties, and so forth) and the fact that a mathematical solution

may not always coincide with a practical and implementable one (e.g., the workload

expected of key players in order to disseminate influence or educate others may be

unreasonable). However, the flexibility of the mathematical programming techniques

offers ways to avoid these pitfalls.

For example, the models presented can incorporate limitations on the kp-sets

and/or actors available for selection. Assume that a decision maker wanted to limit

the number of individuals with redundant skills [Borgatti, 2003a, pg. 130]. Let

individuals 1, 2 and 3 be actors with redundant skills. The decision maker wants to

include at most one of these individuals in the kp-set and is relying upon the 1-step
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assumption. This restriction can be included as an additional constraint, within any

of the formulations presented thus far, in the form of x11 + x21 + x31 ≤ 1. Such

a constraint is a slight modification of a type 1 special ordered constraint, often

referred to as a multiple choice constraint because only one of the decision variables

may equal 1 for any given solution [Martin, 1999, pg. 329]. The general form of

allowing at most a individuals out of a specified group g, where the reach conditions

m are specified by the user or situation, is given by Equation 5.17. Such a constraint

is also related to those used in knapsack formulations. This type of constraint can be

applied to as many groups or conditions as necessary, each scenario represented by

an additional constraint. In fact, implementation of this type of constraint permits

the identification of multiple optima for the formulations presented in this chapter.

g∑
i=1

xim ≤ a (5.17)

As another example of the flexibility inherent within the MP approach, assume

that the decision maker wanted to ensure that two specific individuals i and j,

with m = 1, were either both included or both excluded within the kp-set. This

requirement could be modeled as xi1 = xj1 . Ensuring that a specific actor i is

included in or excluded from the kp-set merely requires the additional constraint

xi1 = 1 or xi1 = 0, respectively. Requiring i or j would be modeled as xi1 = 1− xj1.

This could also be used to intentionally forego subjecting an actor or actors to

an influence campaign, particularly if they are the ultimate target of a coup or

insurrection by the remaining group members. Along these lines, and in the case of

fractional coverings, the analysis of the solution and decision variables also permits

the investigation of individuals that may consistently be missed despite multiple

optima.

Clearly, the options are limited only by the analyst’s requirements and ingenu-

ity. To deal with key players that are overburdened simply due to their connectivity,
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cost coefficients (implicitly assumed to be 1 to this point) may be included in the ob-

jective function in order to ‘spread out’ the work required of the kp-set membership.

A means to accomplish this is discussed next.

5.4.1.1 Leveraging Key Player Costs

The covering approaches (NR1) and (NR2) could easily incorporate individual-

specific costs, represented by cim , which denotes the cost associated with selecting

actor i as a member of the kp-set and assigning them to all possible actors within

m steps or less. Such costs may account for the time, effort, or resources required to

successfully recruit the actor into the kp-set. Alternatively, the cost could represent

a function of the demand placed upon the individual once they are included in the

kp-set (e.g., the key player is required to distribute informational pamphlets to all

of its assigned members).

Continuing with the 1-step assumption, let ci1 = 1/d(i)out, where d(i)out is

the out-degree of actor i. With the objective of minimizing such costs, this may

initially appear as self-defeating, since greater out-degrees, and therefore the more

workload potentially imposed, result in smaller cost coefficients. However, introduc-

ing a constraint specifying the size of the kp-set results in more evenly distributed

expectations upon the set members.

For example, assuming that a decision maker wants to cover all N actors in

the network within 1-step, suppose a kp-set of size K = 2 were desired. Let a and b

represent the out-degrees of each actor of an arbitrary kp-set solution. An additional

constraint is added to the (NR1) formulation such that
∑
i

xi1 = K. This modified

formulation providing a kp-set of order K with an evenly distributed workload to

reach all other actors within one step is denoted (DNR1) and is shown in Equations

5.18 through 5.20. Note that formulations amenable to this approach must require

K to be at least as great as the domatic number of the graph being analyzed.
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The smallest possible objective function value for this problem occurs when

each actor covers an equal (or near equal in the case of an odd number of actors)

number of other actors. Assume that a perfect cover is possible such that a + b = N

(i.e., there is no overlap or redundancy among the key players’ assignments), with

a, b ∈ Z
+. The cost associated with any solution of this nature is 1

a
+ 1

b
. If a = b,

then this reduces to 2
a
. Suppose that a 	= b, such that a = a − ε and b = a + ε,

ε ∈ [(1 − n
2

)
,
(

n
2
− 1

)]
. Now, 1

a
+ 1

b
= 2a

a2−ε2
implies that for all ε 	= 0, and therefore

any solution with a 	= b, is inferior to one with a = b. Therefore, this model seeks

to distribute, as evenly as possible, the influence or contact ‘workload’ among the

members of the kp-set. This is easily extended to kp-sets of any arbitrary size K

with the minimum objective function bounded below, in general, by K2

N
.

(DNR1) Min

N∑
i=1

ci1xi1 (5.18)

Subject To R1x1 ≥ 1 (5.19)
N∑

i=1

xi1 = K (5.20)

xi1 ∈ B ∀ i

In the case of overlapping covers such that a + b > N , the smallest possible

value for this function occurs similarly when a = b = N , which results in an objec-

tive function for (DNR1) that is bounded below by K/N . An illustrative example,

assuming that N = 10 and K = 2, with objective functions (z) based upon varying

set sizes of a and b, is depicted in Figure 5.3. The intersection of the lines a = b,

a+ b ≥ 10, and z = 0.4, emphasize the distributive effect underlying this approach.

The formulations presented thus far simply determine the key players required

to influence or cover by contact either all actors within the network, including them-

selves, at least once or as many as possible if the kp-set size is determined a priori.

These number of nodes reached approaches also take into account the cardinality of
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the kp-set, as well as the the influence workload amongst its members. The attention

is not turned to the ‘reciprocal distance reach’ approach described by Equation 5.1.

5.4.2 Reciprocal Distance Reach

Seeking to maximize Equation 5.1, the same result can be achieved by max-

imizing the non-normalized version, or minimizing the additive inverse of the non-

normalized version. Assuming that dKj > 0, this relationship is

Maximize
1

N

∑
j

1

dKj

≡ Maximize
∑

j

1

dKj

≡ Minimize
∑

j

−1

dKj

. (5.21)

If a given actor j cannot be reached by a key player K, the distance is assumed

to be dKj = ∞. Therefore, lim
dKj→∞

1
dKj

= 0 implies that unreachable key player-actor

pairs are not considered as an option for the optimization problem. Note that this
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function is optimized when all remaining actors are adjacent to one or more key

players (smaller denominators are better). Therefore, this implies that, given a

specified kp-set of size K, selecting the set that immediately covers a majority of the

network is preferred.

The classical p-median formulation, which has been applied to a variety of

facility location and related problems, provides a MP equivalent to the reciprocal

distance reach methodology. The p-median problem (PMP) essentially minimizes the

sum of the distance between kp-set members and their assigned non-kp-set members

[Reese, 2005]. In this context, this model seeks to minimize the total distance be-

tween the actors and the closest of p key players. Let ki = 1 if node i is designated a

member of the kp-set, K, zero otherwise. The shortest path distance (dij) between

all nodes must be calculated. Let xij = 1 if actor i is covered by a key player j,

zero otherwise. Borrowing from [Handler and Mirchandani, 1979, pg. 58-60], the

p-median formulation that accommodates the key player problem (PMED) is:

(PMED) Min

N∑
i=1

n∑
j=1

−dij
−1xij (5.22)

Subject To

N∑
i=1

ki = K (5.23)

N∑
j=1

xij = 1 ∀ i = 1, . . . , N (5.24)

xij ≤ kj ∀ i = 1, . . . , n; j = 1, . . . , N (5.25)

ki ∈ Z, xij ∈ B ∀ i, j.

Continuing with the assumption that distances between individuals are based

upon zero-one relations, the distances used in the objective function are simply the

path distance between individuals. Given a dichotomous network, a reach matrix

would be sufficient to ascertain the values for dij [Wasserman and Faust, 1994, pg.

159]. Note that an objective function that simply minimizes the total distance
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(e.g.,
N∑

i=1

n∑
j=1

dijxij) will identify the same KPP-2 solutions. However, the objective

function shown in Equation 5.22 easily permits a direct comparison of objective

function values between the mathematical programming approach and the heuristic

approach presented by Borgatti [2003b].

Analysis using the (PMED) formulation is not necessarily relegated to inter-

personal distances based upon dichotomous relationships. Suppose that, in addition

to the existence of a relationship, an estimate of the social distance between individ-

uals i and j, dij > 0 can be obtained [cf. Renfro, 2001]. If such values are available,

an all-pairs shortest paths algorithm may be applied to obtain the distance values

required for the objective function [Sedgewick, 1984, pg. 492-4]. Alternatively, dis-

tances between non-adjacent individuals, assuming valued relations as input, could

be developed via the procedure developed by Yang and Knoke [2001].

A weighted version of the the (PMED) problem has been extensively studied,

permitting the inclusion of actor-specific data within the objective function [Reese,

2005, pg. 2]. For example, assume that an appropriate method was devised to esti-

mate a value of ‘importance’ assigned to each actor, denoted vi ∈ R
+, such that the

larger the value, the more important their inclusion into the kp-set. Such assignments

could be based upon access, desirability, or ease of coercing that particular individ-

ual, are easily incorporated into this model and requiring only a minor adjustment

to the objective function of (PMED):

Min

N∑
i=1

N∑
j=1

−dij
−1vixij . (5.26)

By design, the (PMED) formulation seeks to cover all actors within the network

with a key player. Combining aspects of this model and the fractional models dis-

cussed in Section 5.4.1, (PMED) can be modified in a manner similar to that shown

in (FNR1) and (FNRK1) so that not all actors have to be reached; this modification
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is denoted (FPMED):

(FPMED) Min

N∑
i=1

N∑
j=1

−dij
−1xij (5.27)

Subject To

N∑
i=1

ki = K (5.28)

N∑
j=1

xij + yi = 1 ∀ i = 1, . . . , N (5.29)

xij ≤ kj ∀ i = 1, . . . , N ; j = 1, . . . , N (5.30)
N∑

i=1

yi ≤ U (5.31)

ki ∈ Z, yi, xij ∈ B ∀ i, j.

To this point, both the (PMED) and (FPMED) models assume that all actors

can, eventually, reach all others. This may not always be the case, particularly

when dealing with directed networks. Accommodating this phenomenon requires a

modification of the indices used to ensure the assignments and coverings are possible.

Let the set E represent all pairs of actors (i, j) that are reachable to each other within

the social network of interest. If it is desired to limit the actors by a given number

of m-steps in addition to distance, then the Rm matrices previously defined could

be used to develop the appropriate constraint matrix such that E ∈ Rm. The

generalized form of the (PMED) formulation is given by (PMEDm):

(PMEDm) Min

N∑
i=1

N∑
j=1

−dij
−1xij (5.32)

Subject To

N∑
i=1

ki = K (5.33)

∑
j∈E

xij = 1 ∀ i = 1, . . . , N (5.34)

xij ≤ kj ∀ (i, j) ∈ E; j = 1, . . . , N (5.35)

ki ∈ Z, xij ∈ B ∀ i, j.
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A discussion of some advantages of applying mathematical programming tech-

niques to KPP-2 follows. The disadvantages, particularly when compared to the

heuristic approach proposed by Borgatti [2003b], lie within the computational re-

quirements of the large-scale integer programs required to model large social net-

works. Some preliminary assessments of this area are discussed within the context

of the example case studies.

5.5 Advantageous Properties of the MP Approach

There are a number of advantages to the mathematical programming ap-

proaches offered, key among these the flexibility offered to the analyst. For example,

given the formulations presented, KPP-2 analysis is not restricted to symmetric net-

works. This enables an assessment of organizations where information or influence

is directed by design (e.g., a strict chain of command) or where different individuals

have different effects upon one another (e.g., a leader may better serve as a key

player than an untrustworthy minion).

Through the use of additional constraints, certain target individuals or even

groups of individuals can be specified a priori for inclusion or exclusion of kp-set

membership as desired. Additionally, constraints similar to the one in Equation

5.17 can be added to facilitate enumeration of alternate optima, thereby providing

planners and decision makers with options regarding potential courses of action. As

an example, suppose all optimal solutions of size K were of interest. Let s denote

a particular optimal solution. Beginning with the initial optimal solution, let the

members of the kp-set comprise the set P . Including an additional constraint in the

form of

∑
i∈P

xim ≤ (k − 1), for each s (5.36)
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Table 5.1: Goal Formulations [Ignizio, 1982, pg. 377]
Goal Goal Programming Deviation Variables
Type Form to Be Minimized

fi(x) ≤ bi fi(x) + ηi − ρi = bi ρi

fi(x) ≥ bi fi(x) + ηi − ρi = bi ηi

fi(x) = bi fi(x) + ηi − ρi = bi ηi + ρi

in a cumulative manner for each optimal solution found forces the mathematical pro-

gram to find any remaining solutions. This procedure is repeated until the problem

becomes infeasible, or an appropriate number of solutions has been obtained.

External costs (e.g., operational risks endured to co-opt a particular member,

amount of money or goods needed for bribes, the expected time required to success-

fully co-opt an individual, and so forth) as well as internal costs incurred (e.g., the

workload endured by a given kp-set member) are all easily included into this analysis

by tailoring the objective functions. The (PMED) model, for example, can incorpo-

rate fixed costs associated with hiring or co-opting key players, essentially a social

network version of the classical facility location problem [Handler and Mirchandani,

1979, pg. 58-59].

Another potential extension involves a goal-programming approach to allow

trade-offs between, for example, the size of the kp-set and the desired number of

individuals reached or influenced. The relaxation of some of these constraints via

the use of deviational variables incorporated into the objective function is commonly

referred to as goal programming. “An aspiration level is a specific value associated

with a desired or acceptable level of achievement of an objective” [Ignizio, 1982,

pg. 376]. “An objective in conjunction with an aspiration level is termed a goal”

[Ignizio, 1982, pg. 376]. To transform an objective i into a corresponding goal, the

deviational variables ηi and ρi denote the amount under and over a specified goal,

respectively. The various transformations for each type of objective are shown in

Table 5.1.
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For example, consider the (FNRK1) formulation in Equations 5.14 through

5.16. Suppose that the problem is to evaluate the tradeoffs between kp-set size and

the number of actors that may be missed if the kp-set size must be some number

less than the network’s domatic number. Let the first goal be f1(x) =
N∑

i=1

xi1 = K.

The second goal is denoted f2(y) =
N∑

i=1

yi = U . Using Table 5.1, the corresponding

transformations for goals 1 and 2 are
N∑

i=1

xi1 + η1 − ρ1 = K and
N∑

i=1

yi + η2 − ρ2 = U ,

respectively. The resulting goal programming formulation for (FNRK1) is denoted

(GPFNRK1):

(GPFNRK1) Min η1 + ρ1 + η2 + ρ2 (5.37)

Subject To R1x1 + y ≥ 1 (5.38)
N∑

i=1

xi1 + η1 − ρ1 = K (5.39)

N∑
i=1

yi + η2 − ρ2 = U (5.40)

xi1 , yi ∈ B ∀ i

ηj, ρj ∈ Z ∀ j.

Due to the equally weighted deviational variables, the (GPFNRK1) formulation

implicitly assumes that meeting either goal is equally desirable. To investigate the

impact of changing these weights, θ ∈ [0, 1], may be incorporated into the objective

function as

Min θ(η1 + ρ1) + (1 − θ)(η2 + ρ2). (5.41)

The problem may then be solved for various values for θ, providing solutions (as-

suming feasibility) that trade off deviations between the two goals.

Upon review of the solution output of a mathematical program, there may be

indications of surplus conditions for the model constraints. Surplus, in the context
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of this problem formulation, shows where actors are reached (or can be reached) by

more than one key player, that is, more than 1 covering. This is an indication of

redundancy in key players and actors targeted, which may or may not be desirable.

Suppose that a terrorist network is of interest, and the decision maker wants to avoid

or minimize the chance that an actor will be contacted by more than one key player

in order to avoid suspicion of an ‘external’ influence. The most straightforward ap-

proach to model this situation would be to change all of the covering constraints (≥ 1)

to matching constraints (= 1). However, depending upon the network topology, and

other problem aspects that may be incorporated, this may result in infeasibility. Of

course, the analyst can mix and match these conditions for each specific individual,

thus meeting the requisite assumptions regarding the sophistication of various target

individuals.

On the other hand, redundancy may be required, perhaps to ensure a PSYOP

message gets communicated, to include a backup plan should one of the key players

change their mind or become unavailable, or to leverage multiple sources to increase

the likelihood of a shift in attitudes. To accomplish this, changing the appropriate

constraints to (≥ 2), for example, ensures that the corresponding actors are reached

by at least 2 distinct key players, or they are themselves a key player and a target of

another kp-set member. Of course, increasing the right-hand side value further in-

creases the sources of external influence, which may be required for some individuals.

Lastly, each of the coverings (by a key player) can be tailored to meet the influence

requirements for specific individuals, implying that the right-hand sides need not be

identical.

To demonstrate the approach and possible analytical avenues, these mathe-

matical programming techniques are applied to a small example data set.
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Figure 5.4: Methods Camp Dataset (symmetric) [Borgatti, 2003b]

5.6 Exemplar Case Study

In order to compare results between the heuristic and mathematical program-

ming approaches, one of the data sets provided with the KPP software (‘method-

scamp’) is examined. The network is illustrated in Figure 5.4. As aforementioned,

the MP approach is immediately applicable to asymmetric network data. Borgatti’s

KPP program has not yet been extended to study asymmetric relationships; there-

fore, the data was made symmetric prior to incorporation into the MP formulations.

5.6.1 Number of Nodes Reached Results

Beginning with the objective of reaching as many actors as possible, given a

specified kp-set size. Assuming that actors must be within one step from a key

player, the minimum number of key players meeting these criteria is 4, the domatic

number of this particular graph. There are 18 optimal solutions for (NR1), which
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Table 5.2: NR1 Solutions (FNRK1, with K = 4)

{5, 7, 12, 16} {5, 7, 10, 16} {5, 7, 9, 16}
{5, 7, 14, 16} {5, 7, 9, 17} {6, 7, 12, 16}
{7, 8, 12, 16} {4, 7, 12, 16} {7, 8, 9, 16}
{6, 7, 9, 16} {4, 7, 10, 16} {4,7,9,16}
{4, 7, 14, 16} {6, 7, 14, 16} {6, 7, 9, 17}
{7, 8, 14, 16} {7, 8, 9, 17} {4, 7, 9, 17}

is equivalent to (FNRK1) with K = 4. The results are shown in Table 5.2. The

solutions highlighted in bold in each of tables indicate the single solution generated by

the key player software [Borgatti, 2003b]. In some cases, with repeated executions

of the heuristic multiple solutions were found for the same problem setting. The

mathematical programs developed here (provided in the corresponding appendices)

find all optimal solutions if desired.

Multiple optimal solutions not only offer options regarding potential kp-sets,

but also provide insight into the nature of the solutions. For example, Figure 5.5

depicts a histogram of the number of times a particular player appears within one

of the 18 kp-set solutions. Actor 7 appears in all 18 optimal solution sets, indicating

that if the goal was to reach all actors within one step, actor 7 must be available

as a key player. Otherwise, some sacrifices in either the distance assumption or the

percentage of population influenced must be considered. Actor 16 appears in 14

of the 18 optimal solutions. When dealing with larger networks, and potentially a

much larger number of multiple optima, this approach lends itself to ascertaining

the criticality of a given actor and their potential role within a kp-set. Combining

this technique with other screening criteria facilitates kp-set selection.

If the one-step assumption could not be traded off and four actors could not

be accessed due to other resource constraints, then the application of the (FNRK1)

problem, with reduced values of k is the next logical approach.

From Table 5.3, several interesting observations may be made. As expected

from the initial set of results, actors 7 and 16 still play a vital role within a number
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Figure 5.5: Key Player Solution Occurrence

Table 5.3: FNRK1 Solutions (with varying k)

K = 3 (17 Actors Reached)
{7, 12, 16} {7, 14, 16} {7,9,16} {7, 9, 17}

K = 2 (12 Actors Reached)
{1, 16} {4,16} {7, 16} {7, 9}
K = 1 (6 Actors Reached)

{16} {9} {7} {1} {4}

of the alternate optima. Additionally, for K = 3 the one actor that is missed by

all possible solutions is actor 6 (Jennie). This suggests another area of opportunity

regarding the tradeoffs that may be offered, based upon data and insights directly

gained from examining the MP solutions. If influencing Jennie was not a primary

concern, then little solution (and course of action) value is lost due to reducing the

kp-set size from 4 (reaching everybody) to any one of the kp-sets comprised of 3 key

players (reaching everybody but Jennie).
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Table 5.4: NR2 Solutions (FNRK2, with K = 2)

{1,15} {3, 15} {4, 15} {5, 15} {6, 15}
{7, 15} {8, 15} {1, 16} {1, 17} {1, 18}

Assuming that the reach between a key player and its assigned actor could

extend to two steps, the NR2 program may be applied. The multiple optima are

given in Table 5.4. Note that, due to the small size and topology of the given network,

(NR2) results are equivalent to (FNRK2) with K = 2. Hence, the 2-dominating

number for this graph is 2. If only one player could be accessed (K = 1), then the

only key player under these assumptions is actor 15 (Gery), who can reach 14 other

actors within two steps or fewer.

5.6.2 Reciprocal Distance Reach

Turning now to selecting a key player set that maximizes the reciprocal distance

reach objective, the (PMED) formulation is initially applied. Note that when K =

4, all possible kp-sets correspond to the minimum dominating sets of the graph,

shown in Table 5.2. This results in a kp-set that can reach all other actors within

one step (m = 1) and therefore provides an objective function that, given these

particular assumptions, cannot be improved. Consequently, if an analyst were to

explore tradeoffs, it should be in the area of smaller kp-set sizes and allowable reach

distance. All optimal solutions for (PMED) with m = 2 and varying k are provided

in Table 5.5. Observe that for K = 2, although there are multiple optima from an

(NR2) perspective (see Table 5.4), there is only one set {1, 16} that optimizes the

DR objective. Of course, the objective function values could be calculated for each

of the (NR2) with K = 2 solutions to explore second best options. Alternatively,

the objective functions for each of these could simply serve as one of several inputs

regarding the efficacy or desirability of a given kp-set, permitting a multi-objective

analysis of the options available.
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Table 5.5: PMED Solutions (m = 2)

K = 2 (DR = 0.8333)
{1,16}

K = 3 (DR = 0.9722)
{7,12,16} {7, 14, 16} {7, 9, 16} {7, 9, 17}

The (PMEDm) formulation, which permits the analyst to restrict the solu-

tion space via reach limitations, essentially only offers a potential means to reduce

computational requirements. This is due to decision variables that are (or are not)

defined in the math program as a result of i − j, m-reach pairs possible. However,

if the reach specified, m, does not correspond to any m-dominating set, the mathe-

matical program will be infeasible. In general, the objective function of the (PMED)

formulation always selects the shortest path assignment between a key player and its

assigned actor(s). Therefore, either solve (PMED) with m = (N − 1), or determine

the domatic number in advance for use as input to (PMEDm).

5.7 KPP and Layered Networks

When dealing with the layered network construct, application of the various

KPP-2 models may be accomplished in a fashion similar to that discussed for RBAP.

That is, each layer could be analyzed independently, with the results across layers

compared against one another, or a simple aggregation of all the layers as discussed

for RBAP could be performed prior to KPP-2 model implementation. However, the

dominating set of a layered graph aggregated by the application of Equations 4.5 or

4.6 is not equivalent to the dominating set of all layers simultaneously.

For example, consider the notional network of three actors in Figure 5.6. If

Equation 4.5 is applied to combine the three layers, the aggregated network would

take the form shown in Figure 5.7. Clearly, any one of the actors in Figure 5.7 could

serve as a minimum dominating set for the graph.
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Figure 5.7: Notional Aggregation

However, any single actor cannot dominate all layers simultaneously in Figure

5.6; in fact, any two actors must be included in the minimum dominating set in

order for each layer to be dominated. This suggests a new class of problems to

address this particular research question. This class is defined as a multi-layer or

multi-graph dominating set, which corresponds to the KPP-2 concept when influence

across multiple layers simultaneously is required.

Given a multi-graph comprised of L layers, let Gl, l = 1, . . . , L, represent a

given layer l of a graph G such that G = {G1, G2, . . . , GL}. Let the corresponding

vertices within each layer l be represented by V (Gl), which comprise the superset

of vertices V = {V (G1), V (G2), . . . , V (GL)}. Edges are defined in a similar fashion

such that E = {E(G1), E(G2), . . . , E(GL)}. Extending the definitions of the domi-

nating and k-dominating sets offered by Deo [1974] and Penso and Barbosa [2004],

respectively, the multi-graph k-dominating set Dm is formally defined as follows.
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Definition 10. Given a dichotomous multi-graph, G = {G1, G2, . . . , GL}, with ver-

tices V = {V (G1), V (G2), . . . , V (GL)}, the multi-graph k-dominating set is the set of

vertices Dm ⊆ V such that V (Gl) ∈ Dm or is at most k steps away from the nearest

vertex in Dm, ∀ l.

A minimal multi-graph k-dominating set is one that satisfies Definition 10

with the minimum number of vertices, the cardinality of which is denoted δm. As an

initial solution approach, mathematical programming is applied once again. Let Rml

represent the transpose of the m-reach matrix for layer l. Building upon the original

(NRm) formulation as an example, in order to consider all layers simultaneously, the

constraint matrix is now comprised of vertical concatenation of Rml
for each l. This

modification is shown in the model (NRmL):

(NRmL) Min

N∑
i=1

xim (5.42)

Subject To Rm1xm ≥ 1 (5.43)

Rm2xm ≥ 1 (5.44)

...

RmL
xm ≥ 1 (5.45)

xim ∈ B ∀ i.

For any given layer, if any particular individual is isolated within that partic-

ular context and therefore cannot be reached by any other individual–the potential

key players–the result is that column i in the m-reach matrix will be all 0, with

the exception of row i, the actor reaching itself. Taking the transpose to form Rml
,

which serves as the constraint matrix for problem (NRmL), results in a constraint in

the form of ximl
� 1. This condition consequently requires the inclusion of isolated

actors within the dominating, and key player, set.
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The other number reached formulations could be extended in a similar fashion.

For example, if the dominating conditions were not required for all actors over all

possible layers, the (FNRK1) formulation may be extended to accommodate not only

L layers, but a reach of m steps or fewer between key players and the other actors.

Let yil = 1 if actor i on layer l does not meet the domination criteria, 0 otherwise;

and, yl is the vector of yil for all i. The multi-graph extension to (FNRK1) is

(FNRKmL):

(FNRKmL) Min

L∑
l=1

N∑
i=1

yil (5.46)

Subject To Rm1xm + y1 ≥ 1 (5.47)

...

RmL
xm + yL ≥ 1 (5.48)

N∑
i=1

xim = K (5.49)

xim , yil ∈ B ∀ i.

As an additional analysis approach, if one layer was perceived as more im-

portant than another with respect to ensuring the dominating criteria are met, a

corresponding cost coefficient could be associated with each actor-level combination,

yil. Therefore, assuming that K < δm, such an objective function would minimize

the weighted sum of actors missed at each level. Another aspect of this formulation

that could represent the criticality or fragility of a given layer is the incorporation

of different values of m for each layer. Currently, the formulation in (FNRKmL)

assumes a constant m for each layer. This assumption is easily changed based upon

analysis assumptions or requirements.
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Table 5.6: MP Summary
Problem Objective Constraints

Number of Nodes Reached Approach
NRm Minimize K Actors must be within m steps

of assigned key player
FNRKm Minimize actors missed Actors must be within m steps

of assigned key player; K
FNRm Minimize K Actors must be within m steps

of assigned key player; Can miss
at most U actors

DNRm Distribute workload Actors must be within m steps
of assigned key player; K

Reciprocal Distance Reach Approach
PMEDm Minimize −DR K; Reach of key players is al-

lowed up to a specified m ∈
[1, (n − 1)]

FPMED Minimize −DR K; Can miss at most U actors
Number of Nodes Reached Approach - Multigraph

NRmL Minimize K Actors must be within m steps
of assigned key player for all lay-
ers

FNRKmL Minimize actors missed over
all layers

Actors must be within m steps
of assigned key player within a
given layer; K

5.8 Summary

The mathematical programming approaches offered, summarized in Table 5.6,

provide several analytic benefits. These include, but are not necessarily limited to:

a guaranteed optimal solution, the incorporation of directed networks, the ability

to accommodate valued relations, the ability to discount actors not reachable by

external influences, and, in some cases, the ability to encompass multiple dimensions

of relationships.

Further modifications permit the fine tuning of MP approaches, incorporating

decision maker objectives or other operational requirements and limitations as pro-

gram constraints. As such, individuals can be designated a key player in advance or
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not allowed to be selected at all. Costs to access the various individuals (e.g., mili-

tary operations, risk, and intelligence resources required) may also be incorporated

within any of these formulations. Inclusion of these costs could be accomplished

either by a multiple objective linear program or by a modification of the objective

functions already discussed.

Multiple optimal solutions may be revealed by post-optimality analysis; iden-

tifying these solutions means more viable and effective alternatives for the decision

maker. Taking advantage of special constraints, such as the one provided in Equation

5.36, facilitates the enumeration of these alternatives.

Dominating sets and the p-median problem are traditionally difficult prob-

lems to solve when the networks are large. Algorithmic improvements, as well as

specialized heuristics, for both problems pervade the current literature [cf. Reese,

2005; Grandoni, 2006]. Such efforts offer potentially more computationally efficient

alternatives to perform the KPP-2 analyses described in this chapter.

Finally, application of these techniques are not necessarily limited to social

networks comprised entirely of individuals and their known relations. Abstraction

of this concept to more general networks offers other analytic opportunities. For

example, assume the given objective is to influence the citizens within a number

of cities of a specified country. Modeling this problem at the citizen level is likely

infeasible, due to numerous political and resource limitations. However, modeling

the cities themselves as nodes, and perhaps even communities therein, circumvents

a number of the computational and data requirements imposed upon such an effort.

Consequently, candidates for key players could include media sources, religious or

political leaders, or potentially a PSYOP product that can be delivered as influ-

ence to a subset of the country’s populous. Layered applications are just as flexible.

For example, suppose each graph layer represents physical infrastructure. Vertices

occurring in multiple layers could represent bridges that facilitate transportation,

telecommunications, electric power, and petroleum distribution across a river. Ver-
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tices could also represent a mix of people, facilities or processes, mapping two or

more social and physical infrastructures together. Considering that KPP-2 seeks to

find a minimum set that, in effect, could touch and ‘influence’ all of these layers, use

of this analysis technique could also facilitate vulnerability analysis.

Overall, the conceptual underpinnings of KPP can be found in a number of re-

lated operations research problems, as demonstrated by the relationships to existing

operations research literature. Developing the linkage of the KPP problem to math-

ematical programming also lends this problem to the array of heuristic approaches

developed for these specific combinatorial problems [cf. Kreher and Stinson, 1999].

These may be particularly useful when analyzing very large social networks in a

limited amount of time. However, this particular application, that of influencing a

target network from within, is certainly of interest in the current geopolitical climate.

MATLAB code for the (NRm), (FNRKm), (FNRm), and (DNRm) are in Ap-

pendices C, D, E and F, respectively. Due to the inherent limitations of the MAT-

LAB solver, as well as the problem difficulty, a more efficient optimization program

was required for the (PMEDm) formulation. Appendix G outlines the process used

to implement LINGO for this formulation, and presents a small example with data

and corresponding solutions.

To this point, the measures and methods described have attempted to analyze

the topological structure of networks. The next chapter transitions from a topological

focus to one that examines the ties that make up this topology. Hence, the required

level of detail in intelligence data is increasing. This data is assumed to capture the

nature of the ties between individuals. The questions to be investigated are, ‘How

do we quantify these ties, and why would we want to?’
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VI. Measuring Multiplexity

6.1 Chapter Overview

The content of relationships is a problem for network analysis. The prob-
lem is nicely illustrated in the distinction between naturally occurring
relations and analytical relations–the first being the relations in which
people are actually involved, the second being the recreation of relations
for a network analysis [Burt and Schøtt, 1985]

As Burt and Schøtt point out, there has existed a gap between models of social

interaction and reality; to a large extent, this observation remains accurate today.

The measures and methods described thus far focus primarily upon analysis of net-

work topology alone. This focus is mirrored by the greater majority of social network

measures and sociological studies found within the literature. It is often implicitly

assumed that the context of interest within sociological studies is the predominant

relation from which the observable network structure has developed. Additionally,

links between individuals discovered within these oftentimes specific but still poten-

tially wide-ranging contexts under examination are viewed as homogenous relations,

lacking varying degrees of importance or significance when considering interpersonal

interactions. Simply reflecting upon our own acquaintances, even within the same

context such as work associates or family members, it is likely found that interper-

sonal relationships vary in many ways.

Consequently, the sociometric representation of those links indicates that either

the particular relationship does or does not exist between two individuals, and the

dichotomous representation ensues. Therefore, differentiation between “lifelong,”

“good,” and “casual” friends, or other general levels of relationship strengths either

cannot be analyzed or are relegated to ad hoc, ordinal measures.

Quantifying how these relationships vary, capturing the very nature of an or-

ganization’s interpersonal ties, is the objective of this chapter. The questions to be

investigated are: How do we effectively quantify these ties, and why would we want
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to? Several means to answer the first part of this question are posed. The rationale

for attempting such a measurement is to both improve upon previous network flow

methodologies and to provide a more accurate representation of the nature of the

relations. Previous works have merely posited the existence and attainment of such

values [e.g., Stephenson and Zelen, 1989; Freeman et al., 1991; Yang and Knoke,

2001], while others [e.g., Renfro, 2001; Clark, 2005] have presented new means to

estimate what may be viewed as tie strength.

The next sections first clarify the concept of tie strength, as several meanings

and definitions have been previously offered within the literature. Previous works

that have suggested means to measure this phenomenon are reviewed; and, new

methods are offered that are both based upon predominant sociological theory re-

lated to the concept of tie strength and amenable to implementation despite limited

available information. One such method implements a decision theoretic model of

tie strength. This last approach permits extensions of several weighting concepts

(discussed earlier in Section 2.5.5.1) that offer a means to capture the effects of

structural change upon a network’s ties.

6.2 Tie Strength

In the sociological literature at least two definitions of strength of a personal

tie may be found. Granovetter defined the strength of a tie as “a (probably linear)

combination of the amount of time, the emotional intensity, the intimacy (mutual

confiding), and the reciprocal services which characterize the tie” [Granovetter, 1973,

pg. 1361].

Interestingly, the converse of strong ties, weak ties, are composed of casual

or intermittent relationships and are potentially strong themselves. The strength

of a weak tie lies in its ability to bridge communication or influence between two

or more distinct groups, or promote diffusion of influence and ideas between them
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[Granovetter, 1973, pg. 1363-7]. In this latter case, the strength lies within po-

tential opportunity for the exchange of information, services, or influence that is

otherwise non-existent within one’s own immediate sphere of influence or stronger

acquaintances.

Although weak ties may be of interest with regards to identifying individuals

that offer critical and highly-skilled services, an ability to craft explosives or biological

weapons, for example, for the purposes of this research, reference to a strong tie

implies the former definition. Hence, it is assumed that relationships sharing multiple

contexts result in the significant bonds of trust required of a non-cooperative, and

particularly a terrorist, network. Interaction within multiple, and not necessarily

just social contexts, is a phenomenon referred to a multiplicity, which recognizes

that virtually all “naturally occurring [relations are] a bundle of different interaction

elements” [Burt and Schøtt, 1985, pg, 288]. As shown by Levin et al. [2002], “strong

ties promote effective knowledge because they tend to be trusting ones” [Levin et al.,

2002, pg. D2]. Trust–“that quality of the trusted party that makes the trustor willing

to be vulnerable”–is assumed to play a key role in binding the network membership

together [Mayer et al., 1995, pg. 712].

A recent survey by Hite investigated a number of sociological studies that

characterized interpersonal ties. Note the conceptual variety illustrated within Ta-

ble 6.1 and that none of these deal with non-cooperative networks. The specific

contexts that significantly contribute to the strength of an interpersonal tie between

two members of a non-cooperative network remains an open research question. This

is primarily due to the lack of previous, unclassified, investigations of terrorist or-

ganizations (other than Renfro [2001] and Clark [2005]), as well as the multitude of

underlying motivations and cultural phenomena that result in the formation of these

organizations. For example, the Islamic basis for action and overall intentions and

organizational objectives of Al Qaeda are presumably much different than those of

the Columbian narcoterrorism organizations National Liberation Army (ELN) and
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Table 6.1: Tie Characteristics [Hite, 2003, pg. 14]
Concepts (Source)

Affect; philos; passions
(Granovetter, 1985; Krackhardt, 1992; Uzzi, 1999)
Frequency or frequent contact
(De Burca et al., 2001; Granovetter, 1985)
Reciprocity
(Granovetter, 1985; Portes and Sensenbrenner, 1993; Powell, 1990;
Uzzi, 1999)
Trust; enforceable trust
(Portes and Sensenbrenner, 1993; Powell, 1990; Uzzi, 1996)
Complementarity; accommodation and adaptation; indebtedness or im-
balance; collaboration; transaction investments; strong history; fungi-
ble skills (Powell, 1990)
Expectations; social capital; bounded solidarity (Portes and Sensen-
brenner, 1993)
Lower opportunistic behavior (Provan, 1993)
Density (Staber, 1994)
Maximize relationships over organization
(Powell and Smith-Doerr, 1994)
Fine-grained information transfer; problem solving (Uzzi, 1996)
Duration; multiplexity (De Burca et al., 2001; Uzzi, 1999)
Diffusion; facilitation (MacLean, 2001)
Personal involvement; low formality (few contacts); connectedness
(De Burca et al., 2001)

the Revolutionary Armed Forces of Columbia (FARC) [Berry et al., 2002]. Different

world-views and goals correspondingly result in different opinions, from the perspec-

tive of the organization’s members, of what is or is not important with regards to

interpersonal ties.

Previous efforts that have attempted to identify the significant components of

tie strength are discussed in Marsden and Campbell [1984] and Carroll [2006]. Both

used canonical correlation analysis to identify general relationships between multiple

tie characteristics and multiple aspects of the resulting strength. Carroll investigated

the types of alliances formed among financial and commercial institutions as a result

of multiplex relationships. Although Carroll’s concept and findings may be of interest
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with regards to inferring strength between geographically separated terrorist cells

that have little or no direct contact (other than through the Internet), the exact

methodology used by the authors is not immediately transferrable due to the survey

nature of the data. The specific findings of Marsden and Campbell [1984], however,

offer some insight that may be leveraged in a decision theoretic model of tie strength.

The next sections discuss the interrelated concepts of tie strength, social distance,

and social closeness, as well as previous efforts attempting to measure them.

6.2.1 Distance, Closeness, & Strength

Perhaps the first sociological attempt to measure or quantify interpersonal

relationships was due to Bogardus [1925], who defined social distance as “the degrees

and grades of understanding and feeling that persons experience regarding each

other” [Bogardus, 1925, pg. 299]. Bogardus’s intentions were to “chart the character

of social relations” between various ethnicities [Bogardus, 1925, pg. 299]; his work

continues to be studied and used to monitor the longitudinal trends in race relations

[cf. Parrillo and Donoghue, 2005].

Conceptually, social distance is effectively inversely proportional to tie strength.

Bogardus attempted to measure social distance by asking individuals about their

propensity to include other races in their social circles, at varying degrees of inti-

macy. As seen in Table 6.2, social distance as measured by Bogardus is predicated

upon a Guttman scale, where, for example, responding affirmatively to condition

1 implies the same response for conditions 2 through 6. This corresponds to the

smallest social distance, and therefore the strongest potential contact strength. Al-

ternatively, responding affirmatively to condition 2 implies the same response for

conditions 3 through 6, and so forth. An affirmative response to condition 7 implies

that no tie is sought, in this setting, to another race, therefore resulting in significant

social distance.
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Table 6.2: Social Distance Measurement [Bogardus, 1925, pg. 301-3]
Social
Contact Contact

Willingly admit. . . Distance Strength

1. To close kinship by marriage 0 Strong
2. To my club as personal chums 1
3. To my street as neighbors 2
4. To employment in my occupation in my country 3 ↓
5. Citizenship in my country 4
6. As visitors only to my country 5 Weak
7. Would exclude from my country 6 Non-existent

The Guttman scale approach attempts to incorporate the perception that “dif-

ferent interpersonal processes occur at different stages of a relationship’s develop-

ment” [Friedkin, 1990, pg. 240]. However, Bogardus’s work is not only clearly

uniplex, but is reliant upon survey data collected by open and seemingly honest

participants. Friedkin’s application of this concept does involve multiplexity to an

extent, incorporating claims of “friendship,” “help seeking,” and “frequent discus-

sion” among participants [Friedkin, 1990, pg. 240-1]. Unfortunately, this too is

reliant upon truthful survey responses and is primarily qualitative in nature. In

fact, due to the difficulty of mapping a measure to the strength of an interpersonal

tie, the literature is dominated by qualitative analysis in the subject [cf. Jack, 2005;

Granovetter, 1973; Pabjan, 2005, among others].

Recalling the relationship between social distance and tie strength, Renfro’s

concept of social closeness is based upon (psychological) distance. Closer individuals

had less distance between them, and therefore shared stronger interpersonal ties.

Given a decision theoretic measurement of an individual’s current psychological state,

Renfro’s measure of strength was derived by taking the difference of two individuals’

scores [Renfro, 2001, pg. 178-81]. Although the decision theoretic model proposed

by Renfro is well founded in psychological and sociological theory, the data collection
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efforts and cultural expertise required may prove overwhelming when dealing with

large networks of individuals engaged in surreptitious activities.

More recently, Clark utilized the information centrality measure developed

by Stephenson and Zelen [1989] to formulate a matrix of pair-wise (interpersonal)

influence measurements, defined by

W = w1I1 + w2I2 + . . . + wnIn :
n∑
i

wi = 1. (6.1)

This measurement is based upon a weighted sum of the matrices that would nor-

mally be used to calculate information centrality for the network’s actors within

the respective layers. Instead, the linear combination of matrices, one matrix for

each contextual layer, are combined and multiplied again by a coefficient that serves

as a proxy for individual-specific influence, denoted e. Inclusion of the influence

attributed to specific individuals, based upon actor attributes, essentially induces

asymmetry in the matrix hij ∈ H = Wijei. The elements hij ∈ H are then used for

a variety of analyses, including network flow formulations [Clark, 2005, pg. 3-34].

Clark’s measure essentially attempts to capture the potential amount of in-

fluence that one person may impose upon another. This is analogous to Renfro’s

application of social closeness to arc capacity within a network flow formulation of

the social network. There are, however, potential issues associated with this ap-

proach, depending upon the inherent structure of the data. For example, for a

given layer l, the (i, j)th entry within the Il matrix captures the “information in the

combined path” between individuals i and j [Stephenson and Zelen, 1989, pg. 12].

Consequently, despite the lack of an existing, direct relationship between any two

individuals in l, the (i, j)th entry, i 	= j, may be non-zero. The weighted combination

approach ultimately separates the contextual layers; thus, despite indirect connec-

tions between actors through inter-layer connections, the relationships between those

individuals are mathematically ignored.
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Figure 6.1: Notional Network Layers

Consider the network shown in Figure 6.1, which is comprised of 13 individuals

within 3 different layers. The fact that information centrality attempts to measure

the information flowing along all possible paths within a network suggests that glob-

ally there should be some information exchange, albeit indirectly, between actors 1

and 13, for example. Since actors 1 and 13 do not communicate within the same

layer, applying information centrality to each layer as a stand-alone network and then

aggregating the results via Equation 6.1 is mathematically contrary to the premise

of the measure proposed by Stephenson and Zelen [1989].

This issue does not discredit the approach entirely, even though the information

centrality measure due to Stephenson and Zelen [1989] is potentially flawed in itself

(See Appendix H). A remedy could include using a weighted combination of layers

as input to the information centrality calculations. For example, given the layers

in Figure 6.1 and assuming the weights were 0.5, 0.3, and 0.2 for layers 1, 2, and

3, respectively, the network shown in Figure 6.2 would serve as the input to this

measure.

Assuming that this approach yields a connected graph and that the resulting

weight values are substituted for the traditionally dichotomous representation of the

graph, the necessary conditions for the information centrality measure calculations

are met. Larger weights subsequently induce a corresponding bias toward relation-

ships, and the paths they form, within the information centrality results. Applying
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Figure 6.2: Weighted Combination of Layers

the information centrality measure to the entire, connected graph also ensures that

potential information between indirectly connected actors is measured.

Distance, closeness, and strength are similar, if not identical constructs of

interpersonal relationships. The closer two individuals are, the smaller the social

distance and the stronger the interpersonal tie. For this research, the nomenclature

of tie strength was chosen simply for its conceptual clarity–the direct relationship

between tie strength and the value for its measure. For the purposes of this research,

tie strength is formally defined as follows.

Definition 11. The strength of an interpersonal tie between individuals i and j,

denoted sij ∈ [0, R+], measures the degree of trust and shared understandings between

two people, relative to all other contacts within the appropriate social contexts shared

among the network of interest. The stronger (weaker) the interpersonal tie, the

greater (smaller) the value of sij. Actors i and j who have no direct, interpersonal

relationship have a strength of zero.

This is very similar to Renfro’s definition of social closeness, and formalizes the

topological aspect of Clark’s holistic interpersonal influence measure, as well as the

notional concept of value placed upon a tie in Freeman et al. [1991]. Consequently,
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the models proposed in the next section could also serve as arc capacities in a network

flow model of a social network.

However, another option could entail viewing the strength of a tie as the cost

associated with interpersonal communications. As Jack observed, information and

support gained from strong ties has several benefits, it is “more trustworthy because

it is richer, more detailed and accurate; it is usually from a continuing relationship

and so in economic terms it is more reliable” [Jack, 2005, pg. 1236]. Strong ties, then,

may permit more efficient or less costly communication paths, particularly when the

information may be counter to the organization’s objectives or potentially detrimen-

tal to those who promulgate the information to others. If relating tie strength to cost

vis-a-vis Jack [2005] was of interest, the cost for individual i to communicate with

individual j, cij would be inversely proportional to sij. Stronger ties would have

smaller costs. Non-existent ties would effectively have an infinite cost, as shown

by Equation 6.2, and would therefore not contribute to the objective function of a

network flow formulation, or any other linear program, with a feasible region.

lim
sij→0+

1

sij
= ∞ (6.2)

Several methods to ascertain interpersonal tie strength are proposed, all of

which assume that limited information regarding the nature of the ties exists, and

expert opinion is able to determine which social contexts significantly contribute to

the cohesion and continuation of the organization under study.

6.3 Models of Tie Strength

The objective of this chapter is to quantitatively characterize the strength

of interpersonal ties. This characterization must be possible with limited informa-

tion regarding the social interactions of the individuals, primarily due to their own

requirements of secrecy, deception, and detection avoidance. Making the mathemat-
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ical connections between these individuals, however, is predicated upon the contexts

within which they operate, train, and build cohesive and trusting relationships [Mars-

den and Campbell, 1984, pg. 488]. Such contexts could comprise the layers depicted

in Figure 1.1.

As Renfro noted, the simplest method of “counting the number of arcs incident

to the individuals involved, . . . or the number of times pairs of individuals commu-

nicate in a fixed time period” [Renfro, 2001, pg. 22]. Frequent interactions, and

the time required to achieve them, have been suggested to contribute to tie strength

[Granovetter, 1973, pg. 1362]. However, Marsden and Campbell found that

the use of frequency as a measure of strength will tend systematically to
overestimate the strength of ties between persons who are neighbors or
co-workers, while the use of duration as a measure of strength will over-
estimate the strength of ties between relatives [Marsden and Campbell,
1984, pg. 499].

Within the next sections, methods for dealing with multiple layers and using

them to estimate interpersonal tie strength are proposed. Although the first method

is computationally attractive, a few inherent conceptual disadvantages are discussed.

A means to deal with such challenges is addressed by a decision theoretic model of tie

strength. This model is mathematically similar to the simple aggregation methods

discussed in both Chapter II and the following section; however, it incorporates

the relative importance–from the individual’s perspective–of the various layers or

contexts that comprise the ‘bundle of associations’ forming the relationship.

6.3.1 Simple Aggregation

There is a general agreement within the literature that actor similarity directly

correlates to tie strength [Granovetter, 1973, pg. 1362]. Although this phenomenon

is traditionally associated with similarity among individuals’ attributes, referred to

as homophily, one could extend this concept to similarity of contexts, assuming that

similar interests and attributes contributed to the shared contexts. Therefore, ex-

204



tending the shared similarities among attributes, a the Jaccard similarity coefficient

may be applied to a network’s multiple contexts. This results in a single network with

arc values representing the interpersonal tie strength relative to all other individuals

within the network.

Given two sample sets A and B, the Jaccard similarity coefficient Yin and

Yasuda [2005, pg. 474], J (A, B) ∈ [0, 1], is given by

J (A, B) =
|A ∩ B|
|A ∪ B| . (6.3)

This measure is 0 (1) if the two sets are completely dissimilar (similar). Assuming

that relationship strength is enforced by sharing not only by common contexts that

comprise the interpersonal relationship between A and B, but by shared contacts

within those contexts, a proxy for strength can be derived by applying the Jaccard

measure.

Let El denote the set of all edges in layer l ∈ L. Further, let El(i) = 1 if actor

i is adjacent to a given edge ∈ El, 0 otherwise. The edge set for a given actor A is

then defined as {E1(A)|E2(A)| . . . |EL(A)}. The edge set for actor B is defined in

the same manner. Note that for a given actor i, these sets correspond to the ith row

of a node-edge adjacency matrix. Let SJ denote the Jaccardian similarity matrix

where SJ(A, B) ∈ SJ = J(A, B), A 	= B. The values within this matrix then serve

as a proxy for the strength of interpersonal ties. (See Appendix I for the MATLAB

code that calculates this measure.)

Consider the complete graph of 5 individuals in Figure 6.3 and its correspond-

ing node-edge adjacency matrix, E, in Equation 6.4, representing a notional layer

or terrorist cell. Since all individuals have the same number of connections, shared

among all others, the tie strengths are all equivalent. Interestingly, for complete

graphs, larger networks result in smaller values for the similarity coefficients. In

general, using Equation 6.3, the tie strength for a complete graph, and single layer,
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Figure 6.3: Five-Actor Complete Graph

is shown by Equation 6.5. The resulting tie strength matrix corresponding to Figure

6.3 is shown in Equation 6.6.

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4)

sij= |i ∩ j| / |i ∪ j| = 1/ [(N − 1) + (N − 1) − 1] = (2N − 3)−1 (6.5)

SJ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.1429 0.1429 0.1429 0.1429

0.1429 0 0.1429 0.1429 0.1429

0.1429 0.1429 0 0.1429 0.1429

0.1429 0.1429 0.1429 0 0.1429

0.1429 0.1429 0.1429 0.1429 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.6)
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Larger complete networks would yield similar results but with smaller values for

tie strength. Thus, as an individual’s time, cognitive demand, and attention becomes

more dispersed, the more detrimental the effect upon tie strength. This can change,

however, when a bias between one or more individuals is introduced. Such a bias,

while using this approach, may be accomplished by incorporating multiple layers. For

example, suppose the initial graph in Figure 6.3 represented operational ties of some

sort. Consider another context or layer capturing the familial relationships among

the five members. Suppose that members 1, 2 and 3 are all related in a meaningful

positive familial way. All other individuals have no common, familial ties. The E

matrix is shown in Equation 6.7. Note that the first 10 columns correspond to the

first, operational layer; the last 3 columns correspond to the familial layer.

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 1 1 0

1 0 0 0 1 1 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 1 0 0 1 1

0 0 1 0 0 1 0 1 0 1 0 0 0

0 0 0 1 0 0 1 0 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

SJ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2000 0.2000 0.1111 0.1111

0.2000 0 0.2000 0.1111 0.1111

0.2000 0.2000 0 0.1111 0.1111

0.1111 0.1111 0.1111 0 0.1429

0.1111 0.1111 0.1111 0.1429 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.8)

The results in Equation 6.8 depict the shift of tie strengths due to increased

similarity (or elements in common) among actors 1, 2, and 3. Accordingly, the tie

strengths between these actors and the others not as well connected decreased; such

phenomena is mathematically due to the changes in similarity and practically due

to the finite cognitive and time resources available to maintain varying relationships.
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Figure 6.4: Strength Example s12 with Five-Actor Multigraph

This effect is also illustrated graphically in Figure 6.4, which shows the two layers

superimposed upon each other to form a hypergraph. As an example, consider the

tie strength between actors 1 and 2, highlighted by the dashed circle. The Jaccardian

measure is essentially the total number of links shared between actors 1 and 2, divided

by the total number of links emanating from both actors, or s12 = 2/10 = 0.2000.

Along this line of thought, the measure values also correspond to ties generally

described as weak, connecting separate subgroups [Granovetter, 1983], or as bridges

[Brass, 1995]. For example, consider the notional network having two apparent

subgroups with two links between them in Figure 6.5. The ties between actors 2 and

6, and 4 and 10 are among the lowest values for tie strength. In general, the more

opportunity two individuals have to focus on each other, instead of their other social

contacts, the stronger the resultant tie.

Of course, this approach implicitly assumes that each layer or context con-

tributes equally to the strength of a tie. In reality, some contexts may be more

meaningful than others, as perceived by the individuals’ culture, organizational his-

tory and objectives, and world view. This suggests that if experts can determine to
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Figure 6.5: Notional Network with Connected Subgroups

what extent the significant components of an organizations ties are, as well as their

relative contribution to tie strength, a weighted approach similar to that suggested

by Clark may be more appropriate. This approach is discussed next.

6.3.2 Decision Theoretic Approach

The decision theoretic model proposed here requires the following underlying

assumptions: (1) information characterizing non-cooperative networks is available;

(2) this information is comprised of, or can be broken down into, multiple layers or

contexts that are perceived to significantly contribute to tie strength; and, (3) the

degree to which each layer contributes to the trust and understanding between two

people as defined in Definition 11 is known or can be effectively estimated.

The model is based upon the construct of tie strength due to Granovetter [1973,

pg. 1361], which suggests that time, intensity of emotions invoked by the relation-

ship, level of intimacy among the two individuals, and the exchange of or reliance

upon another’s services may potentially capture the strength of a tie [Granovetter,

1973, 1361]. The corresponding model is shown in Figure 6.6.

“Reciprocal Services” are currently not incorporated within the value model

for tie strength. This component could be included, assuming a formal definition and

corresponding measure is developed. However, this particular aspect of tie strength

deals with asymmetric or negative ties [Granovetter, 1973, pg. 1361]. Asymmetry
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Figure 6.6: Value Model of Tie Strength

of tie strength, especially when considering the relationship of strength to either arc

capacity or cost within a network flow formulation, is hypothesized to be a function of

individual characteristics, rather than the underlying composition of an interpersonal

tie. As such, asymmetry arising from differences between individuals is discussed in

Chapter VII. Negative ties are assumed beyond the scope of this research but are

certainly of future interest within the context of applying information operations

against a target network.

The evaluation measures for this model are summarized in Table 6.3. Of the

two potential indicators of tie strength, frequency of interaction and time spent

within a relationship, Marsden and Campbell found that the correlation between

the (self-assessed) tie strength and time spent was the most appropriate, as the

frequency of interaction tends to be confounded or conditional upon the nature of

the relationship. Consequently, the first component of this model captures this

temporal aspect. The measure is specifically defined as “the time elapsed since the

initial observation of active participation in any significant event.” This data for a

given pair of individuals is essentially captured when that relationship is discovered–

using either that specific point in time as the basis of the measure or information

about the tie that explicitly states when the tie was formed. The amount of time

is then compared to the maximum amount of time elapsed for the oldest known tie
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Table 6.3: Evaluation Measures for Tie Strength
Measure Lower Upper

Title Measure Unit Type bound bound

Time Time elapsed since the initial
observation of active participa-
tion in any significant event

Time
(Linear)

0 max(telapsed)

Emotional Intensity
Significant
Events

Have the individuals actively
participated in one or more
events or are associated with
each other within a given con-
text, either of which is believed
by domain experts to signifi-
cantly contribute to the trust
and relational bond between
the two participants

Binary 0 1

Intimacy
Friendship Have the individuals self con-

firmed a level of friendship?
Binary 0 1

Familial Are the individuals family
members?

Binary 0 1

within the network, over all layers. This allows the comparison between the most

senior and new members of the group.

This approach measures the time spent within a tie and assumes that increased

time within a relationship correlates to increased tie strength [Marsden and Camp-

bell, 1984]. Although the measure currently assumes a simple linear relationship

between time spent and tie strength, other forms of value functions could be used.

For example, an s-curve as shown in Figure 6.7 could be used to represent probation-

ary or indoctrination periods enforced by the target network, or some other period

of time generally required by the organization of interest regarding who they may

trust and how much.

The domain of this function is bounded above by the length of the oldest known

relationship. In addition, given a specific pair of individuals, if multiple contexts are

shared among their relationship within the Emotional Intensity or the Intimacy
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Figure 6.7: Time and Tie Strength

objectives, it is currently assumed that the contribution of time to tie strength is

based upon the oldest context–the one within which the relationship began.

Recalling that the objectives and their corresponding measures must be inde-

pendent for an additive value model, the connection inherent between time spent

within a relationship and its existence has the potential to be problematic. How-

ever, given two pairs of individuals A−B and C−D with relationships composed of

identical contexts, variation of tie strength among them is assumed to be explained

by the amount of time those pairs of individuals have had to develop the relation-

ship and concomitant levels of trust [Marsden and Campbell, 1984; Granovetter,

1973, 1983; Levin et al., 2002]. In this sense, the objectives may then be viewed as

mathematically independent.

The Emotional Intensity and Intimacy objectives attempt to ascertain tie

strength due to one or more significant, bonding events and friendship or familial

ties, respectively. These types of contexts that may comprise an interpersonal rela-

tionship essentially form the different layers within the layered-network paradigm.

Significant bonding events are those that not only bring individuals together, but

induce trust via the knowingly joint involvement in a stressful situation, either physi-

cally or in the form of cognitive dissonance [Downs, 2006, pg. 3-6]. Examples of such
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events could include indoctrination, training, attending and actively participating in

educational forums exploring activist or extremist ideologies contrary or significantly

different from generally accepted practices, and so forth.

Determining which contexts play the most significant role in tie strength is not

a straightforward task, as they are likely dependent upon the network of interest. The

network’s goals and objectives, methods of recruitment and training, and any other

potential layer of contributing relations must also be viewed from their perspective

rather than our own. The secretive nature of the organizations of interest may

indirectly determine which contexts are important, based upon the contexts and

connections inherent within the observational data.

Overall, the value model approach is similar to a simple weighted summation of

multiplex relations, further moderated by the age of the relation. This is amenable to

situations where very limited data exists, in both quantity and quality. In addition,

assuming that the presence of an additional context increases tie strength, then

according to Sarle [1995], the binary variables connoting the presence or absence

of layers between individuals are at least ratio [Sarle, 1995]. Considering that the

contribution of time to the strength of a tie is also ratio, the weighted combination

required to ascertain a single value is ratio as well. Consequently, this measurement

approach is mathematically appropriate for use as either an arc capacity or a cost

per unit flow within a network flow model of the social network. The next logical

task is how to weight each of these measures.

6.4 Weighting & Tie Strength

As discussed in Section 2.5.5.1, a variety of weighting techniques exist. Al-

though indifference measurement appears to be the most theoretically sound ap-

proach to weighting value models over that of numerical estimation methods, both

methods continue to be applied and debated within the current literature.
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Note that the overall purpose of the decision theoretic model presented in

this chapter is to estimate the strength of interpersonal ties from the individuals’

perspectives, not our own. Consequently, eliciting weights from members of a non-

cooperative network is assumed to be problematic and unreliable. What can be

done, however, is to examine the underlying structures and contexts that have led to

the network data discovered to date. Based upon such a review, further hypotheses

may be offered regarding which context or contexts actually resulted in the observed

topology, and therefore play significant roles in how the members initiate and sustain

their clandestine relationships.

For the purposes of this research, it is assumed that subject matter experts,

cognizant of the cultural, sociological, and operational aspects of the target network,

are able to provide at least initial estimates of the model weights. This may be

accomplished via the numerical estimation techniques shown in Table 2.14. As an

alternative, if one also assumes that tie strength derived from multiple contexts is

also a function of the number of ties existing within that context, dynamic weighting

approaches may be applied. The following definitions explain the overall model,

shown in Equation 6.9.

sij = Estimated strength of interpersonal tie between i and j

Tij = Time elapsed of the first context shared by i and j

wT = Weight for the Time component, Tij , of the model

SElij = 1 if ∃ a relationship between i and j within context l; 0 otherwise

wSEl = Weight for SElij

wEI = Weight for the Emotional Intensity component of the model

FRij = 1 if ∃ an acknowledged friendship between i and j; 0 otherwise

wFR = Weight for FRij

FAij = 1 if ∃ a familial relationship between i and j; 0 otherwise

wFA = Weight for FAij

wI = Weight for the Intimacy component of the model
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sij = wT Tij + wEI

(
L∑

l=1

wSElSElij

)
+ wI (wFRFRij + wFAFAij) (6.9)

If dynamic weighting was of interest for the weights associated with network

layers (wSEl, wFR, wFA), at least two approaches are available. The first, and most

straightforward approach, is to assume that the propensity of relations in a given

layer l is directly proportional to that layer’s contribution to tie strength. For ex-

ample, suppose El is the number of edges (relations) in a given layer l ∈ L and EL is

the sum of all edges in the network. The relative weight for a given layer l is given

by wl = El/EL, or the percent of all ties attributed specifically to the lth layer. As

the network evolves and changes over time, so would the weights; since these are

percentages, this approach also maintains a normalized weight set.

A second approach first requires initial estimates of relative weights for each

layer wl. Next, define ρl(t) as the ratio of the number of edges in a given layer l to

the total number of edges in the network data, at a specified time t:

ρl(t) =
El (t)

EL (t)
. (6.10)

Let δl denote the relative change in in the network due to the edges within

layer l, over a time period from t to t + 1. The value, δl ≥ 0, is

δl =
ρl(t + 1)

ρl(t)
=

[
El (t + 1)

EL (t + 1)

] [
EL (t)

El (t)

]
. (6.11)

The weights at time t + 1, adjusted for relative changes in the composition of the

network layers, denoted ωl, is

ωl =
δlwl

L∑
j=1

δjwj

. (6.12)

215



Note that combination of Equations 6.11 and 6.12 have several desirable prop-

erties. First, if no changes are evident within the layers, the original weights specified

by the subject matter experts are still applicable and remain constant. Second, if a

layer, and its associated edges is eliminated for some reason, the weight for that layer

goes to zero; this matches the intuitive result with regards to the now non-existent

layer’s contribution to tie strength. Finally, relative allocations among weights that

remain unchanged over time also remain constant; this preserves the tradeoffs origi-

nally estimated by the subject matter experts and is . For example, suppose the origi-

nal weight matrix is given by w = [ 0.5 0.3 0.2 ]. If the edges associated with layer

two are all removed, the adjusted weight vector is ω = [ 0.71429 0 0.28571 ]. Note

that the ratios between the first and third weights (0.5/0.2 = 0.71429/0.28571 = 2.5)

remain constant. This holds true for any pair of weights that correspond to unchang-

ing layers over time.

6.5 Summary

This chapter reviewed some of the details, advantages, and disadvantages of

previous efforts seeking to measure interpersonal relations. A formal definition of

interpersonal tie strength is offered to provide some conceptual clarity, and two mod-

els were proposed to facilitate its measurement. Both models assume that limited

information is available due to the clandestine and adversarial nature of the networks

of interest to the U.S. Government.

The first model applied the Jaccardian similarity coefficient to estimate the

strength of a tie between two individuals. This coefficient takes into account both

the context(s) between two individuals, as well as the cognitive demand upon them

due to the other ties they currently maintain. The second model takes a decision

theoretic approach to tie strength, leveraging the findings within sociological liter-

ature describing the components of interpersonal tie strength. Due to the inherent

nature of the target network and its associated data, direct and dynamic weight-
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ing techniques using classical numerical estimation techniques are suggested. The

mathematical properties, either in a static or dynamic sense, are attractive for use in

mathematical programs due to their ratio scale. As seen in previous research efforts,

the measures of tie strength could be used as arc capacities within a network flow

formulation. However, the potential relationship between tie strength and the ‘cost’

of social interaction also suggests that the inverse of tie strength could serve as the

cost per unit flow along an arc within a similar network model. The next chapter

continues the development of translating observational data for use within mathe-

matical programming applications, focusing upon the concepts and applications of

gains, losses, and thresholds.
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VII. Gains, Losses, and Thresholds

7.1 Chapter Overview

In light of the complex and elusive terrorist networks that have become of more

prominent interest in U. S. since the September 11th attack, it is not only important

to know the enemy but also to know the individuals with whom they interact: their

friends, enemies, confidants, relatives, classmates and collaborators. The information

garnered by uncovering and analyzing such networks offers a potential means to

generate, and possibly evaluate, courses of action that shape the intentions of the

network’s actors.

The concept of shaping intentions is particularly of interest in order to achieve

a given political or military goal. Influence campaigns seek to achieve political ob-

jectives through the conveyance of information and indicators with an intent to

“influence the emotions, motives, objective reasoning, and ultimately the behavior

[of others]”[DOD, 2003, pg. ix]. Focusing upon the important actor(s) and attempt-

ing to influence their behavior within a given environmental and situational context

proves useful in a variety of applications including social, corporate and govern-

mental (including non-military) endeavors [Renfro and Deckro]. Unfortunately, the

most important actor, leader, or decision maker within a group is not always easily

accessible, Osama bin Laden of Al Qaeda, for example.

This chapter continues the development of translating data observed and char-

acterizing non-cooperative networks for use within mathematical programming ap-

plications, focusing primarily upon the concepts, measurement, and application of

gains, losses, and thresholds of influence. These items serve as a continuation of the

social network flow paradigm offered by Freeman et al. [1991], Renfro [2001], and

Clark [2005]. Conceptual development of gains, losses, and thresholds of influence

are discussed, and two potential means to measure this phenomenon are presented.

A logical extension of the network flow based centrality measure offered by Freeman
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et al. [1991] is explored. Finally, a demonstrative example illustrates the application

of mathematical programming, while accounting for gains, losses, and thresholds of

influence within a social network, to explore course of action analyses is demon-

strated.

7.2 Social Network Flows

Influence campaigns seek to achieve political objectives through the conveyance

of information and indicators to affect behavior. The social science literature is

replete with descriptive theory capturing the nature and transfer of influence at

an interpersonal level. Building upon these previous efforts, this chapter develops

connections between social science’s assessment of interpersonal communication and

operations research’s network flow formulation. Nuances of influence, specifically

gains, losses, and thresholds, from a sociological perspective are described and then

discussed within the context of a generalized network flow problem. Analysis of a

notional social network is presented, including applications of classical sensitivity

analysis to deal with uncertain data–an inevitability when dealing with clandestine

organizations. The resulting methodology explores courses of action that seek to

influence a potentially inaccessible target audience using their own indigenous social

network as a conduit.

Throughout the field of sociology, the endeavor of identifying actor importance

has been accomplished via a number of measures, relying primarily upon the appli-

cation of graph theory to social networks [Wasserman and Faust, 1994, pg. 169].

The majority of these measures focus on characterizing actor importance using var-

ious properties of location with respect to all other actors within a network. The

underlying assumption is that the most important, or most prominent, actors are

usually strategically located within the network [Wasserman and Faust, 1994, pg.

169]. The values derived for these measures are often related to the flow or transfer
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Table 7.1: SNA and Network Flow Relationships [Renfro and Deckro, 2003]
SNA Terms Flow Model Properties

People Nodes (sinks, sources, or transshipment)
Connectivity or affinity Capacitated arcs between nodes

Social Closeness Capacity
Influence Commodity

Potential Influence Magnitude of flow
Initiators of influence Source(s)

Targets to be influenced Sink(s)
Intermediaries involved Transshipment node(s)

of information or the flow of influence among actors within a network [Freeman et al.,

1991; Lopez et al., 2002; Renfro, 2001; Wasserman and Faust, 1994].

From the sociological perspective, the most important actors either control or

have the ability to receive a greater amount of information relative to the other

individuals within a social network. This chapter approaches actor importance from

a slightly different perspective in that the most important actors will comprise the

target audience of psychological operations. This could include an organization’s

decision makers or possibly a target population that is a subset of the overall network.

The representation of influence as a transferrable commodity, however, carries over

and serves as the basis of the methodology presented. Recall the mapping between

SNA and OR, presented again in Table 7.1.

Renfro suggested that gains and losses of information or influence in the con-

text of SNA are analogous to “. . . preconceived opinions or influence from outside

the network being modeled . . . predispositions of individuals favoring (or opposed

to) the influence represented by the flow . . . or communication problems such as

misunderstanding the message” [Renfro, 2001, pg. 88]. These suppositions actually

incorporate several areas within persuasion theory.

For example, “preconceived opinions” invokes the concepts of knowledge and

reporting bias. The former “is the presumption that a communicator has a biased

view of an issue” [Perloff, 2003, pg. 164]. Reporting bias is “the perception that
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the communicator has opted not to report or disclose certain facts or points of view

[Perloff, 2003, pg. 167]. Therefore, considering these types of biases, and minimizing

their effects, is important when imposing an influence upon the access points to a

target network.

The “predispositions” of individuals and the acceptance or denial of influence

relates to the how successful the persuasion will tend to be. Perloff defines persuasion

as “a symbolic process in which communicators try to convince other people to

change their attitudes or behavior regarding an issue through the transmission of a

message, in an atmosphere of free choice” [Perloff, 2003, pg. 9]. The reinforcement

or change of a predisposition is, in effect, the influence. It is important to note that

successfully influencing an individual could be a the result of persuasion or power,

both of which contribute to the model development discussed in the next section.

Lastly, “communication problems” such as misunderstanding the message could

simply be due to inter-media transfers (e.g., voice to transcript), inter-language trans-

fers (e.g, translations and transliterations), or inter-personal communication media

(e.g., errors or failures of communication devices or the users that implement them).

This last area reinforces the fact that influence is a phenomenon that is specific to

the actor and sender involved in the communication. Thus, the measurement of the

forces that may modify the flow of influence within a social network is problematic.

Even more complicating is the fact that a desired change in attitude or behavior is

also dependent upon the setting within which the inter-personal exchange is made.

7.2.1 The Flow of Influence

The seminal work of French describes the formative theory of social power and

analyzed and addressed some of its limitations. In the course of his work, French

defined “the basis of interpersonal power. . . as the more or less enduring relationship

between (two individuals) A and B which gives rise to power” [French, 1956, pg.

183]. He then described five bases for power: attraction, expert, reward, coercive,
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and legitimate [French, 1956, pg. 183-4]. In examining the impact of peer group

influence upon opinion formation, a now prevalent interpretation of French’s work is

that “[French] first proposed that social influence was a finite distributed resource”

[Friedkin and Cook, 1990, pg. 130].

Friedkin and Cook discuss social influence in the context of interpersonal re-

lations within a network and their subsequent role in the exchanges of influence

required to enable opinion formation [Friedkin and Cook, 1990]. The resulting mod-

els essentially attempt to describe the personal interactions that transform a network

of individuals with discrepant opinions into a network whose members’ opinions have

coalesced, at least to some degree. Similar concepts in social network literature that

are based upon an exchange of influence between individuals include contagion (of

behavior) [Leenders, 2002; Scherer and Cho, 2003], diffusion (the rate of acceptance

of innovative and possibly risky ideas or behavior) [Valente, 1996], and the “infec-

tious movement of desires and ideas from mind to mind” in the context of permission

marketing [Buchanan, 2002, pg. 160-1].

Beginning with French’s work, it is clear that the social science research and

theory liken the interaction between two individuals and the resultant exchange of

information, opinion, or influence to that of a commodity that flows between them.

When utilizing social network analysis concepts such as tie strength (or social close-

ness) to serve as arc capacities in a flow of influence analysis, there are some instances

where this measure alone may be insufficient to accurately determine the influence

one individual has over the other. The next sections elaborate upon modeling such

concepts–gains, losses and thresholds of social influence.

7.2.2 Gains and Losses

To frame the context of gains and losses of influence, it is critical to begin

with a set of working definitions, as influence, persuasion, and power are frequently

interchanged within the literature, despite their subtle differences. In a more recent
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theoretical look at these concepts, Lovaglia et al. [2003] define influence “to occur

when a person’s opinion or behavior changes to conform to the suggestion of another

without the threat of punishment or the promise of reward” [Lovaglia et al., 2003,

pg. 109]. Persuasion, then, is a tool used to influence others. On the other hand,

the concept of power implies the use of force, coercion, sanctions, or is derived from

opposing interests and the availability of resources to those opposing parties [Lovaglia

et al., 2003, pg. 109-10]. However, Goldhamer and Shils defines a powerful person

as one who “influences the behavior of others in accordance with his own intentions”

[Goldhamer and Shils, 1939, pg. 171]. Ultimately, applications of both power and

persuasion seek to change or modify another’s behavior or attitude; the difference

between them lies in the method chosen to induce this change. Therefore, taking a

more general approach, let influence be defined as follows.

Definition 12. Influence: to induce a change in behavior of another that conforms

to the influencing actor’s desires, either cooperatively or otherwise

Elements of both persuasion and power theory may now be used to explain,

and serve as a basis for a mathematical model of, gains and losses of influence.

The resulting measurements are associated with specific i-j pairs of actors. As

expected, some individuals in a social network can be more (or less) influential,

despite the strength, or closeness, of their relationships. Many situations may exist

where influence is not necessarily equitable between the two actors, resulting in an

interaction-dependent effect upon the information or influence exchange between two

actors. For example, a father and son may have a strong bond between them, and

therefore a relatively high value for tie strength. However, regarding the influence

one has over the other, the father and son are likely unequal.

This approach differentiates this methodology from the one suggested by Clark

[2005] regarding the effects of tie strength and influence differentials due to the

sending actor’s characteristics. Clark developed a combined measure of potential

influence, with inputs comprised of topological and actor-specific effects of influence
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i j k
g(i,j) > 0

Figure 7.1: Arc with Multiplier

[Clark, 2005, pg. 3-34]. The method presented here contends that, as illustrated

by the father-son example, tie strength between two individuals serves as an upper

bound for the potential flow of influence between them–a true arc capacity. How

easily an individual can promulgate influence to fill the arc to capacity is dependent

upon the receiving actor’s perception of power or persuasive ability inherent within

the sending actor. Effectively, less (more) effort must be exerted by influential or

powerful (less influential or powerful) people in order to promulgate the same amount

of influence.

This suggests the information or influence flow through a network may require a

multiplier to improve the requisite representation of network behavior in network flow

models. This technique is borrowed from the generalized network flow formulation,

which has been applied to physical systems exhibiting similar traits (e.g., spoilage

of fruit during shipment, evaporation or collection of water during its movement

through open irrigation canals, exchanges rates, and so forth).

Suppose that individual j has great respect for individual i such that individual

i always has a tremendous impact (i.e., influence) upon individual j (e.g., actor i may

be referred to as an opinion leader). This gain in influence on arc (i, j), illustrated

in Figure 7.1, consequently requires that g(i,j) > 1, and has the corresponding GNF

constraint for node j: x(j,k) − g(i,j)x(i,j) ≥ 0. Subsequently, for every x(i,j) unit of

flow pushed through arc (i, j), g(i,j)x(i,j) units of flow arrive at node j.

Alternatively, suppose that individual j has never been impressed with indi-

vidual i, possibly due to individual i demonstrating poor performance or untrustwor-

thiness in past interactions; for example, the loyalty or honesty of actor i has been

previously questioned. The corresponding GNF constraint for an influence loss on arc
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(i, j) is identical to the gains constraint with the exception that 0 < g(i,j) < 1. Ulti-

mately, the influence that actor i has over others is reduced from the level of influence

that originally flowed out of individual i. The degradation could easily be attributed

to personality conflicts, miscommunication, disrupted communication, and even the

network structure itself [Friedkin and Johnsen, 2002; Lopez et al., 2002]. Degra-

dation of flow through a network is also a common phenomenon observed within

physical networks such as communications, energy, shipping, and irrigation [Ahuja

et al., 1993, pg. 8].

Of course, there may exist any combination of the multipliers g(i,j) on the

arcs within the given network. Potential means to place a number on a gain or

loss of influence between two individuals could include evaluating individuals in the

context of the bases of power, attraction, expert, reward, coercive, and legitimate,

discussed in French [1956, pg. 183-4]. In addition, the work of Lopez et al. [2002],

originally intended to explore the efficiencies, or more specifically the lack thereof,

of information flow within the “traditional hierarchical topologies commonly used

by organizations,” developed an information dominance measure that could serve

as a proxy for the gain multiplier [Lopez et al., 2002]. An approach, similar to the

one taken by Clark [2005] to account for individual-specific effects of interpersonal

influence, is described next.

7.2.3 Measurement of Gains

Since influence, as defined in Definition 12, essentially contains elements of

power and/or persuasion theory, a model of influence gain should be able to ac-

count for either or both phenomenon. Such a concept exists: charisma. Charismatic

leaders often share the fundamental communicator characteristics of authority, cred-

ibility, and social attractiveness [Perloff, 2003, pg. 152]. As seen in Figure 7.2, the

characteristics contributing to charisma may involve elements of power, persuasion,

or both. Mathematically modeling the charisma of a communicator is clearly prob-
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“Authority”
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(Persuasion)

“Credibility”
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Goodwill

“Social Attractiveness”

Likeability

Similarity

Physical
Appeal

Figure 7.2: Charisma [Kelman, 1961; Perloff, 2003]

lematic, as not only are these concepts subjective, but the measurement and roles

of each characteristic are dependent upon the situation within which the communi-

cation occurs [Perloff, 2003, pg. 159, 161-3]. In addition, “just as there is not one

type of charismatic leader, there is not one defining characteristic of effective com-

municators” [Perloff, 2003, pg. 152]. The literature is replete with efforts attempting

determine what factors or attributes significantly contribute to leadership, charisma,

power, and persuasive ability [cf. Kelman, 1961; Anderson et al., 2001; Perloff, 2003,

Chp. 6, among others]. The answer seems to be a resounding ‘It depends’.

Nonetheless, a multiple logistic regression model offers an opportunity to mea-

sure the gain (or loss) between two individuals based upon their attributes that may

contribute to, or serve as a proxy for, a certain qualitative level of charisma as il-

lustrated in Figure 7.2. With regard to multiple logistic regression, “the response

variable of interest has only two possible qualitative outcomes, and therefore can be

represented by a binary indicator variable taking on values 0 and 1” [Neter et al.,

1996, pg. 567]. For this model, let Yi = 1 indicate that the ith individual is per-

ceived as charismatic or a member of the organization’s leadership structure, zero
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otherwise. Further, let X denote p attributes hypothesized to contribute to charisma

(or lack thereof); these predictor variables may be “quantitative or qualitative and

represented by indicator variables” [Neter et al., 1996, pg. 581]. Examples could

include time spent in a group, age, education levels, reputation, and so forth. With

Equation 7.1, the multiple logistic regression model is given by Equation 7.2 [Neter

et al., 1996, pg. 581-3].

β ′Xi = β0 + β1Xi,1 + . . . + βp−1Xi,p−1 (7.1)

E {Yi} = πi = [1 + exp (−β ′Xi)]
−1

(7.2)

With b denoting the maximum likelihood estimate of β, the fitted logistic response

values are

π̂i = [1 + exp (−b′Xi)]
−1

. (7.3)

The estimated logistic response function, or fitted value, for actor i, denoted π̂i,

is interpreted as the estimated probability that actor i, with the given characteristics

Xi is charismatic, a leader, or to whatever the a priori definition of Yi = 1 has been

set [Neter et al., 1996, pg. 577]. The probabilities π̂i serve as inputs to

gij = 1 + π̂i − π̂j. (7.4)

When the transmission of influence is being sent from a less charismatic indi-

vidual i (low π̂i) to a higher or more likely charismatic individual j (higher π̂j) then

the gain multiplier tends to be less than 1, indicating a loss or degradation of influ-

ence. Ultimately, given an identical amount of influence required to pass between

two individuals, less influential (or charismatic) individuals must exert more energy

than those who are more charismatic.

Since π̂i ∈ [0, 1], gij ∈ [0, 2]. Recall that gij = 1 implies neither a loss nor

a gain of the commodity as it flows along the arc. A multiplier of gij < 1 implies
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Figure 7.3: Gain Domain Based on π̂i

a loss, and gij > 1 implies a gain. Suppose Yi = 1 if individual i is designated to

be charismatic–and therefore influential–or 0 otherwise. If two actors i and j are

peers with similar traits or characteristics that contribute to charisma, then it is

assumed that they will have an equitable exchange of influence, or gij ≈ 1. Note

that this also applies to peers that are both non-charismatic. Consequently, small

differences between individuals having similar charismatic or influential scores π̂i and

π̂j will tend toward a gain multiplier of 1. Values of gij between peers not equal to

one is to be expected, as Shamir noted that several theories regarding charismatic

leadership “share the assumption that such leadership can be found at all levels

of the organization” [Shamir, 1995, pg. 20]. The different possible scenarios are

summarized in Figure 7.3.

The special case where π̂i = 0 and π̂j = 1, resulting in gij = 0 could be the

mathematical equivalent of “Chicken Little,” who is so uninfluential, so unpersuasive,

so uncharismatic that the receiver j will ignore the influence emanated from actor

i. It is also important to recognize the upper bound is 2 when applying this model.

If such a multiplier is deemed insufficient (in magnitude), subject matter expertise

will be required to differentiate these cases from those determined by Equation 7.4.

Additionally, the specific components of Equation 7.1 are unlikely to be completely

determined a priori; therefore, the definitive list of traits that mathematically charac-

terize an influential individual are more likely to be predicated upon the, presumably
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limited, data available. Fortunately, techniques exist to test hypotheses regarding

the statistical significance of such traits, means to deal with missing data, and other

methods to gain new insight into the data and the organization [cf. Little and Rubin,

1987].

Finally, the incorporation of gains into a generalized network flow model of a

social network is a logical and relatively straightforward extension of the centrality

measure developed by Freeman et al. [1991] (which is also similar to the one devel-

oped by Brandes and Fleischer [2005]). The measure developed by Freeman et al.

evaluated various maximum flow characteristics of the network using hypothesized

arc values representing the strength of a relationship. These arc capacities were

simply assumed to be available. With the measures of tie strength developed in

Chapter VI supplementing the previous methods developed by Renfro [2001] and

Clark [2005] along with the inclusion of gains and losses due to persuasion presented

in this chapter, a generalized and assumed more representative network flow model

may be analyzed. MATLAB functions to perform network flow and generalized

network flow centrality are provided in Appendices K and L, respectively. Both

measures are applied to the data set discussed in Chapter VIII. The next section

explores the use of right-hand side values in GNF to model influence thresholds.

7.2.4 Thresholds

Numerous social science researchers allude to the existence of what could be

referred to as a threshold–a point at which an individual decides between two or

more competing alternatives that is dependent upon both external influences and

internal principles [cf., Buchanan, 2002, pg. 158]. The right-hand side values (bi)

can be used to model thresholds.

When the right-hand side coefficient (bi) is less than 0 it signifies that node i

seeks a demand of the commodity, in this case influence, of the absolute value of that

amount. This notion of demand is one way to model thresholds of influence required
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for an individual to pass, or fail to pass, influence further through the network.

Again, the bases of attraction, or lack thereof, proposed by French [1956] may serve

as a foundation for threshold measurement. Social position (e.g., a gatekeeper)

may also serve as an indicator that some threshold of influence, passed from one

or more other individuals, exists. Freeman describes the gatekeeper as one who is

“not conceived as being in a general sort of position of control like a position high

in centrality based on betweenness. Instead, he or she is the keeper of the gate

controlling communication to and from a particular other person vis-à-vis the rest

of the network” [Freeman, 1980, pg. 586].

Another view of thresholds is due to Granovetter, who suggests that “an actor

has two distinct and mutually exclusive behavioral alternatives” [Granovetter, 1978,

pg. 1422]. The alternative ultimately chosen is dependent upon the costs and benefits

of that choice, the values of which are derived by the number of others observed

making the same choice [Granovetter, 1978, pg. 1422]. Using the predilection to

join a riot as an example, Buchanan observed that “The level of someone’s threshold

(to join a riot) would depend on their personality, and on how seriously they take

threats of punishment, for example” [Buchanan, 2002, pg. 107] [cf., Granovetter and

Soong, 1983, pg. 166].

In the context of this methodology, once the threshold is met, that is, once

a certain amount of external influence has flowed to, and is absorbed by, that in-

dividual from his or her networked peers, that individual will accept the influence

as beneficial enough to propagate further. All of these aspects essentially comprise

the data elements required for model input: a value for the threshold, the potential

interactions, and the levels of influence given an interaction has occurred.

A number of interesting network behaviors can be captured via thresholds.

Consider the GNF analogy, where actor j requires some amount of influence (bj < 0)

before passing influence, relaying a message, or exhibiting an influential behavior to
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i j k

bj < 0

Figure 7.4: Node Demand (Threshold)

actor k. The general concept is illustrated in Figure 7.4; the corresponding constraint

is x(j,k) − x(i,j) ≥ bj .

An extreme variation of this case may include an absorbing node. For such a

node, the demand for influence must be at least as great as the sum of the capacities

of all arcs entering that node. For a given node j, let the absorption value Uj be

Uj =
∑

j:(i,j)∈A

u(i,j). (7.5)

From Figure 7.4, if bj = −Uj , the individual j would prevent influence from passing

on to actor k. The mathematical formulation for this constraint in the GNF for

any given node j is x(j,k) − x(i,j) ≥ −Uj . Such an individual may be likened to an

overzealous gatekeeper or someone who is isolating actor k from other influences.

Demand at any given node i (bi) is also analogous to the threshold of an

individual’s vulnerability to be influenced by others within the network. For example,

some individuals, due to position within the organization, psychosocial tendency, and

so forth, will readily accept influence and immediately promulgate it to others with

whom they are connected. Essentially, these individuals simply serve as a pass-

through where bi = 0, also known as a transshipment node. The GNF formulation

for this case is simply the conservation of flow, x(j,k) − x(i,j) = 0. Most individuals

are unlikely to behave as an overzealous gatekeeper; others are more savvy regarding

the likelihood of an influence campaign against their organization. Therefore, the

most likely range for an individuals threshold is −Uj < bj ≤ 0.
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Figure 7.5: Conditional Gatekeeper

An alternative approach to thresholds that permits a m-out-of-n reporting

scheme may also be accomplished via the use of right-hand-side values. For exam-

ple, suppose that an individual must receive m independent reports out of n possible

sources. In this setting, “reports” could comprise a flow of influence via a message.

Based upon organizational procedures, individual j uses independent sources to con-

firm the authenticity or importance of the influence prior to forwarding the message

deeper into the organization. The actor essentially serves as a conditional gatekeeper;

influence is passed on if a specified condition is met. This approach is illustrated

in Figure 7.5. Suppose that no gains or losses are evident in the arcs between 1,

2, 3, j, and k. Further, assume that flow on these arcs is either 0 or 1. The net-

work structure in Figure 7.5 essentially depicts the m-out-of-n situation. The first

unit of influence sent to actor j is consumed by the demand bj = −1. Therefore,

actor j must get information or influence from at least 2 of the 3 individuals before

information or influence is passed on to actor k.

7.2.5 Costs

The final variable within the GNF formulation to review is cost per unit flow

along the arcs c(i,j). Developing the cost per unit flow along the arcs requires a local

perspective from each actor. If influence is to pass between two individuals (i, j),

then actor i must internally consider the various costs and benefits of transmitting

the message or influence, and actor j must internally decide his or her own costs and
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benefits of forwarding the influence further. These concepts are reflected in social

action theory.

In studying the impact of social network structures upon their internal infor-

mation flow, Yamaguchi [1994] emphasizes the importance of social action in the

diffusion of information within a social network. He states two main reasons for this

concept’s relevance from both a receiving and transmitting viewpoint. When receiv-

ing information or influence, “actors evaluate information and act according to the

results of their evaluations” [Yamaguchi, 1994, pg. 59]. This evaluation may include

consideration of who transmitted the information, in what fashion, in what context,

at what level of emphasis, or any number of situation-dependent perspectives. When

transmitting influence, a more relevant concept when trying to ascertain the poten-

tial costs for the GNF model, the action “will depend not simply on the presence of

communication between them, but on the rational assessment of costs and benefits

regarding the exchange of information [Yamaguchi, 1994, pg. 59].

Therefore, the mere existence of a communication path does not necessarily

guarantee that information or influence will flow freely. Although the specific concept

of ‘costs and benefits’ was not further elaborated upon by Yamaguchi [1994], this

concept appears to accommodate important aspects regarding costs in the GNF

formulation. Such costs would include each actor’s own assessment of the risks

associated with enacting a communique, the actual cost to transmit the influence

(e.g., email, long-distance call, satellite call, travel via donkey through a treacherous

mountain pass, and so forth), and other factors (e.g., the possible ‘penalty’ for passing

on rumors or propaganda in a given environment) as necessary. The costs stemming

from a perspective external to the network are similar in nature, but are assessed as

those costs as perceived by the organization trying to pass influence into the network.

These may also incorporate likelihood of mission success from either perspective.

Measurement of influence in the context of SNA is “based upon the importance

of relationships among interacting (individuals)” [Wasserman and Faust, 1994, pg.
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4]. One of the underlying principles of SNA is that “. . . individuals view the network

structural environment as providing opportunities for or constraints on individual

action” [Wasserman and Faust, 1994, pg. 4]. This implies that when an individual

within a network comes upon a decision point, they tend to take certain individual’s

opinions (e.g., those socially close) or authority into account. There are a variety of

examples in SNA literature that investigate and attempt to measure this influence

[cf., Frank and Yasumoto, 1988; Friedkin and Cook, 1990, among others].

7.2.6 Solution Procedures

When studying social networks as generalized network flow problems there are

a range of choices of solution approaches. First, the problem may be formulated

and solved as a linear program (LP). Alternatively, the problem may be solved

via the network simplex algorithm. Although the two approaches share the same

underlying requirements for feasibility and optimality, the latter is “200-300 times

faster” [Bazaraa et al., 1990, pg. 419]. Due to relatively simple nature of the notional

example in the next section, the analysis is conducted via a LP formulation and

solution. Use of a LP approach facilitates conducting post-optimality analyses that

provide a means to deal with the underlying uncertainty in input data.

7.2.7 Network Flow

Two mathematical formulations of the network flow problem, both character-

izing influence as the commodity, are of interest: the maximum flow (MF) and the

generalized network flow (GNF) problems. MF, a special case of GNF, determines

the maximum flow that can pass from one or more source nodes to one or more sink

nodes. MF is useful in determining whether or not any flow between two individuals

or groups of interest through the network is feasible. MF has also been used as a

basis for a social network analysis measure using valued social networks as an input

[Freeman et al., 1991]. The work of Freeman et al. [1991] represents one of the early
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departures in SNA from binary representations of relationships (they either do or

do not exist) to one that accounts for the strength of interpersonal relationships

when trying to estimate actor importance. For their SNA measure, Freeman et al.

[1991] used a value representing the strength of a relationship as an arc capacity in

a social network; they then applied MF to each actor, using the actor as a source

and all other actors as sinks, in order to ascertain actor importance. While Freeman

et al. [1991] simply assumed these values would be made available, Renfro [2001]

devised a means to estimate the strength of a relationship and then applied various

approaches, including MF, to gain insight into clandestine social networks. An addi-

tional application of MF to clandestine social networks is found in Clark [2005], who

combined a topology-based SNA measure with information derived from individual

characteristics to estimate relationship strengths.

The mathematical model of primary interest in this chapter is GNF, which

satisfies a predetermined amount of flow between one or more source nodes to one or

more sink nodes in an oftentimes least-cost manner. The GNF provides a means to

model a variety of real-world networks with commodities that undergo degradation or

improvement over time or distance. In the context of interpersonal communication,

one such degradation process could include the content and context of a rumor spread

throughout a social network, where the message received by the second person could

be significantly garbled when received by the twentieth person in a chain or path.

The inherently flexible nature of GNF, particularly the ability to model changes in

commodity levels during its travel through a network, lends itself to capturing the

phenomena of gains, losses, and thresholds of influence within a social network.

Building on the work of [Freeman et al., 1991; Renfro, 2001; Renfro and

Deckro], this research continues the development of the parallels between the flow of

commodities in the physical world and the flow of influence in the behavioral realm.

To begin, the generalized network flow problem formulation first presented in Section

2.6.3 is repeated [Ahuja et al., 1993, pg. 567-8].
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Table 7.2: GFP Variable Definition
Variable Definition

c(i,j) ≡ the cost per unit flow induced from node i to node j
x(i,j) ≡ number of units of flow from node i to node j on arc

(i, j), x(i,j) ∈
[
0, u(i,j)

]
bi ≡ 0 if node i is a transshipment, or ‘pass-through,’ node;

< 0 if demand is required by node i; and, > 0 if supply
is provided from node i

g(i,j) ≡ a rational value > (<)1 that indicates if arc (i, j) is gainy
(lossy); if g(i,j) = 1, then the arc (i, j) is neither one

N ≡ the set of nodes (individuals) within the network
A ≡ the set of arcs (i, j) (connections between individuals)

that form the network

Minimize
∑

(i,j)∈A

c(i,j)x(i,j) (7.6)

∑
{j:(i,j)∈A}

x(i,j) − ∑
{j:(j,i)∈A}

g(j,i)x(j,i) ≥ bi ∀ i ∈ N (7.7)

0 ≤ x(i,j) ≤ u(i,j) ∀ (i, j) ∈ A (7.8)

The objective function, Equation 7.6, seeks to minimize the total cost of flow

through the network, subject to the mass balance and arc capacity constraints–

Equations 7.7 and 7.8, respectively. Note that the constraints 7.7, which replace

the equality (=) with (≥) from the traditional mass balance constraint, allows for

potential violations of traditional conservation of flow assumptions. This extension,

a relaxation of the original formulation, facilitates feasibility, particularly when gains

and losses affect flow (e.g., 1 unit enters and, due to gains, say 2 or more must exit)

and when arcs are capacitated (e.g., there exists a maximum amount of flow that

may traverse the arc, social closeness serving as an upper bound in this case).
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7.2.8 Underlying Assumptions

This approach equates influence to the commodity that flows through the net-

work; the amount of influence traveling from actor i to actor j is denoted by x(i,j).

The greater the magnitude of x(i,j), the greater the relative influence exerted upon

individual j by individual i.

In addition, social closeness is defined as a positive, real-valued estimate of the

“maximum potential influence one person i has upon another person j in a set of

N people in a given scenario;” this serves as the capacities of potential influence,

denoted u(i,j) in the GNF formulation [Renfro, 2001, pg. 89].

The remaining parameters, g(i,j), bi, and c(i,j) are the focus of this chapter.

The arc multiplier g(i,j) provides a means to model gains and losses of influence. The

demand variables bi, when associated with a transhipment node (i.e., an individual

that is neither a source nor a sink) may be used to model individual thresholds.

Relationships between the cost coefficient c(i,j) and operational risks associated with

interpersonal communication are suggested. Such costs could represent one of two

types of risk: either internally among the organization’s members, or externally as

an aspect of initiating or determining the efficacy of an influence operation course

of action, for example. Other costs are possible as warranted.

A course of action is defined as a psychological operation that attempts to

influence an accessible subset of actors within a social network of interest in order

to influence the behavior of any number of actors. The targeted individual(s) are

perhaps the most important or respected leader(s), or a disgruntled element that

may not be directly accessible. The course of action essentially determines which

accessible actors serve as conduits (sources) and which oftentimes inaccessible actors

serve as targets (sinks). The sources facilitate the insertion of an external influence

into an adversarial social network. The sinks comprise the ultimate targets of in-

fluence; they could be senior leaders, decision makers, specific subgroups, or anyone

who has the ability to affect the overall behavior, actions, and objectives of the entire
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network. All other actors that may be used to promulgate the influence from the

sources to the sinks are considered as transshipment nodes. The overall goal is to

influence the target population such that they alter their behavior as desired.

Obviously, obtaining accurate and complete intelligence detailing such nuances

of a non-cooperative (and likely covert) network is a formidable task, especially when

the nature of the adversary as well as the nature of compartmentalized intelligence

agencies is considered. Examples of these challenges are (painfully) described in

detail in the recent 9/11 Commission Report [National Commission on Terrorist At-

tacks Upon the United States, 2004, pg. 71-102]. Over a decade earlier, Sparrow

explored “the opportunities for the application of (social) network analytic tech-

niques to the problems of criminal intelligence analysis, paying particular attention

to the identification of (organizational) vulnerabilities. . . ” [Sparrow, 1991, pg. 251].

He conceded that missing data (for any number of reasons), fuzzy and ambiguous

boundaries of inclusion or exclusion of individuals, and the inherently dynamic nature

of human interaction (and therefore social network composition) add a high level of

complexity to this problem [Sparrow, 1991, pg. 261-2]. Related works investigating

the impact of missing information have concluded mixed, but oftentimes detrimen-

tal, effects upon the analyses [Bolland, 1988; Borgatti et al., 2006; Costenbader and

Valente, 2003; Sterling, 2004; Thomason et al., 2004].

Despite these findings, this research assumes that the measures, or at least

estimates of the measures, involved in characterizing networks of interest are indeed

obtainable due to the increasing interest in, and consequential approaches to, this

problem as suggested by Dombroski and Carley [2002]. An advantage to applying the

network flow models from operations research to those characterizing social networks

is that a number of techniques are available to evaluate the sensitivity of essentially

all model inputs. As in traditional mathematical programming applications, this

offers a means to account for some of the uncertainty likely to be found in these

sociological measurements.
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7.3 Notional Example

The overarching objective of this type of analysis seeks the development and es-

timating the efficacy of various courses of action that attempt to influence accessible

individuals in order to indirectly influence potentially inaccessible decision makers.

Advantages inherent within the linear programming approach, the ability to perform

post-optimality analyses for example, facilitate the investigation of uncertainty and

its effects upon the results.

The situations and parameters discussed in this example are entirely notional

and are only for demonstrative purposes. Assume that information has been gathered

on a network of 11 individuals, with the communication or interaction between them

indicated by the arcs (i, j). For this example it is assumed without loss of generality

that the information will be one-way, with the direction indicated by the arrow. The

flow of influence or information along a given arc (i, j) is bounded by 0 ≤ x(i,j) ≤
u(i,j), where u(i,j) are determined by an assessment of social closeness. All costs

incurred per unit of influence flow along an arc are also assumed available.

The network of interest is illustrated in Figure 7.6. For each arc, the capacity

upper bound and cost are denoted by (u(i,j), c(i,j)), respectively, and are shown near

their corresponding arc. Gains and losses are indicated by values within a triangle

adjacent to the applicable arc. The only threshold modeled in this example is the

one for individual 4 (b4 = −1). Further assume that direction of communication is

known, which is indicated by the directed arrows.

The next step is to determine sources and sinks for the flow of influence through

this network. As opposed to the evolution of attitudes through the dyadic interaction

of individuals over time (the focus of the majority of social sciences network models),

the intention in this illustration is to force an influence through the network. This

approach is well suited to gaining a better understanding of how an organization,

or a subset of its individuals (e.g., the leadership), could change its attitudes in a
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Figure 7.6: Notional Social Network

manner consistent with an external organization’s interests, in essence, political force

or influence. The ultimate goal, in this example, is to influence a number of target

individuals to at least a minimum level and, through modeling, understand what

actions may be required to do so in terms of cost and influence campaign activities.

If the target individuals comprise the network leadership, they may not be directly

accessible and therefore not immediately vulnerable to these operations. However,

subordinates that report to these leaders may not only be vulnerable, but more

easily accessible, and (much more importantly) trusted by those already within the

network. Therefore, the overall strategy is to influence the more vulnerable (and

accessible) actors in such a manner that the target individuals eventually receive the

message (influence) in such a way that their opinions are changed to meet the overall

political goals intended by the initiator of the influence campaign.

Assume that an initial assessment of the organization revealed that the set

of individuals {9, 10} were the leaders or the most influential members (opinion

leaders) of the group having the ability to influence in this context. Influencing

them would ultimately provide favorable results. However, by the very nature of

their positions, they are shielded from such actions by individuals outside their own
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Figure 7.7: Notional Network with Target Sets

social network. Further, assume that the set of individuals {1, 2, 3} are accessible

and there exists a possible path of influence between them and the desired target

audience. Therefore, a course of action (a) is devised to (1) identify accessible

individuals that can be influenced and the the concomitant operational risks involved

in doing so; (2) estimate the amount of influence to be pushed to these individuals

(ba = a); (3) identify the inaccessible individuals that comprise the ultimate target

set (tgt); and, (4) develop a means to determine the efficacy of the operation through

observation of target behavior (btgt = −t). This results in the network representation

shown in Figure 7.7.

A variety of issues may be explored via this modeling and analysis approach.

For example, course of action (a) is not necessarily limited to using the set of individ-

uals {1, 2, 3} to initiate an influence operation, but merely those that are accessible

by another party external to the social network of interest. The amount of influence

for this course of action is currently capacitated at unity for each arc emanating

from node a. Again, this is not a general requirement. Two or more messages or

attempts to influence an individual (e.g., repeated threats, emails, reminders, etc.)

may be required or desired; this may correspond to a capacity of 2 or more. Similar

arguments may be made for the individuals that comprise the target audience. Note

that the super sink node (tgt) is a means to assess the overall effectiveness of the

course of action. For this example, flow into this node (tgt) implies that at least one
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of the actors {9, 10} has demonstrated (verbally, physically, politically or otherwise)

that they have received and responded in some manner to the influence initiated by

the course of action.

Formulations that are infeasible directly translate to undesirable courses of

action for any number of reasons; these might include insufficient external influence

to obtain desired overall effects, insufficient connectivity within the network, poor

choice of vulnerable nodes, unrealistic or unobtainable levels of effect required on the

target audience, and so forth. Maximum flow formulations provide a means to verify

the potential success of a given course of action. Note that due to the possibility of

thresholds and multiple sources or sinks, the classic maximum flow formulation no

longer applies. However, such problem aspects have been addressed in the maximum

flow literature. For example, Megiddo [1974] generalized the maximum flow problem

to optimal and fairly distributed flow among multiple sources and sinks; Miller and

Naor [1995] developed a maximum flow algorithm for a network with known supplies

and demands. With this in mind, references to a maximum flow formulation in this

chapter are assumed to accommodate such extensions.

Given the chosen sets a and tgt and any appropriate thresholds, if the maxi-

mum flow is infeasible then the GNF formulation of the same network will also be

infeasible. Using the same network shown in Figure 7.7 while focusing on the con-

nectivity aspects of the target network results in the network shown in Figure 7.8;

the upper bounds for arc capacities are denoted as [u(i,j)] and v denotes the value of

flow to be maximized.

The optimal solution for the maximum flow problem of Figure 7.8 is v = 3;

the resulting flow is shown in Figure 7.9, where the bold arrows indicate arcs with

flow of 1, zero otherwise. This result establishes the feasibility of the current course

of action, showing that it is possible to pass influence to both nodes 9 and 10, but it

may require the initiation of influence through all three action nodes–1, 2, and 3.
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Figure 7.9: Maximum Flow Solution

Using the information from the maximum flow results, the incorporation of

costs is likely to provide a more realistic flow pattern [Yamaguchi, 1994]. The solution

to the minimum cost maximum flow problem of our notional network using ba = 3

and btgt = −2, has an objective value (total cost incurred due to flow of influence

through the network) of 93.33 units. The solution is shown in Figure 7.10, where

highlighted arcs indicate flow; the specific amounts of flow are shown in braces,

{x(i,j)}, alongside the respective arc (i, j).

As suspected, the flow through the network accounting for costs is different

from that of the maximum flow formulation. Note that conservation of flow is main-

tained for both the threshold and gains and losses effects. Interestingly, contacting,

or influencing, all three susceptible nodes {1, 2, 3} does not fully meet the target

node objectives (i.e., 4
3
+ btgt = 4

3
− 2 < 0). This is primarily due to the relaxation of

the mass balance constraint. An interpretation of this is that if the network operated
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in a minimum cost manner, the current course of action to influence all susceptible

actors may not result in meeting the overall objectives. Changing the constraint for

the tgt node from ‘>’ to ‘=’ would remedy this effect but at a greater cost, assuming

the problem remained feasible.

The solution basis plays a major role in post-optimality analyses. A change

in basis often results in a different objective function value, except in the case of

multiple optimal solutions. Degeneracy, indicated by a basic variable with a value

of 0, is a common occurrence in network problems due to the balance constraints,

particularly when bi = 0 [Gal, 1979, pg. 314]. This situation is observed in this

example, with arcs (6, 11) and (7, 8) in the basis, yet x(6,11) = x(7,8) = 0. Under

these conditions, caution must be used in interpreting the shadow prices–an aspect

of the information available for post-optimality analyses [Bazaraa et al., 1990, pg.

258] and [Martin, 1999, pg. 99].

Another important aspect of the current solution to address is the non-tree

arcs at capacity. For example, flow along arc (3, 4) is at capacity, yet x(3,4) is not in

the basis. Consequently, changes in the arc capacities as part of the post-optimality

analysis must first discern whether it is a tree- or non-tree arc, that is, one must

identify whether the arc is or is not in the current basis, respectively.
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7.4 Post-Optimality Analysis

Post-optimality analysis allows the investigation of changes in input data and

is useful when uncertainty exists in the input parameters. Considering the intrinsic

nature of the input data characterizing clandestine social networks, answers to some

of the “what if” questions regarding gains, losses, thresholds, risks (both internal

and external to the network members), estimates of the strengths of interpersonal

relationships (social closeness), potential courses of action, and the impact of network

connectivity, it is desirable to investigate the consequences due to changes among

these parameters via post-optimality analysis.

Ahuja et al. highlight that there are primarily two approaches to network post-

optimality analysis: combinatorial methods that re-solve a number of problems, and

simplex-based methods that exploit information resulting from the linear program-

ming algorithms [Ahuja et al., 1993, pg. 337]. Since the solution procedure chosen

is LP-based, the simplex-based method is applied to the notional network solution.

Specific examples of consequences due a change in inputs may include no

change to the current solution, a change in the objective value, a change in the

basis (i.e., the influence may potentially take a different path through the network),

a combination of change in objective value and change of basis, or overall infeasibil-

ity. It is also important to note that unless a parametric programming approach is

specified, any allowable ranges are assumed to be applicable only as one-at-a-time

variations to the original problem.

7.4.1 Changes in Gains and Losses

Unfortunately, post-optimality analysis of technological coefficients–the values

that represent gains and losses of influence in this application–is not automatically

provided by many optimization software packages. However, Bazaraa et al. provide

a straight-forward approach to evaluating the excursions of a change to a single
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column vector ai, which is applicable to both basic and non-basic variables [Bazaraa

et al., 1990, pg. 282-3]. Nonetheless, their approach assumes that the new value is

known a priori. Since that is likely not the case when dealing with uncertainty in

intelligence data, analysts may take advantage of the parametric approach described

in Gal [1979, Chp. 8] to ascertain the range of values that would satisfy the condition

of interest, in this case a change of basis.

As observed in Figure 7.10, arc (1, 6) may be interpreted as a work-around for

the gatekeeper, individual 4. Suppose it is of interest to investigate the implications

of a gain for arc (1, 6) such that g(1,6) = 1 + g, where g > 0 implies the current arc

from actor 1 to actor 6 becomes gainy and g < 0 implies the arc becomes lossy.

From this, the new column vector a′
(1,6) is formed:

a′
(1,6) = [0 1 0 0 0 0 −(1 + g) 0 0 0 0 0 0].

To find the revised column vector y′
(1,6) given the current basis inverse B−1,

the formula y′
(1,6) = B−1a′

(1,6), is applied, yielding y(1,6) =

[ 0 0 1 0 0 (1 + g) −(1
3 + g) −(1 + g) 1 0 4

3 −(1
3 + g) −(1

3 + g)].

Now check to see if this change would result in x(1,6) entering the basis (i.e., a

different solution is required). Define cB as the cost coefficients of the current basic

variables. The non-basic variable x(1,6) must enter the basis if the condition

cBB−1a′
(1,6) − c(1,6) = cBy′

(1,6) − c(1,6) > 0 (7.9)

holds.

The calculations result in g < −0.0185. Therefore, if even the slightest loss is

imposed upon the arc (1, 6), the variable x(1,6) enters the basis, and a new optimal

solution results, all other values remaining constant. As an example, suppose g(1,6) =

0.97; the new objective function value is 93.075, x(1,6) enters the basis, and the

total flow to the tgt node is improved to 1.64. The improved objective function

is essentially due to cost savings resulting from a diminished amount of flow along
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arc (6, 10), as well as a more direct path to target actor 10. The improved amount

of flow is due primarily to the fact that not all of the flow must pass through the

gatekeeper (actor 4) and then incur the loss between actors 5 and 7. Note also that

imposing a gain on this arc such that g(1,6) = 1 + g, (g > −0.0185) will not result in

arc (1, 6) entering the basis, ceteris paribus. Therefore, this suggests that a change

in the underlying model assumptions, and their associated parameters, may assist

in achieving the overall mission.

Using this information and technique, ranges may be developed for all columns,

or variables, of interest. Unfortunately, if the problems are of reasonable (i.e., practi-

cal) size, this type of analysis may actually lend itself to re-solving a modified problem

rather than implementing this approach, particularly if the ranges suggest further

exploration and a new solution is desired. Methods dealing with other conditions,

such as non-binding constraints, to determine one-at-a-time sensitivity ranges for

the technological coefficients are described in detail within [Hartley, 1976; Bazaraa

et al., 1990, pg. 281-3].

7.4.2 Changes in Thresholds

The right-hand sides (RHS) represented by bi capture one of three phenomena:

thresholds, sources, and sinks. The caution underlying this aspect of post-optimality

analysis, in the presence of primal degeneracy, is the possibility that a right-hand

side value may actually be increased or decreased beyond the range reported by

optimization software and still maintain the current basis as optimal [cf., Sounder-

pandian, 2001]. Although degeneracy may adversely affect the sensitivity analysis

in this manner, optimization packages typically mitigate this by simply providing

a conservative window of allowable ranges. For the notional problem, these conser-

vative RHS ranges are presented in Table 7.3. For node a the amount of influence

pushed to the network can be reduced by at most 0.5 units before the current ba-

sis may change. Additionally, the amount of influence provided at node a cannot
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Table 7.3: RHS Analysis
Row Current Allowable Allowable

(Node) Value Increase Decrease

a 3 0 0.5
1 0 1 0.5
2 0 1 0.5
3 0 0 0.5
4 -1 1 0.5
5 0 1.33 0.67
6 0 0 0.5
7 0 0.67 0.33
8 0 0 0.33
9 0 0.67 0.33
10 0 0.67 0.33
11 0 0 0.5
tgt - 2 0.67 ∞

increase, otherwise the problem becomes infeasible due to the current capacities on

the arcs from a to (1, 2, 3), all other things remaining equal.

Suppose ba = 2, implying that the course of action can only affect two of the

three initial target individuals. The new objective function value is 50, using as

expected a different basis; only 1 unit of flow makes it to individual 10. If the course

of action is only able to influence one of the three individuals (i.e., letting ba = 1),

both the objective function value and the basis change. The objective function value

is 9 and neither one of the target individuals {9, 10} are reached. This implies that

another plan should be crafted, possibly seeking other individuals with more direct

access to the target individuals, or ensuring that it is indeed possible to influence

the initial set of individuals. The potential effects due to uncertainty in thresholds

is worth considering. As indicated in Table 7.3, the threshold for individual 4, rep-

resented by b4, may be increased (decreased) by no more than 1 (0.5) in order to

maintain the current basis. Suppose the individual’s threshold was actually more

restrictive, thereby requiring more information, additional confirmation, or a signifi-
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cant amount of persuasion by others before individual 4 would decide to promulgate

the influence further into to network.

For example, letting b4 = −2, the new objective function value is 64, with

only one unit of flow reaching actor 10. Such a change suggests a more conservative

response to influence from those reporting information to him. However, despite

the change in this example, the course of action still provides enough influence to

convince actor 4 to promulgate influence through the network and ultimately to one

of the two target individuals. From here, it is up to the decision maker to decide

if this potential result, influencing one of the two target nodes, is sufficient for the

action’s requirements and needs. If the value of this threshold were to change such

that b4 = −3, the problem still remains feasible, a change of basis occurs, and actor

4 prevents the propagation of influence to the target individuals. If the value of this

threshold were such that b4 = 0, the problem remains feasible, and both target nodes

are fully influenced with btgt = −2.

All of the solutions presented thus far push at least some amount of influence

through actor 4. An alternative path exists via arc (1, 6) that can reach individual

10 and avoid actor 4. However, given the objective to minimize cost, this path tends

to be avoided. This observation, as well as indications of uncertainty in the cost

data, necessitates the investigation of the cost coefficient associated with this arc

and any others that may be in question.

7.4.3 Changes in Risks

Recall that the cost coefficients c(i,j) may account for the perceived operation

or personal risks of communication, actual costs of communication, and so forth.

If the overall objective seeks to minimize cost, as in the example, these estimates

play a major role in how much and along which paths influence flows through the

social network. To assess the implications of changes in costs, an approach similar
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Table 7.4: Cost Coefficient Analysis
Allowable Allowable

c(i,j) Current Increase Decrease

c(1,4) 8 0 3
c(1,6) 20 3 0.33
c(2,4) 6 ∞ 0
c(3,4) 2 5 31.67
c(4,5) 9 0.33 12.67
c(4,6) 15 ∞ 3
c(4,7) 24 ∞ 13.33
c(5,6) 10 ∞ 29.83
c(5,7) 6 0.25 9.50
c(6,10) 6 ∞ 0.33
c(6,11) 5 12.66 3.33
c(7,8) 4 15 3
c(7,9) 9 3 1.00
c(7,10) 7 0.33 ∞
c(8,9) 8 ∞ 3
c(9,tgt) 10 ∞ 1.00
c(10,tgt) 9 3 ∞
c(11,10) 4 ∞ 3.33
c(a,1) 6 0 ∞
c(a,2) 8 ∞ 0
c(a,3) 7 5.00 ∞

to varying the right-hand sides is taken. Given the current solution, the ranges of

allowable change for cost coefficients are provided in Table 7.4.

Considering the cost estimate for c(1,6), the data in Table 7.4 suggests that a

relatively small change (a reduction of ∼ 0.33) in c(1,6) may result in a change in

basis. Replacing this value with c(1,6) = 19, the new solution (i.e., new basis) has an

objective value of 92.66, with total flow to the tgt node improved to 1.64.

For some of the cost coefficients, such as c(1,6), a relatively small change may

result in a new basis and therefore a new solution. This type of sensitivity suggests

that multiple outcomes regarding flow within the network are possible, given even

the slightest uncertainty in input data. Therefore, careful consideration in determin-

ing the course of action and its possible consequences should be made, particularly
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with respect to the costs associated with interpersonal communication within the

social network of interest. Since these costs are based upon the individuals’ own

perspectives, estimates of this particular parameter are potentially the most difficult

to obtain via simple observation or surveillance. Consequently, courses of action

that are robust or insensitive to changes in these coefficients would be preferred over

those that are not. It may also suggest that an approach that lowers an individual’s

perceived cost may prove effective in directing the flow of influence.

The last remaining model input considered for post-optimality analysis is that

of the arc capacities, which serve as estimates of social closeness. The closer two

individuals are the stronger the relationship, resulting in a potentially greater degree

of influence exchange between them. These values are also subject to uncertainty.

7.4.4 Changes in Social Closeness

The problem formulation that was optimized initially took advantage of a fea-

ture that accounts for the upper bounds associated with the arc capacities. This is

given as simple upper bound (SUB) for any variable x(i,j). This facilitates perfor-

mance (time to solution) by implementing the generalized upper bounding technique,

but also eliminates the ability to use post-optimality information often provided by

the software [Ahuja et al., 1993, pg. 666-7]. Specifically of interest is the evaluation

of changes in the upper (or lower if applicable) bounds for the arc capacities. An

easy way to remedy this is through the inclusion of this capacity constraint within

the constraint set, as opposed to using the SUB function. Adding the constraint

x(i,j) ≤ u(i,j) provides an opportunity to then investigate the implications of uncer-

tain data regarding the estimates of social closeness used within the social network

in a manner identical to that of changes in the thresholds, sources, and sinks, with-

out changing the solution results. Accounting for all current arc capacities in the

constraint set of the original GNF formulation for the network in Figure 7.7, the

post-optimality results for all arcs with non-zero flow are shown in Table 7.5.
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Table 7.5: Arc Capacity Analysis
Current Allowable Allowable

Variable Flow Capacity Increase Decrease

x(1,4) 1 2 ∞ 1

x(2,4) 1 3 ∞ 2

x(3,4) 1 1 0 0

x(4,5) 2 7 ∞ 5

x(5,7) 2.66 5 ∞ 2.33

x(7,9) 0.33 6 ∞ 5.67

x(7,10) 1 6 ∞ 5

x(9,tgt) 0.33 1 ∞ 0.67

x(10,tgt) 1 1 0.33 0.67

x(a,1) 1 1 ∞ 0

x(a,2) 1 1 1 0

x(a,3) 1 1 ∞ 0

The allowable ranges indicate the change in the arc capacity that can be tol-

erated and still maintain the current basis. This type of analysis offers a means to

assess whether or not the current estimate of social closeness between two individuals

plays an important role in the current solution. The smaller the allowable range,

the more important an accurate assessment of social closeness is required. Note that

the variables or arcs that comprise the social network, as opposed to those emanat-

ing from node a or going to node tgt, are the main concern in this setting. Arcs

exhibiting relatively small ranges, and therefore sensitivity, should be of particular

interest, the values of which should be verified by additional intelligence information

as necessary.

Once expressed in a network flow context, influence flowing through a social

network lends itself to an array of post-optimality analyses. Given the likely impre-

cise nature of the inputs, particularly in a military or political setting, the ability

to conduct post-optimality analysis is critical in attempting to model influence and

behavior. Knowing the range of applicability of a solution or a parameter provides

the decision maker with an estimate of the robustness of a course of action.
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7.5 Summary

Social science literature has developed numerous theories and measures in order

to better understand human interaction and its consequences. Numerous explicit and

implicit connections have been suggested between social and physical networks; using

the analogy of influence as a pseudo-physical commodity, these connections facilitate

the study social networks via the generalized network flow problem.

While improvements are desirable in order to improve the quantification of so-

cial phenomena serving as inputs to this methodology, the operations research tools,

in this case the simplex method, provides an advantageous byproduct of a variety

of post-optimality analyses. As several aspects of the notional network appeared to

be sensitive to changes, the example reiterates the need for accurate, objective esti-

mates of network dynamics. It is posited that all of these capabilities will culminate

into a methodology to evaluate and develop courses of action for influencing social

networks.

Of course, the ultimate decision will remain with the decision maker. This ap-

proach provides the information campaign planner a means to investigate alternative

courses of action, and perhaps to aid in developing intelligence requirements where

the sensitivity and parametric analysis suggests. Given this base, a number of other

approaches and variations can be investigated and modeled.
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VIII. Case Study

8.1 Chapter Overview

The purpose of this chapter is to illustrate, compare, and contrast analysis

techniques developed during the course of this research. Consequently, this chapter

demonstrates some of the steps involved in the processes when applying these con-

cepts, as well as highlighting the need to carefully consider the associated underlying

assumptions. The data used, drawn from a dated open-source study, are merely for

illustrative purposes. The data are subjected to RBAP, KPP-2, network flow cen-

trality, and generalized network flow centrality analysis. The analysis is notional in

nature and is intended to be illustrative rather than being interpreted as an actual

operational study.

8.2 Data Description

The data analyzed within this chapter comprise a network of 48 individuals

with known or alleged ties to the Jemaah Islamiya terrorist network, commonly

referred to as JI. These members are a subset of the open source Al Qaeda network

data developed and analyzed by Sageman [2004], and were selected by subject matter

experts due to their affiliation with JI [Clark, 2005, pg. 5-1]. It is assumed that

link information within this data set are associated with symmetric ties between

two given individuals. With the exception of RBAP analysis, the assumption of

symmetry could easily be relaxed. While the existence of negative ties are certainly

of interest due to their potentially detrimental effects upon the strength of personal

ties, as well as their susceptibility to exploitation, the mathematical characterization

of this case study assumes existing ties are always positive in nature. The member

names and corresponding identification numbers are provided in Appendix O.
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JI terrorist cells predominantly span Southeast Asia, generally operating within

Indonesia, Malaysia, and the Philippines [U. S. Department of State, 2005, pg. 33,

101]. Membership estimates vary between the hundreds and the thousands; the orga-

nization has been confirmed to be “responsible for numerous high-profile bombings”

such as the hotel bombings in Bali (2002) and Jakarta (2003) [U. S. Department

of State, 2005, pg. 101]. Al Qaeda and JI are directly linked through Riduan bin

Isomoddin (also known as Hambali), who was the leader of JI and the Southeast

Asia operations chief of Al Qaeda until his capture in 2003 [U. S. Department of

State, 2005, pg. 101].

If the different contexts contributing to the relationships of the 48 case study

members were ignored and simply characterized as “a tie exists or not,” the resulting

social network is shown in Figure 8.1. Note, however, that these ties have evolved

from one or more contexts or situations. Specifically, these relationships have resulted

from at least one of six relations discernable by (open source) intelligence informa-

tion. Although there are a variety of relations that could be discerned, such as those

offered by Hite, or possibly geophysical location networks, the relations extracted

by Sageman include discipleship, worship, familial, relative, friend, and acquaintance

networks. For the purposes of this example, it is assumed that all members under

study remain at large and actively involved within the terrorist organization. While

this is not the actual case, it does not reduce the illustrative nature of the case study.

Clearly there are temporal aspects that must eventually be addressed, as they may

offer some insight into how the network may be evolving, growing, shrinking, and so

forth. The approach described here does not preclude including temporal effects as

changing snapshots in time. The various contexts comprising these relationships are

depicted in Figures 8.2 through 8.7 and were developed using the visualization tool

within the Organizational Risk Analyzer (ORA) [Carley, 2006]. Nodes displayed on

the left-hand side of each graph have no known relationships among other individ-

uals within that context. Technically, they do not qualify as isolates within that
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Figure 8.1: JI Combined Network for 48 Core Members

context’s graph. Their appearance is only meant to highlight the separated individ-

uals and maintain the intent of the layered concept that considers all actors within

the organization of interest.

The network shown in Figure 8.2 illustrates the affiliation of discipleship, which

clearly shows the prominence of Baasyir (1) and Sungkar (2). Due to limited descrip-

tive information associated with the data, it is unclear as to the significance of cluster

of actors Zulkarnaen (24), Dulmatin (32), Yunos (16), Syawal (7), Hambali (3), Iqbal

(5), and Sufaat (13). However, Hambali (3) and Zulkarnaen (24) have served high-

level leadership roles, leader and military chief, respectively [Abuza, 2006, pg. 4]. In

addition, all of the individuals within this cluster have known friendship ties, and

some share familial ones. Bassyir (1) and Sungkar (2) are the founders of the Is-
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Figure 8.2: JI Discipleship Network

lamic boarding schools that ultimately resulted in the initial JI membership analyzed

within this case study [Sageman, 2004, pg. 113].

The worship network in Figure 8.3 illustrates some overlap between the two

primary teachers, Baasyir (1) and Sungkar (2), as well as indirect contacts. If pos-

sible, a multigraph depicting which individuals attended the mosques purported to

recruit members for the Jihad would be valuable information to supplement the over-

all network structure. The social practice of worship, sharing, or learning extremist

interpretations of Islam plays a significant role in the “the process of affiliation to

the Jihad” [Sageman, 2004, pg. 114].

Figures 8.4 and 8.5 shows the kinship relations among the selected individuals,

where the relation is either through marriage (the relative network) or familial (the

family network), respectively [Sageman, 2004, pg. 112]. The last two networks in

Figures 8.6 and 8.7 essentially capture two different types of social interaction. The
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Figure 8.3: JI Worship Network

first, friendship, suggests a stronger type of social bond than the latter, acquaintance.

These could correspond to the strong and weak ties discussed by Granovetter [1973],

respectively.

Note that each of these contexts could be perceived as the layers defining the

interpersonal relationships of these individuals, contributing, in varying amounts, to

the strength of ties among them. Exactly how these layers are combined to ascertain

the strength values are likely dependent upon the organization of interest. Both the

similarity and decision theoretic approaches are illustrated in Section 8.5.

In addition, data capturing individual characteristics were also provided in the

sample data; the categories of data are shown in Table 8.1. This information serves

as inputs to the gain multiplier methodology described in Chapter VII, which is

demonstrated in Section 8.5.2.
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Figure 8.4: JI Relative Network
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Figure 8.5: JI Familial Network
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Figure 8.6: JI Friendship Network
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Figure 8.7: JI Acquaintance Network

262



Table 8.1: Actor-Specific Data [Sageman, 2004]
Individual Attribute

Short Name
Full Name

Date of Birth
Country of Birth

Clump (Regional or organizational grouping)
Youth National Status

Family Socio-economic Status
Religious background

School Attended
Educational Achievement

Type of Education
Occupation

Marital Status
Children

Social Background (Criminal)
Role (Position) in Organization

Year joined the Jihad
Age joining the Jihad
Place joined the Jihad

Country Joined the Jihad
Fate

Year left
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8.3 RBAP Analysis

Considering that very limited data is available at the initial phases of analysis

and network discovery, the RBAP centrality measure is first applied in order to

demonstrate the screening process. Recall that the RBAP measure offers a means

to do a preliminary screening of individuals, determining which individuals have an

advantageous position based upon network topology uncovered to this point. Since

the relations of interest are assumed to be symmetric, the application of RBAP

yields a centrality measure of actor position. Note that α represents the attenuation

of influence or information as a function of path distance. Therefore, RBAP with

α = 0 is equivalent to degree centrality, offering a local perspective on centrality.

RBAP with α = 1 measures the number of other actors that can be effectively

reached, offering a global perspective of centrality.

Both sets of results are of interest, but for different reasons. The locally cen-

tral individuals are able to potentially directly influence the greatest number of other

individuals, whereas the globally central individuals may serve as either advisors to

the locally central members or perhaps as liaisons to other organizations or regions

of operation. The relation between RBAP scores and actor position in these rela-

tively small networks may appear obvious. However, when dealing with new data,

characterizing networks of hundreds to thousands of individuals, a screening tool of

this nature would facilitate further analytic efforts.

Using the RBAP sensitivity analysis procedure provided in Appendix B, com-

parisons can be made as α is varied between 0 and 1 for a given network. Note

that, due to the path-based nature of RBAP, it is recommended that the measure

be applied only to connected networks such as the combined, discipleship, worship,

relative, and acquaintance networks.

Comparisons between the top five high-scoring individuals at both α = 0 and

α = 1 were made for the worship, discipleship, and combined networks. The former
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two were selected due to the significant role that worship and discipleship activities

play in indoctrinating individuals and building trust among members [Sageman,

2004, pg. 114]. The latter network was selected because a conglomerate type of

network is likely, assuming that the type of data immediately available for analysis

is derived from an automated intelligence process that must assess relationships from

a distance.

Applying RBAP to the worship network (Figure 8.3), the results for α =

0 and α = 1 are shown in Table 8.2. With this in mind, Baasyir (1), Sungkar

(2), and Maidin (30) have the highest local RBAP scores due to their central and

well-connected position within the worship context. This result for the first two

actors is not surprising, given this context; no descriptive information is available

on Maidin (30) in this data set. These results suggest that increased investigative

efforts focusing on Maidin (30) would be warranted.

With α = 1, the measure ranks Zulkarnaen (24), Thomas (48), and Faiz (18)

highest, respectively, all of whom joined the organization after Baasyir (1), Sungkar

(2), and Maidin (30). Zulkarnaen (24) has the lowest closeness centrality among

all others, due to his peripheral location; however, his relatively close access, as

measured by distance in links, to the most central members results in the highest

global RBAP score when attenuation of information or influence as a function of

path distance in links is assumed to be non-existent (i.e., α = 1). This suggests

that, despite his peripheral location, Zulkarnaen (24) may be an influential member

of the group, a potential connection to another, entirely separate organization, or

perhaps a promising access point to the network. These conditions are indeed the

case, as Zulkarnaen (24), purportedly the chief of military operations, has assumed

the overall leadership responsibilities of Baasyir (1).

Turning to the discipleship network (Figure 8.2), it is evident that Baasyir (1)

is a central actor, likely due to his role in originating the group. Interestingly, Sufaat

(13) scores the highest with α = 1. Sufaat (13), joining about 9 years after the group
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Table 8.2: RBAP (Worship Network)
α = 0 α = 1

Actor Score Actor Score

Baasyir (1) 16 Zulkarnaen (24) 19.14
Sungkar (2) 16 Thomas (48) 17.64
Maidin (30) 6 Faiz (18) 17.58

Iqbal (5) 4 Hafidh (40) 17.58
Syawal (7) 3 Rusdan (43) 17.58

Table 8.3: RBAP (Discipleship Network)
α = 0 α = 1

Actor Score Actor Score

Baasyir (1) 14 Sufaat (13) 20.5
Sungkar (2) 13 Marzuki (38) 15.36
Syawal (7) 4 Baasyir (1) 15.26

Zulkarnaen (24) 4 Mukhlas (4) 14.96
Hambali (3) 2 Ghozi (8) 14.96

was purportedly formed, became increasingly religious throughout his tenure in JI,

studying with senior members and “was the host for the Kuala Lumpur al Qaeda

conference leading to the USS Cole bombing and the 9/11 operations” [Sageman,

2004, pg. 112].

Applying RBAP to the combined network, formed by taking a Boolean sum

across all network layers, the top 5 ranked individual scores are shown in Table 8.4.

As one may expect, Baasyir (1) and Sungkar (2) are the most central from a local

(degree) perspective. Marzuki (38) is ranked highest due to his peripheral location

and direct connection to Baasyir (1). Marzuki (38) is purportedly the chief financier

for JI and remains at large [Meng, 2004].

Using the combined network shown in Figure 8.1, the correlations between

RBAP, at α = 0 and α = 1, and all other standard centrality measures are provided

in Table 8.5. As expected, degree centrality and RBAP at α = 0 are perfectly

correlated. RBAP at α = 1, as would also be expected, does not correlate well with
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Table 8.4: RBAP (Combined Network)
α = 0 α = 1

Actor Score Actor Score

Baasyir (1) 32 Marzuki (38) 33.39
Sungkar (2) 30 Baasyir (1) 33.34
Hambali (3) 16 M. Yunos (35) 31.94
Mukhlas (4) 15 Naharudin (36) 31.94

Zulkarnaen (24) 15 Roche (47) 31.94

Table 8.5: RBAP Correlations to Other Measures
RBAP

Degree Closeness Betweenness Eigenvector (α = 0)

Closeness 0.92 – – – –
Betweenness 0.87 0.77 – – –
Eigenvector 0.95 0.95 0.72 – –

RBAP (α = 0) 1 0.92 0.87 0.95 –
RBAP (α = 1) 0.28 0.4 0.4 0.32 0.28

the other measures, since it is capturing a process significantly different from those

assumed in traditional measures.

Since none of the network layers share exactly the same set of actors, only

qualitative assessments may be made across network layers. For example, Baasyir

(1) is in the top 5 most central actors from both a local and global perspective in all

three of the network layers analyzed, with the exception of the worship network at

α = 1, where he scores sixth. Although he is now known to be one of the co-founders

of JI, the screening approach offered by RBAP, used early in the investigative process,

clearly signals him as a potential actor of interest.

8.4 Key Player Analysis

All of the network layers within this case study are relatively small, which often

results in relatively small domatic numbers. For example, examining the combined

network from Figure 8.1, the domatic number given a maximum reach of 2 (δ2 = 1).
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Figure 8.8: NR2 (Combined Network)

The only solution to this problem is Baasyir (1). Consequently, if a maximum reach

of 2 is permitted, Baasyir is the key player from the NR2 problem perspective.

If key players were limited to influencing only those actors adjacent to them

(NR1), the domatic number increases to δ1 = 7. All 80 optimal solutions were gener-

ated. Recall that Borgatti’s heuristic generates only a single solution. Developing all

the optimal solutions provides a wider set of targeting options. Figure 8.8 provides

the histogram of the number of times a particular actor comprised an NR1 solution.

Actors Baasyir (1) and Maidin (30) appear in every optimal solution. Iqbal (5) and

Syawal (7) appear in 72 of the 80 optimal solutions. Hambali (3), one of the leaders

of JI, appeared in 54 of the 80 optimal solutions [Sageman, 2004, pg. 44, 138].

Another effect due to small size and connectivity of this network is that the

key players are, in this case, primarily comprised of the leadership. Considering the

general concept of the KPP-2 concept, to influence a network in an efficient manner,

this coincides with such a theoretical goal. The practical goal, however, must consider

the fact that convincing the adversarial leadership to promulgate influence to our own

Nation’s benefit is unlikely to occur. Therefore, it may be of interest to designate

individuals not eligible to serve as a key player. As discussed in the key player
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methodologies developed in Chapter V, this is easily accomplished via additional

constraints in the mathematical program. For example, suppose that the decision

maker still wanted to influence the entire network, relying upon a reach of no more

than two steps away from a key player. In addition, the solutions must require

that Baasyir (1), Maidin (30), Iqbal (5), and Syawal (7) are not selected. Given that

xi = 1 if actor i is selected as a key player, 0 otherwise, the addition of the constraint

[x1 + x30 + x5 + x7 = 0] achieves the desired effect. With this constraint in place,

the domatic number increases to δ2 = 9, and there are only six optimal solutions.

The histogram of key player occurrences within the solution is provided in Figure

8.9. Hence, tradeoffs exist that can be explored via the proposed methodology.

Similar constraints could be incorporated within the other variations of KPP-2

shown in Table 5.6. Note that seven of the nine individuals required to satisfy the

NR2 problem in this setting appear in all six solutions; these include Sungkar (2),

Hambali (3), Dwikarna (14), Azahari (24), Marzuki (38), Kastari (39), and Khalim

(46). The next step would be to assess the likelihood of successfully co-opting all

of these actors simultaneously. If this is not possible, then the fractional key player

problems could be used to assess further tradeoffs between access to potential players

and the effectiveness of the planned information operation.

If the key players were required to influence or contact all others within all

contexts, the key player algorithms cannot (and should not) simply be performed

on an aggregate network, as any given player may not be connected to the same

actors in all layers. An example of such a requirement could include the assignment

of key players to convey influence within the given contexts that form their personal

relationships. If this requirement is levied upon all layers, a reinforcing effect results,

ensuring that each actor is influenced by a key player in all contexts. The domatic

number for this multi-graph is 16 actors. Figure 8.10 depicts the histogram of player

occurrence within the 20 optimal solutions. There are 10 players that occur in every

one of the optimal solutions. Again, this indicates a possible need to evaluate the
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Figure 8.9: NR2 without Leaders (Combined Network)

operational tradeoffs if all of these actors cannot be convinced to serve as a key player

simultaneously. Note that the constraint matrix must be generated in a slightly

different manner due to varying isolates among the layers. Appendix M describes the

steps required to perform this type of analysis and provides accompanying MATLAB

code.

8.5 Network Flow Analysis

To demonstrate some of the main methodologies developed within this re-

search, application of the network flow centrality measure by Freeman et al. [1991]

to variants of the aggregated network are compared. Three cases are explored: (1) in-

telligence information is strictly limited to knowledge of existing ties; (2) intelligence

information has knowledge of the existence and composition (layers) of interpersonal

ties; and, (3) intelligence information consists of the composition of known ties, indi-

vidual attributes, and subject matter expert opinion regarding the relative influence

each individual may exert over others.

To investigate the first case, the network flow centrality procedure outlined in

Appendix K was applied to the sociomatrix corresponding to the combined network
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Figure 8.10: NR1 for all layers simultaneously

in Figure 8.1. The results are shown in column 1 of Table 8.6. To investigate the

remaining cases, several assumptions and data must be considered.

8.5.1 Arcs

In order to take advantage of all possible information, estimates of interper-

sonal tie strength serve as arc capacities, similar to the approaches described by

Renfro [2001] and Clark [2005]. Assuming that this information is derived from the

contexts comprising the known relationships, recall the two methods of measurement

developed in Chapter VI: the similarity-based and decision-theoretic approaches.

The similarity approach begins with combining the node-edge adjacency ma-

trices for each layer into one, conceptually shown in Equation 8.1, which then serves

as input to the Jaccardian similarity measure provided in Appendix I.

NEall = [NEfamily |NEfriend |. . .| NEdiscipleship] (8.1)

The interpersonal tie strength between actors i and j derived from this Jaccardian

similarity approach is denoted sJS(i, j). The strongest tie strength observed given
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this data set is 0.33. The network flow centrality results are provided in column 2 of

Table 8.6.

The decision-theoretic approach as applied to the case study data is based upon

the model shown in Figure 6.6. For the purposes of this example, it is assumed that

the discipleship and worship relations can be classified as significant events contribut-

ing to tie strength, as these are often contributing factors to the recruitment and

assimilation into JI [Sageman, 2004, pg. 114]. Consequently, the familial, relative,

friendship, and acquaintance networks are classified as relationships contributing to

the intimacy aspect of tie strength. For the time component, data capturing when

each pair-wise relationship was confirmed was not available; a proxy was developed.

The year each member joined the organization was available for most (44 of the 48)

members. For missing data, the average value for year joined (1991) was arbitrarily

selected. Let tlastobservation denote the year of the last observation or tie discovery

(2001). Let tjoin(i) denote the time that a given actor i joined the organization.

Given two individuals i and j, if a tie between them was known to exist in any one

of the layers, the estimated amount of time the tie was assumed to correspond to

t(i, j) = tlastobservation − max[tjoin(i), tjoin(j)] + 1. (8.2)

This approach serves as a proxy to estimate the possible length of time a tie existed,

based upon limited information. The scores range from 0 to 13. In order to derive

a value for the decision model, a linear function was assumed, and each score was

simply normalized by dividing by the time of the longest established tie (13 years).

Any appropriate form may be used, however.

Again, this ignores the fact that some individuals left the organization for one

reason or another throughout the period between 1989 and 2001. In addition, al-

though the original measure capturing the time data pertinent to a specific tie is pre-

ferred, this example is for illustrative purposes only. Finally, for illustrative purposes
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the model weights were evenly distributed; for example, let wtime = wSE = wI = 1/3,

wd = ww = 1/2, and so forth. Then, using the conceptual model presented in Equa-

tion 6.9, the decision-theoretic measure of tie strength, denoted sDA, is derived by

sDA (i, j) = wtimev [t (i, j)] + wSE [wdXd + wwXw] + wI [wfrXfr + wfaXfa + wrXr] .

(8.3)

Standard weight elicitation approaches would be used in a specific analysis, tem-

pered by available time and experts. Using the evenly distributed weights, available

network data, and the proxy for the amount of time spent within the relationships,

the strongest tie strength observed given this data set, assumptions, and approach

is 0.583.

From Table 8.6, Baasyir (1), Sungkar (2), and Hambali (3) all share the top

three positions in all variants of flow centrality: using only the adjacency matrix

X as input to the network capacity, topologically accounting for similarity sJS, and

topologically accounting for how the different contexts theoretically contribute to

the strength of interpersonal ties (sDA). Individuals Iqbal (5), Syawal (7), Zulkar-

naen(24) and Mukhlas (4) all vie for the next highest centrality scores. Given that

similar results were found for these men using the RBAP and KPP-2 techniques,

this suggests that placing increased investigative efforts upon them could be ben-

eficial. The next section repeats the network flow centrality, but also accounts for

sender-receiver specific effects upon the amount of information or influence traveling

among individuals.

8.5.2 Gains and Losses

To estimate the gain or loss of influence or information due to the sender-

receiver effects, the actor-specific data elements shown in Table 8.1 were reviewed

for their relevance to a logistic regression model as discussed in Section 7.2.3. All

but the names, fate, and year the individual left the organization were considered
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Table 8.6: Network Flow Centrality (Top 10 Individuals, Without Gains)
X Jaccardian Decision Analysis

ID Centrality ID Centrality ID Centrality

1 0.176 1 0.112 1 0.176
2 0.136 3 0.095 2 0.146
3 0.096 2 0.091 3 0.083
5 0.056 19 0.073 7 0.057
7 0.053 5 0.06 5 0.056
24 0.041 7 0.058 24 0.047
4 0.041 30 0.056 4 0.042
19 0.035 22 0.05 30 0.037
30 0.031 15 0.043 19 0.036
44 0.029 45 0.04 44 0.031

Table 8.7: Categories of Leadership [Clark, 2005, pg. 5-4]
Leadership Level Description of Members

1 Emir Types (Senior Leaders/Founders)
2 Trusted Second Tier/ Key Counselors and Facilitators /

Leadership Council
3 Regional/District Leaders / Key Operatives / Unit Com-

manders / Liaisons
4 Operatives who provide support or followers who often

risk arrest, physical injury or death (i.e., execute mis-
sions) / foot soldiers

as potential candidates for inclusion as predictor variables. The binary response

variable indicated the charisma of an individual.

For the purposes of this research, charisma represents the influential nature of

an individual based upon either their authoritative roles, their personal character-

istics, or both. The response was based upon an initial classification of individuals

by subject matter experts, shown in Table 8.7. To provide a demonstration of the

methodologies, it was assumed that if an individual i was in classified as 1 or 2, then

yi = 1, and 0 otherwise.

The initial list of predictor variables was pared down for a variety of reasons.

For example, the Age Joined and Date of Birth were highly negatively correlated
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(-0.716); as a result, only one of these, Age Joined, was selected as a possible pre-

dictor variable. The Clump characteristic was the same value for all actors within

the sample set, thereby providing little or no explanatory power. Ultimately, the

predictor variables Year Joined and Age Joined were selected due to their ability to

predict the response variable while dealing with missing data.

Operationally, each of these personal attributes could represent the authorita-

tive and personality aspects of source-dependent influence. For example, the longer

an individual has been a member, the more likely he has participated in operations,

built trust among members, and risen to leadership positions. The age at which

an individual joins, and the effect of this attribute upon that individual’s ability to

persuade others is likely culturally specific. For this case study, it is assumed that

elders, particularly religious ones, are well respected and revered due to their per-

ceived wisdom and experience. Consequently, if two members join at the same time,

the older one will be more influential and vice versa. Alternatively, if two members

had joined JI at the same age in their lifetime, the one who has more time in the

organization will be more influential, and vice versa. The process used to develop

pair-wise gains is documented in Appendix N.

Let X0 denote the intercept, X1 denote the year a given individual joined JI,

and X2 denote the age when membership began. Using the results in Table 8.8,

the estimated probability that a given individual i with characteristics X1 and X2

is charismatic (i.e., yi = 1) is

π̂i =
e(1087.8−0.548X1+0.099X2)

1 + e(1087.8−0.548X1+0.099X2)
. (8.4)

Once the estimated probabilities are calculated for each actor, Equation 7.4

is used to determine the gain multipliers gij for all actor pairs with a link in the

contexts or layers of interest. This information can then be used as input to the

generalized network flow centrality measure developed in Chapter VII. Table 8.9
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Table 8.8: Logistic Regression Results
Standard

Variable Coefficient Error χ2 p-value

Intercept 1087.8 626.7 3.013 0.083
Year Joined -0.548 0.313 3.033 0.082
Age Joined 0.099 0.059 2.733 0.098

Table 8.9: Network Flow Centrality (Top 10 Individuals, With Gains)
X Jaccardian Decision Analysis

ID Centrality ID Centrality ID Centrality

1 0.17 3 0.14 1 0.16
3 0.13 1 0.11 2 0.12
2 0.12 30 0.09 3 0.11
5 0.09 2 0.08 5 0.08
30 0.07 5 0.08 30 0.08
4 0.06 15 0.07 4 0.06
7 0.05 19 0.07 7 0.05
15 0.05 7 0.06 15 0.05
24 0.05 22 0.06 24 0.05
19 0.04 4 0.05 19 0.04

compares the top 10 highest ranked individuals with respect to generalized network

flow centrality. Baasyir (1), Sungkar (2), and Hambali (3) continue to rank highly

due to their network location. However, the inclusion of personal attributes and

their effect upon interpersonal influence brought Maidin (30) into the top three

when the Jaccardian approach to tie strength is used. Interestingly, Maidin (30)

was the leader of the JI members within Singapore, suggesting that looking at these

networks from various perspectives may provide insight into organizational strengths,

vulnerabilities, and individuals that should be subjected to either further intelligence

scrutiny or military action [Ministry of Home Affairs, Singapore, 2002]

This new generalized network flow approach to centrality not only accounts for

network topology, but also includes the effects upon information or influence due to

the interaction of different individuals, no longer viewing the nodes as homogenous

entities. Therefore, this is another option towards better models of social networks.
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8.6 Summary

The measures related to arc capacity and gain factors are amenable for use in

influence course of action analysis as presented in detail within Section 7.3. Overall,

these techniques serve as flexible tools to process and evaluate new information (via

RBAP), account for detailed information regarding the interpersonal relationships

(via the information garnered from layers and individual characteristics), and explore

potential influence courses of action and their efficacy. All of these methods are

designed to serve the intelligence community in the process of knowing the adversary,

and eliminating them.
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IX. Conclusions and Recommendations

9.1 Overview

Recalling the Colonel Mathieu quote, “To know them means to eliminate

them,” this research sought to develop new theory and means of investigating non-

cooperative networks, facilitating increased insight into network arrangement and

evolution, with the goal of identifying potential opportunities for influence opera-

tions. Such opportunities lie within the ability to disrupt the effective operation and

growth of these networks, or destroy them entirely. Although these adversaries can

be affected in a number of ways, this research focuses upon either removing or mit-

igating an organization’s most influential individuals, or finding susceptible points

of entry and conveying information or influence that contributes to winning this

war of ideas. This chapter provides a summary of the methodological and practical

contributions of this dissertation, as well as recommendations for areas of future

research.

9.2 Dissertation Contributions

This research examined non-cooperative networks from a number of perspec-

tives, with data requirements ranging from single-layered (or simply aggregated)

topological data to complex, multi-layered network data also requiring information

characterizing the individuals themselves.

The study begins with the assumption that limited information that captured

the dyadic interactions between individuals was available. The methodology offers

a screening tool that lends itself to the data-sparse environment initially confronted

by analysts. The reach-based assessment of position centrality measure is founded

upon an extension of previously existing graph theoretic and social network analysis

methods. To model the surreptitious communications among clandestine networks,
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this new measure focuses upon the flow of information or influence along geodesics.

Implementation of the attenuation concept, shared among several other centrality

measures, is improved upon, yielding a capability to analyze the full range of possible

options. This measure incorporates these theoretical aspects such that the technique

is amenable to non-cooperative networks, is computationally attractive, and is freed

from the analytic constraints inherent to similar social network analysis measures.

The next area of research improved upon the key-player problem (KPP-2) de-

scribed by Borgatti [2003a]. This concept is generally viewed as a group centrality

problem, which attempts to identify the most central group of people within a net-

work rather than its most central actor. Applying mathematical programming tech-

niques to this relatively new sociological problem yielded not only models equivalent

to Borgatti’s original problems and concomitant heuristic procedures, but techniques

to investigate new aspects of the key-player problem as well. These extensions ac-

commodate specific analysis requirements as well as other methodological constructs

presented in other areas of this research. Examples of these extensions include the

use of interpersonal tie strength values as input into the p-median variant of KPP-2.

As evidenced by the variety of applications to which the mathematical program-

ming models were originally applied, the methodology developed in this research

may be easily extended to networks other than simply social networks. For exam-

ple, multi-graphs capturing the interactions among individuals and Internet sites,

layered networks, key components of layered infrastructure, and key “cities, regions,

or tribes” within an influence structure can be investigated using this approach.

Although the latter examples are not limited to non-cooperative networks, they do

offer opportunities to influence the environments within which such networks thrive.

Assuming that data availability improves as analysis efforts progress, two meth-

ods to take advantage of information characterizing the nature of interpersonal ties

are developed. This ultimately yields a new, theoretical approach measuring the

strength of interpersonal relationships. This approach is similar to that offered by
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Renfro [2001] and Clark [2005], but is not as data intensive as the former, and less

reliant upon other sociometric methods than the latter. The first of two methods

proposed in this area focuses primarily upon the relationships between similarity and

tie strength, along the lines of homophily. The second method builds upon the con-

ceptual relationships between multiplexity and tie strength [Granovetter, 1973]. The

primary benefit of the similarity technique is that the multiplex data is most likely

readily available within existing data. The primary detriment of the similarity tech-

nique is that all dimensions of a relationship are treated equally, an assumption that

may not sufficiently represent reality. The second method obviates this assumption,

although at the expense of increased analytic effort. The resulting decision theoretic

model builds upon the sociological construct of the factors that may contribute to

tie strength.

With this model of tie strength, different layers (or relationship dimensions)

can be weighted, preferably from the perspective of the members within the target

organization. Such measurements can and should be debated, since an inherent bias

towards ones own world view is only human and the purpose of the approaches is

to deal with networks that are intentionally obscuring their activities. Traditional

sensitivity analysis techniques and new, dynamic weighting schemes are proposed

to investigate these types of questions. Tie strength then serves as an input into

classic network flow models as an arc capacity, representing the maximum amount of

influence one actor may impose upon another [cf. Freeman et al., 1991; Renfro, 2001;

Clark, 2005]. However, it is also proposed that tie strength is inversely proportional

to the cost, or at least a component therein, of interpersonal communication. Either

option offers a means to improve the network flow representation of social networks.

An additional improvement related to the application of network flow models

to analyze social networks is the pair-wise valued measure of influence gains and

losses. This measurement approach mathematically develops the relationships be-

tween an individual’s personal characteristics and the power or persuasive capability
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that results. Since a gain of influence could be garnered from a social position of

power, the persuasive nature of the individual, or both, the overarching concept of

charisma is considered. Logistic regression using individual characteristics and ex-

pert opinion regarding who is or is not persuasive relative to the others within the

network yields a fitted logistic response value. This value can be interpreted as the

estimated probability that an actor with certain characteristics is charismatic (i.e.,

can invoke influence via either their power or persuasive characteristics, or both).

These values can then be compared on a pair-wise basis, for all pairs of individu-

als that are known to have at least one dimension of relationship. This ultimately

yields a gain (or loss) multiplier which is incorporated into a generalized network

flow formulation.

The value of tie-strength is essentially inferred from the multiplex relationships.

The proposed methods to measure tie strength allow the aggregation of multiple so-

cial networks into a single, weighted network. Combining these techniques with the

gains and losses concept, a logical extension of the network flow centrality mea-

sure proposed by Freeman et al. [1991], is offered. Although Freeman et al. merely

speculated arc weights, this dissertation provides a means to determining a meaning-

ful value, in addition to the methods developed by Renfro [2001] and Clark [2005].

The inclusion of individual-specific attributes, similar to the work by Clark [2005],

potentially improves the fidelity of the social network model. Consequently, the in-

clusion of both topological and individual specific components of influence yield a

generalized network flow centrality measure; this measure estimates the centrality

of an individual based upon not only their connections, but the strength of their

connections, as well as how their degree of influence is perceived by others.

The mathematical programming model of the generalized network flow social

model may also be used to investigate potential courses of action levied against a

non-cooperative network. As demonstrated in the case study in Chapter VII, the
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efficacy of influence operations impinging upon susceptible individuals in order to

influence inaccessible decision makers or opinion-leaders may be examined.

All of the methods presented in this dissertation include some form of sensitiv-

ity analysis. Although the general assumption of deterministic data is maintained

in this research, it is clear that relationships, networks, and social roles are likely

changing over time. Sensitivity analysis techniques offer a means to deal with this

phenomenon in the interim. Snapshots in time, consistent with the deterministic as-

sumptions of the approaches developed here, provide a means to represent dynamic

change over time.

To supplement the theoretical contributions of measurement and methodologi-

cal approaches as applied to layered social networks, practical contributions comprise

the demonstration of the overall methodology in Chapter VIII and the associated

suite of algorithms developed within the MATLAB environment. This documented

code is available for immediate use, either for intelligence analysis or for future re-

search efforts.

9.3 Recommendations for Future Research

Within the intersection of operations research and the sociological sciences,

there remain a number of research opportunities. Refinements in existing social

network analysis measures, such as those recommended in Appendix H regarding in-

formation centrality [Stephenson and Zelen, 1989], as well as the methods developed

in this dissertation, are still needed.

Regarding the genre of network flow models, as discussed in Borgatti [2005]

for example, different SNA measures are typically accompanied by underlying, of-

ten implicit, assumptions regarding the traversal mechanism of the entity of interest

(influence, power, prestige, disease, rumors, etc.). Consequently, applying an in-

appropriate measure to a network phenomenon may give misleading or erroneous
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results. It is suggested that applying certain mathematical programming techniques

may also suffer this same weakness. Simply stated, different commodities of interper-

sonal interaction (communication of influence, rumors, packages, and so forth) have

the potential to traverse a network in different ways, not all of which are amenable

to the classic network flow problem. To bolster the research dealing with mappings

between SNA and OR, particularly in the area of network flow models, the implica-

tions of flow typology should be considered in detail. Such a future analysis should

include appropriate assumptions or improve network flow models via additional con-

straints. For example, for each possible combination of trajectories and method of

transfer discussed in Borgatti [2005], a mapping between the network commodity,

its behavior, and one of the following options could include: (1) a standard network

flow formulation; (2) a network flow formulation with appropriate side constraints;

(3) a network flow-like formulation; or (3) a recommendation for either another

mathematical program, a simulation, or a heuristic.

Regarding the measure of interpersonal tie-strength based upon (topological)

similarity, it may be of interest to investigate the theoretical and practical feasibility

of the application of 19 other similarity measures as described in Yin and Yasuda

[2005]. Simple, robust, and accurate measures of tie strength that are quick to

calculate and grounded in sociological theory and intelligence needs are paramount

to investigating these types of networks. Again, this method is advantageous in that

it is predicated upon discovered layers of relationships; therefore, the need for a cross-

cultural methodology is not a primary concern as existing connections themselves

contain the elements important to that organization. Of course, determining what

those exact elements are may be challenging based upon the nature of the data

collected. Unfortunately, most, if not all, current similarity approaches assume each

layer is equally important with regard to its contribution to tie strength.

Since one of the objectives of this research includes disrupting the operation

or efficiency of a target network, accounting for negative ties may also be of interest.
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How to explain, model, and exploit negative ties is critical, because destroying these

networks will inevitably involve some element of turning the members against one

another. The cohesion research offered by Downs [2006] may prove a useful start in

finding methods to disrupt networks via negative ties, and measuring their efficacy.

The network disruption objective also suggests that the key player (KPP-1)

problem is of interest. Recall that KPP-1 finds a subset of actors within a network

that, if removed, will maximally disrupt communication among the remaining ac-

tors. To date, no mathematical program equivalent to the heuristic procedure (and

objective function) has been successfully developed. However, such a program would

benefit the analysis process in ways similar to those explored for KPP-2. For ex-

ample, disruption could be tailored to meet specific decision maker requirements, as

opposed to adhering strictly to the objective function defined by Borgatti [2003a].

Additionally, multiple optimal solutions, if they exist, would offer alternative plans

and insights into the structural roles of individuals within the context of KPP-1.

Finally, the exploration and development of heuristic techniques to address both

KPP problems is of interest due to the computational complexity involved. This

would facilitate KPP solutions for larger networks, either social, physical, or any

network-like system.

Visualization and data continue to be a limiting factor when exploring so-

ciometric methods. Data, particularly unclassified data for use in open, academic

research, is often difficult to obtain. Although ongoing efforts to improve both areas

exist, there does not appear to be any visualization techniques or software applica-

tions that lend themselves specifically to viewing layered networks. Data generation

of networks exhibiting properties similar to those of the target networks may be

accomplished using the Organizational Risk Analyzer tool Carley [2006] or by ex-

tending the initial network generation work of Sterling [2004]. One possible means to

visualize layered networks could start with plotting the entire, aggregated network

as a single layer, with the initial layout determined by the analyst. Assuming the

284



network nodes are at a given (x, y) location and the network resides within the plane

z = 0, any subsequent layers l will reside within the planes z = l,l ∈ Z
+, with each

node using the same corresponding (x, y) coordinate in z = 0.

A host of challenges remain. Social network modeling will remain a fertile area

of research for the the operations researcher.

9.3.1 Conclusion

The war on terrorism is going to be a long one; it is “. . . both a battle of
arms and a battle of ideas–a fight against terrorist networks and against
their murderous ideology” [DOD, 2006b, pg. v,22].

Considering the nature of this war, understanding the enemy is paramount. No

longer fitting the traditional paradigm of combat between great armies, this war in-

volves not only defeating the individuals actively threatening our National Security,

but also mitigating the environments that nurture the development and continuity of

such groups. In order to accomplish this, the appropriate communities must at a min-

imum (1) improve the understanding of why people would undertake such activities;

(2) identify limitations or vulnerabilities existing within non-cooperative networks

and how to exploit them; and, (3) determine what repercussions may follow an op-

eration to minimize the likelihood that actions executed inadvertently contribute to

the environments that promote extremism.
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Appendix A. Code: rbap.m

This code performs the reach-based assessment of position (RBAP) measure

developed in Chapter IV.

function [rbapR] = rbap(X, alpha)

% Usage rbap(X, alpha)

% This is the fast(er) version

% - X is the sociomatrix (adjacency matrix) of a network (graph);

% alpha is an attenuation factor, between 0 and 1, that is

% specified by the user to indicate the importance or expected

% degradation of influence associated with longer-distance

% paths between individuals. An alpha = 0 causes this measure

% to revert to simple out-degree centrality.

% An alpha = 1 causes this measure to be bounded above by the

% number of other actors that can be reached/influenced by a

% given actor.

%

% This procedure provides the reach centrality/influence

% measure developed by Hamill, Deckro, Chrissis, and Mills

%

% - X may be a symmetric (asymmetric) graph (digraph).

% - The output (rbapR) is a non-normalized index of each actor’s

% influence through reachability (or radiality), based upon

% the number (and distance) of shortest paths to all other

% actors.

%

% - jth / last modified on 8 FEB 06

tic

% Get dimensions of input

[n, m] = size(X);

% Reachability matrix is used to track shortest paths between

% actors

% First step, reach of one, is derived from the input (X)

rmatrix = X;

% vector used to zero out diagonals

zdiag = [1:(n+1):(n*n)]’;

% initialize reach normalization matrix

% number of other actors reached... at step p

nAR = sum(X,2);

% first element in power sum is the adjacency matrix
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tRBAP = X;

% temporary power matrix used to speed up calculations

txPow = X;

% for shortest paths of length 2 to the maximum (n-1)

for i = 2:(n-1);

% find non-zero entries in previous power of X

lastStep = find(rmatrix==0);

% raise X to the next power and zero out diagonals

txPow = txPow*X;

xPow = txPow;

xPow(zdiag) = 0;

% find non-zero entries in the next power of X

nextStep = find((xPow)>0);

% find entries that become non-zero for the first time

reach = intersect(nextStep, lastStep);

% update the reachability matrix

rmatrix(reach) = i;

% initialize a temporary matrix of zeros to capture

% number of paths

tmpR = zeros(n,n);

% temporary matrix captures the number of (shortest)

% paths of length i

tmpR(reach) = xPow(reach);

% can break out of program early if this is all zeros...

if nnz(tmpR)==0

break

end

% need to divide next iterate by product of nAR

% (if it is not zero)

for k = 1:n

if nAR(k,1)>0

tmpR(k,:) = tmpR(k,:)/nAR(k);

end

end %k

% update measure results

tRBAP = tRBAP + (alpha^(i-1))*tmpR;

% update for next iteration the temporary matrix and

% divisor captures the number of new actors reached

tmpAR = zeros(n,n);

tmpAR(reach) = 1;

tmpARdiv = sum(tmpAR,2);

nAR = nAR.*tmpARdiv;
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end

% Find row sum for each actor over all other actors, over all

% sp lengths. Note that path lengths have been attenuated

% already

rbapR = sum(tRBAP,2);

toc
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Appendix B. Code: rbapsa.m

This code performs the sensitivity analysis of the attenuation factor α within

the reach-based assessment of position (RBAP) measure.

function [pdata] = rbapsa(X)

% Usage rbapsa(X)

%

% - X is the sociomatrix (adjacency matrix) of a network (graph);

% - The attenuation factor, alpha, is set to values in [0, 1] and

% the RBAP measure is calculated for each.

% - The results are then plotted to facilitate sensitivity analysis

% of alpha, and its impact upon the ranking between individuals

% based upon the assumption of how much (or little) indirect

% communication is distance-attenuated.

% Last revised 12 JAN 06 - jth

% ***** Begin Function *****

[n, m] = size(X); % get dimensions of input

a = 0:0.1:1; % set range of alpha

[ra, ca] = size(a); % get dimensions of output

% for each setting of alpha, call RBAP and store results

for i = 1:ca

rbc = rbap(X,a(i));

pdata(:,i) = rbc;

end

% Plot results

plot(a, pdata);
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Appendix C. Code: KPP-2 (NR.m)

This code finds the minimum size kp-set required to reach all nodes, using

m-steps or less between a key player and his assigned actor. Note that this and other

programs also use the function Mreach.m presented at the end of this appendix.

function [ kp_nr ] = NR( X, MR, enum )

% Useage NR(X, MR, enum)

% X - Adjacency matrix

% MR - Maximum reach allowed by any key player

% (-1 for maximum (N-1))

% enum - Enumerate solutions until infeasible or maximum number have

% been found (maxsol is currently set at 100 solutions)

% Updated 4 JUL 2006, jth

% Requires the MATLAB Optimization Toolbox

% The current objective function assumes that all options are equal.

% This, however, is amenable to change to accommodate external and

% internal costs associated with selecting/targeting the individual

% and the workload demanded/assumed of the individual, respectively.

%

% Notes:

% -- This program appears to be computationally competitive to the

% heuristic provided by Borgatti. Large-scale problems (n > 1000),

% however, may require linking up CPLEX to MATLAB, or using other

% specialized optimization programs with more efficient algorithms

% (e.g. LINGO.

tic

% ***** initialize variables *****

maxSol = 100; % maximum number of solutions (for enum = 1)

numSol = 0; % current number of solutions

N = size(X,1); % dimension of X

A = zeros(N); % constraint matrix

b = - ones(N,1); % column vector as RHS

f = ones(N,1); % column vector as obj. function coeff.

kp_nr = []; % storage for solutions

firstSol = 1; % boolean flag to control enumeration loops

foundall = 0; % boolean flag to control enumeration loops

kpK = 0; % kp-set size, facilitates enumeration loops

% Develop constraint matrix based upon inputs X and reach MR

% Note: See Mreach code for details
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if MR == -1

rX = Mreach(X,(N-1)); % calculate maximum reach matrix

else

rX = Mreach(X,MR); % calculate reach matrix up to MR

end

dc = find(rX>0); % find non-zeros in reach matrix

A(dc) = - 1; % set up constraint matrix, A

if enum

while not(foundall)

% column vector of x as solution

[mpSol, obj, flag] = bintprog(f, A, b);

if firstSol

kpK = obj; % size of min. dom. set

firstSol = 0;

end % if firstSol...

if flag == -2 | (numSol == maxSol) | (obj ~= kpK)

foundall = 1

else

kp_set = find(mpSol(1:N)==1);

kp_nr = [kp_nr kp_set];

b = [b; (kpK - 1)]; % add extra rhs

A = [A; mpSol’]; % add extra constraint

numSol = numSol + 1;

end % if flag...

end % while not...

% Plot data in histogram

% (only required when enumerating solutions)

[a, b] = size(kp_nr);

pdata = [];

xaxis = 1:N;

for j = 1:a

pdata = [pdata kp_nr(j,:)];

end

hist(pdata,xaxis);

xlim([0 N]);

ylim([0 b]);

else

% column vector of x as solution

mpSol = bintprog(f, A, b);

kp_nr = find(mpSol(1:N)==1) % key players

end % if enum...

toc % time elapsed
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The following function is used within some of the KPP-2 optimization prob-

lems, and may also be used stand-alone.

function [rmatrix] = Mreach( X, M )

% Useage Mreach(X,M)

% X - Sociomatrix

% M - Maximum number of steps allowed for reachability.

% This function determines which actors are reachable from others,

% based upon a limit of M-steps or less.

% This currently assumes symmetric relationships.

[n, m] = size(X); rmatrix = X; for i = 2:M

lastStep = find(rmatrix==0);

nextStep = find((X^i)>0);

reach = intersect(nextStep, lastStep);

rmatrix(reach) = i;

if (sum(find(rmatrix==0))==0) % all

break

end

end for j = 1:n

rmatrix(j,j)=1;

end
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Appendix D. Code: KPP-2 (FNRK)

This code minimizes the number of actors missed if the size of the key player

set is less than the m-domatic number of the graph. For this code, the maximum

reach allowed m is assumed to be either 1 or 2, which is modeled by FNRK1.m and

FNRK2.m, respectively. The output is a listing of the key players, a separator of 0,

and the total number of actors missed.

function [ kp_fnrk1 ] = FNRK1( X, K, enum )

%Usage FNRK1( X, K, enum )

% X - Adjacency matrix

% K - Size of kp-set

% enum - Enumerate solutions until infeasible or maximum

% number has been found

% (maxsol is currently set at 300 solutions)

% Updated 22 MAR 2006, jth

% Requires the MATLAB Optimization Toolbox

% Seeks to minimize f(x) : Ax >= 1, x is binary {0, 1}

% Objective is FNRK1

tic

maxSol = 300;

numSol = 0;

N = size(X,1);

kp_fnrk1 = [];

R1 = (X’ + eye(N));

A = [(-R1) (-eye(N))];

Aeq = [ones(1,N) zeros(1,N)];

b = - ones(N,1);

beq = K;

% column vector as obj. function coeff.

f = [zeros(N,1); ones(N,1)];

% While continue, keep solving until the cardinality of the kp set

% increases by one...

if enum

foundall = 0;

kpK = 999999;

numMiss = 999999;

while not(foundall)

% column vector of x as solution
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[mpSol, obj, flag] = bintprog(f, A, b, Aeq, beq);

% key players

tmp_kp_fnrk1 = find(mpSol(1:N)==1);

% missed players

tmp_miss_fnrk1 = nnz(mpSol((N+1):2*N));

if flag == -2 | (numSol > maxSol)

foundall = 1

else

if (nnz(tmp_kp_fnrk1) <= kpK) &

(tmp_miss_fnrk1 <= numMiss)

numSol = numSol + 1;

kp_fnrk1 =

[kp_fnrk1 [tmp_kp_fnrk1; 0; tmp_miss_fnrk1]];

kpK = nnz(tmp_kp_fnrk1);

numMiss = tmp_miss_fnrk1;

% add extra rhs for additional constraint

b = [b; (kpK - 1)];

A = [A; [(mpSol(1:N))’ zeros(1,N)] ];

else

foundall = 1;

end

end

end

else

% column vector of x as solution

mpSol = bintprog(f, A, b, Aeq, beq);

% key players

tmp_kp_fnrk1 = find(mpSol(1:N)==1);

% missed players

tmp_miss_fnrk1 = nnz(mpSol((N+1):2*N));

kp_fnrk1 = [tmp_kp_fnrk1; 0; tmp_miss_fnrk1];

end

toc

function [ kp_fnrk2 ] = FNRK2( X, K, enum )

%Usage FNRK2( X, K, enum )

% X - Adjacency matrix

% K - Size of kp-set

% enum - Enumerate solutions until infeasible or maximum

% number has been found

% (maxsol is currently set at 300 solutions)

% Updated 22 MAR 2006, jth

% Requires the MATLAB Optimization Toolbox
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% Seeks to minimize f(x) : Ax >= 1, x is binary {0, 1}

% Objective is FNRK2

tic

maxSol = 300;

numSol = 0;

N = size(X,1);

kp_fnrk2 = [];

R1 = (X’ + eye(N));

tR2 = (X’)^2 + R1;

dc = find(tR2>0);

R2 = zeros(N);

R2(dc) = - 1;

A = [(-R1) R2 (-eye(N))];

Aeq = [ones(1,2*N) zeros(1,N)];

b = - ones(N,1);

beq = K; % column vector as RHS

b = - ones(N,1); % column vector as RHS

% column vector as obj. function coeff.

f = [zeros(2*N,1); ones(N,1)];

% While continue, keep solving until the cardinality of the kp set

% increases by one...

if enum

foundall = 0;

kpK = 999999;

numMiss = 999999;

while not(foundall)

% column vector of x as solution

[mpSol, obj, flag] = bintprog(f, A, b, Aeq, beq);

% key players, 1-step

tmp1 = mpSol(1:N);

% key players, 2-step

tmp2 = mpSol((N+1):2*N);

% all key players

tmp_kp_fnrk2 = [ find(tmp1==1); find(tmp2==1) ];

% missed players

tmp_miss_fnrk2 = nnz(mpSol((2*N+1):3*N));

if flag == -2 | (numSol > maxSol)

foundall = 1

else

if (nnz(tmp_kp_fnrk2) <= kpK) &

(tmp_miss_fnrk2 <= numMiss)

numSol = numSol + 1;
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kp_fnrk2 =

[kp_fnrk2 [tmp_kp_fnrk2; 0; tmp_miss_fnrk2]];

kpK = nnz(tmp_kp_fnrk2);

numMiss = tmp_miss_fnrk2;

% add extra rhs for additional constraint

b = [b; (kpK - 1)];

A = [A; [(mpSol(1:2*N))’ zeros(1,N)] ];

else

foundall = 1;

end

end

end

else

% column vector of x as solution

mpSol = bintprog(f, A, b, Aeq, beq);

% key players, 1-step

tmp1 = mpSol(1:N);

% key players, 2-step

tmp2 = mpSol((N+1):2*N);

% all key players

tmp_kp_fnrk2 = [ find(tmp1==1); find(tmp2==1) ];

% missed players

tmp_miss_fnrk2 = nnz(mpSol((2*N+1):3*N));

kp_fnrk2 = [tmp_kp_fnrk2; 0; tmp_miss_fnrk2];

end

toc % time elapsed
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Appendix E. Code: KPP-2 (FNR.m)

This code minimizes the number of key players required to cover (1-PC)

percent of the network members, with the additional constraint upon the maximum

reach allowed between a key player and its assigned actor(s). The output is a listing

of the key players, a separator of 0, and the total number of actors covered.

function [ kp_fnrm ] = FNR( X, MR, PC, enum )

% Useage FNR(X, MR, PC, enum)

% X - Adjacency matrix

% MR - Maximum reach allowed by any key player

% (-1 for maximum (N-1))

% PC - Percent of network that can be MISSED

% enum - Enumerate solutions until infeasible or maximum number

% have been found (1=Yes, 0=No)

% (maxsol is currently set at 100 solutions)

% Updated 4 JUL 2006, jth

% Requires the MATLAB Optimization Toolbox

% Seeks to minimize f(x) : Ax >= 1, x is binary {0, 1}

% Objective is FNRm

% ***** initialize variables *****

maxSol = 100; % maximum number of solutions (for enum = 1)

numSol = 0; % current number of solutions

N = size(X,1); % dimension of X

U = floor(PC*N);

A = zeros(N); % constraint matrix

b = - ones(N,1); % column vector as RHS

f = ones(N,1); % column vector as obj. function coeff.

kp_fnrm = []; % storage for solutions

firstSol = 1; % boolean flag to control enumeration loops

foundall = 0; % boolean flag to control enumeration loops

kpK = 0; % kp-set size, facilitates enumeration loops

% Develop constraint matrix based upon inputs X and reach MR

% Note: See Mreach code for details

if MR == -1

rX = Mreach(X,(N-1)); % calculate maximum reach matrix

else

rX = Mreach(X,MR); % calculate reach matrix up to MR

end

dc = find(rX>0); % find non-zeros in reach matrix
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A(dc) = - 1; % set up constraint matrix, A

A = [A -eye(N); zeros(1,N) ones(1,N)];

b = [-ones(N,1); U]; % column vector as RHS

% column vector as obj. function coeff.

f = [ones(1,N) zeros(1,N)]’;

tic

% While continue, keep solving until the cardinality of the kp set

% increases by one...

if enum

while not(foundall)

% column vector of x as solution

[mpSol, obj, flag] = bintprog(f, A, b);

if firstSol

kpK = obj; % size of min. partially dom. set

firstSol = 0;

end % if firstSol...

if flag == -2 | (numSol == maxSol) | (obj ~= kpK)

foundall = 1

else

kp_set = find(mpSol(1:N)==1);

missed = sum(mpSol((N+1):(2*N)));

kp_fnrm = [kp_fnrm [kp_set; 0; missed]];

% add extra rhs

b = [b; (kpK - 1)];

% add extra constraint

A = [A; [mpSol(1:N)’ zeros(1,N)]];

numSol = numSol + 1;

end % if flag...

end % while...

else

mpSol = bintprog(f, A, b); % column vector of x as solution

% key players

kp_fnrm = [find(mpSol(1:N)==1); 0; sum(mpSol((N+1:2*N)))]

end % if enum...

toc % time elapsed
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Appendix F. Code: KPP-2 (DNR.m)

This code finds the minimum size kp-set required to reach all nodes, using

m-steps or less between a key player and his assigned actor, while distributing the

workload among the key players. This is accomplished by using the inverse of the

out-degree of each individual as the cost coefficient in the objective function.

function [ kp_dnr, f ] = DNR( X, MR, enum )

% Useage DNR(X, MR, enum)

% X - Adjacency matrix

% MR - Maximum reach allowed by any key player

% (-1 for maximum (N-1))

% enum - Enumerate solutions until infeasible or maximum

% number have been found

% (maxsol is currently set at 100 solutions)

% Updated 5 JUL 2006, jth

% Requires the MATLAB Optimization Toolbox

% ***** initialize variables *****

maxSol = 100; % maximum number of solutions (for enum = 1)

numSol = 0; % current number of solutions

N = size(X,1); % dimension of X

A = zeros(N); % constraint matrix

C = zeros(N); % temporary cost matrix

b = - ones(N,1); % column vector as RHS

kp_dnr = []; % storage for solutions

firstSol = 1; % boolean flag to control enumeration loops

foundall = 0; % boolean flag to control enumeration loops

kpK = 0; % kp-set size, facilitates enumeration loops

% Develop constraint matrix based upon inputs X and reach MR

% Note: See Mreach code for details

if MR == -1

rX = Mreach(X,(N-1)); % calculate maximum reach matrix

else

rX = Mreach(X,MR); % calculate reach matrix up to MR

end

dc = find(rX>0); % find non-zeros in reach matrix

A(dc) = - 1; % set up constraint matrix, A

C(dc) = 1; % set up cost matrix to determine f

f = 1./sum(C,2);

tic
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if enum

while not(foundall)

% column vector of x as solution

[mpSol, obj, flag] = bintprog(f, A, b);

if firstSol

kpK = obj; % size of min. dom. set

firstSol = 0;

end % if firstSol...

if flag == -2 | (numSol == maxSol) | (obj ~= kpK)

foundall = 1

else

kp_set = find(mpSol(1:N)==1);

kp_dnr = [kp_dnr kp_set];

b = [b; (kpK - 1)]; % add extra rhs

A = [A; mpSol’]; % add extra constraint

numSol = numSol + 1;

end % if flag...

end % while not...

% Plot data in histogram

[a, b] = size(kp_dnr);

pdata = [];

xaxis = 1:N;

for j = 1:a

pdata = [pdata kp_dnr(j,:)];

end

hist(pdata,xaxis);

xlim([0 N]);

ylim([0 b]);

else

mpSol = bintprog(f, A, b); % column vector of x as solution

kp_dnr = find(mpSol(1:N)==1) % key players

end % if enum...

toc % time elapsed
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Appendix G. Code: KPP-2 (PMED)

This appendix outlines the process to apply the p-Median problem to KPP-

2. Initial efforts revealed that this class of problem is too computationally intensive

for the branch-and-bound method implemented within the MATLAB optimization

toolkit environment.

Consequently, more efficient solution algorithms are recommended in order to

implement this type of analysis. For the following process proposed, several files are

required. The first sample file depicts the mathematical model developed in LINGO.

This model requires network data as input. As an illustrative example, the input for

the (‘methodscamp’) network accompanying the key player software is also provided.

MODEL: ! P-Median approach to KPP2;

! Sets defining the data structure;

SETS:

KP / @FILE(’pmed_mc.LDT’) /: FCOST, KPSET;

ACTORS / @FILE(’pmed_mc.LDT’) /: ;

ARCS( KP, ACTORS ) : COST, X;

ENDSETS

DATA: ! The cost (i,j) to reach actor j from kp i;

COST = @FILE(’pmed_mc.LDT’);

! The maximum kp-set size;

KPMAX = 2;

! Fixed cost of coopting a key player may be included;

! FCOST = (csv row vector of cost/actor here) ;

ENDDATA

! The objective is to Minimze the weighted distance from ! key

players to all actors;

[TTL_COST] MIN = @SUM( ARCS | (COST #GT# 0) :

-1/COST * X);

! + @SUM( KP: FCOST * KPSET);
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! Assign all actors to at least one key player;

@FOR( ACTORS ( J): [ASSIGN]

@SUM( KP( I) | (COST(I, J) #GT# 0 #OR# I #EQ# J):

X(I, J)) = 1

);

! Actors cannot be assigned to someone not in the KP SET;

@FOR( KP( I):

@FOR( ACTORS ( J) | (COST(I, J) #GT# 0 #OR# I #EQ# J) :

[KPA] X( I, J) <= KPSET( I) );

);

! Number of key players allowed in the KP SET;

[KPTOT] @SUM( KP( I): KPSET( I)) = KPMAX;

! Make KPSET choice (OPEN) binary(0/1);

@FOR( KP: @BIN( KPSET));

END

The following sample file is the input corresponding to the (‘methodscamp’)

network data used as a demonstration with the key player software developed by

Borgatti [2003b]. Given a network of size N , the indices should range from K1

. . .KN, and A1 . . . AN, respectively. For this example, N = 18. The reach matrix

is as expected, with the exception that the reachability values must be obtained

using the transpose of the sociomatrix. Note that the function Mreach.m provided

in Appendix C may be used to determine these values. Since the objective function

uses the additive inverse of these values, this matrix could be constructed in order to

place restrictions upon maximum allowable reach, where the value would be 0 if two

actors could not reach each other in a given number of steps. In addition, although

the values here are based upon a dichotomous network, other measures of distance

between actors may be used.

! P-Median data for Methodscamp data;

! Key player indices;

K1..K18 ~

! Actor indices;
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A1..A18 ~

! Reach matrix;

1,4,2,1,1,2,2,2,1,2,4,1,3,1,2,3,4,3,

4,1,5,5,5,6,4,5,3,4,1,4,3,4,2,1,1,2,

2,5,1,1,1,2,1,2,3,4,5,3,2,3,3,4,4,3,

1,5,1,1,2,1,1,1,2,3,5,2,2,2,3,4,4,3,

1,5,1,2,1,1,1,2,2,3,5,2,2,2,3,4,4,3,

2,6,2,1,1,1,2,1,3,4,6,3,3,3,4,5,5,4,

2,4,1,1,1,2,1,1,3,4,4,3,1,3,2,3,3,2,

2,5,2,1,2,1,1,1,3,4,5,3,2,3,3,4,4,3,

1,3,3,2,2,3,3,3,1,1,3,1,2,1,1,2,3,2,

2,4,4,3,3,4,4,4,1,1,4,1,3,1,2,3,4,3,

4,1,5,5,5,6,4,5,3,4,1,4,3,4,2,1,1,2,

1,4,3,2,2,3,3,3,1,1,4,1,3,1,2,3,4,3,

3,3,2,2,2,3,1,2,2,3,3,3,1,3,1,2,2,1,

1,4,3,2,2,3,3,3,1,1,4,1,3,1,2,3,4,3,

2,2,3,3,3,4,2,3,1,2,2,2,1,2,1,1,2,1,

3,1,4,4,4,5,3,4,2,3,1,3,2,3,1,1,1,1,

4,1,4,4,4,5,3,4,3,4,1,4,2,4,2,1,1,1,

3,2,3,3,3,4,2,3,2,3,2,3,1,3,1,1,1,1

The solution to this mathematical program is KPSET(K1) = KPSET(K16) =

1, indicating that actors 1 and 16 are the key players. The objective function value of

-15 is equivalent to the normalized objective function for Borgatti’s heuristic output

of 15/18 = 0.8333.
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Appendix H. Note on Information Centrality

This note addresses an underlying, potential mathematical issue with the

information centrality measure developed by Stephenson and Zelen [1989]. In the

current effort to develop new means to study network structures, a MATLAB pro-

gram to enumerate all paths within a graph or digraph was developed (See Appendix

J). Due to interest and previous applications [e.g., Clark, 2005] of the information

centrality measure, the example graph used by Stephenson and Zelen was used to

validate the path enumeration code. Interestingly, Stephenson and Zelen missed

two paths. The graph and the path lists are shown below. The paths highlighted,

3-4-1-2-5 and 4-1-2-5, are those either missed or ignored by Stephenson and Zelen.

As the information centrality measure is “based on the information contained

in all possible paths between pairs of points,” (emphasis added) the next logical step

is to compare results, using their methodology, between datasets. This initial effort is

investigating dichotomous graphs only; applying this methodology to valued graphs

is also suspect.

As defined in their article, the information in the combined path Iij is the sum

of all the elements of the D−1
ij matrix [Stephenson and Zelen, 1989, pg. 9-10]. Given

all k paths between i and j, the Dij matrix is k × k, and defined as

Table 8.1: Paths for each node pairs
Node Pair Corresponding Paths

1-2 1-2, 1-5-2, 1-4-3-2
1-3 1-4-3, 1-2-3, 1-5-2-3
1-4 1-4, 1-2-3-4, 1-5-2-3-4
1-5 1-5, 1-2-5, 1-4-3-2-5
2-3 2-3, 2-1-4-3, 2-5-1-4-3
2-4 2-1-4, 2-3-4, 2-5-1-4
2-5 2-5, 2-1-5, 2-3-4-1-5
3-4 3-4, 3-2-1-4, 3-2-5-1-4
3-5 3-2-5, 3-2-1-5, 3-4-1-5, 3-4-1-2-5
4-5 4-1-5, 4-3-2-5, 4-3-2-1-5, 4-1-2-5
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4 3

1 2

5

Figure 8.1: Exemplar Network [Stephenson and Zelen, 1989]

Dij(r, s) = number of lines in paths, r = s

Dij(r, s) = number of lines in common between path r and path s, r 	= s

As an example, node pair 1-2 has 3 paths, none of which have any arcs in

common; the resulting calculations are given by D12.

D12 =

⎡
⎢⎢⎢⎣

1 0 0

0 2 0

0 0 3

⎤
⎥⎥⎥⎦⇒ D−1

12 =

⎡
⎢⎢⎢⎣

1 0 0

0 0.5 0

0 0 0.333

⎤
⎥⎥⎥⎦⇒ I12 = 1.833

Additionally, node pair 1-4 has 3 paths, two of which (the second and third

path) have 2 arcs in common; the resulting calculations are shown by D14.

D14 =

⎡
⎢⎢⎢⎣

1 0 0

0 3 2

0 2 4

⎤
⎥⎥⎥⎦⇒ D−1

14 =

⎡
⎢⎢⎢⎣

1 0 0

0 0.5 −0.25

0 −0.25 0.375

⎤
⎥⎥⎥⎦⇒ I14 = 1.375

The results of both node pairs with missing paths are consistent with the data

presented by the authors. For example, ignoring the missed path for node pair 3-5,
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the calculations for D35 match those described in the article.

D35 =

⎡
⎢⎢⎢⎣

2 1 0

1 3 1

0 1 3

⎤
⎥⎥⎥⎦⇒ D−1

35 =

⎡
⎢⎢⎢⎣

0.6154 −0.2308 0.0769

−0.2308 0.4615 −0.1538

0.0769 −0.1538 0.3846

⎤
⎥⎥⎥⎦⇒ I35 = 0.8462

Note that these calculations, using the construct developed by Stephenson

and Zelen, match those presented on Stephenson and Zelen [1989, pg. 10]. More

importantly, these calculations, and all others, also coincide to the results when

using the overall procedure as described on Stephenson and Zelen [1989, pg. 12].

This procedure, taken verbatim from Stephenson and Zelen [1989], is presented as

follows.

Consider a network with n points where every pair of points is reachable.

Define the n × n matrix B = (bij) by:

bij =

⎧⎨
⎩ 0 if points i and j are incident

1 otherwise

bii = 1 + degree of point (i)

Defining C = (cij) = B−1, Iij = (cii + cjj − 2cij)
−1 and using this information,

revisiting the earlier calculations, yields the following.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 1 0 0

0 1 0 1 0

1 0 3 0 1

0 1 0 3 1

0 0 1 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⇒ C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2764 0.0036 −0.1055 −0.0145 0.0400

0.0036 0.2764 −0.0145 −0.1055 0.0400

−0.1055 −0.0145 0.4218 0.0582 −0.1600

−0.0145 −0.1055 0.0582 0.4218 −0.1600

0.0400 0.0400 −0.1600 −0.1600 0.4400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I12 = (c11 + c22 − 2c12)
−1 = (0.2764 + 0.2764 − 2 · 0.0036)−1 = 1.8328 ≈ 1.8333

I14 = (c11 + c44 − 2c14)
−1 = (0.2764 + 0.4218 − 2 · (−0.0145))−1 = 1.3751 ≈ 1.3750

I35 = (c33 + c55 − 2c35)
−1 = (0.4218 + 0.4400 − 2 · (−0.1600))−1 = 0.8461 ≈ 0.8462

These comparisons confirm that the steps used to develop the methodology and

the actual calculations taken to assess the measure are identical, within round-off

error. This provides satisfactory confirmation that the analytic approach is consis-

tent with the data presented thus far. However, the fact that paths were missed

causes some concern for the validity of the measure, at least in its claim to account

for the information ‘along all paths.’ Differences in results can, at this point in the

review, only be ascertained when doing the calculations ‘by hand,’ as the overall

methodology (i.e., the construction of the C matrix) currently allows no room to

account for this oversight.

Revisiting the information content for node pairs 3-5 and 4-5 via calculations

‘by hand,’ the actual values–assuming their approach is correct–should be as follows.

D35 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1 0 1

1 3 1 0

0 1 3 1

1 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒ D−1

35 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7838 −0.3243 0.1892 −0.2432

−0.3243 0.5135 −0.2162 0.1351

0.1892 −0.2162 0.4595 −0.1622

−0.2432 0.1351 −0.1622 0.3514

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ I35 = 0.8649 	= 0.8462
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D45 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 1 1

0 3 1 1

1 1 4 0

1 1 0 3

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒ D−1

45 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7838 0.1892 −0.2432 −0.3243

0.1892 0.4595 −0.1622 −0.2162

−0.2432 −0.1622 0.3514 0.1351

−0.3243 −0.2162 0.1351 0.5135

⎤
⎥⎥⎥⎥⎥⎥⎦

⇒ I45 = 0.8649 	= 0.8462

Some interesting observations are readily apparent. First, each node pair has

three associated paths. Second, both node-pairs that are missing paths (3-5 and 4-5)

have identical values for both the initial calculation and the actual value suggested

by Stephenson and Zelen–differing by a constant of ≈ 0.0187. Although this error is

seemingly small, it is an indication that the underlying methodology is flawed and

the interpretation of the measure as advertised is suspect. Applying this measure to

larger and/or valued graphs is likely to further confound or mislead the analyst.

Based upon the test network described in the article, UCINET (Version 6)

and NetMiner II currently calculate the information centrality measure exactly as

described by Stephenson and Zelen [1989]. Due to the prevalence of sociological stud-

ies applying the information centrality measure, informing the academic community

of this issue, preferably with a corresponding resolution, would provide immediate

value.
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Appendix I. Code: jaccard.m

This function calculates the Jaccard similarity coefficient for a given network

comprised of one or more layers. To deal with multi-layered networks, the node-edge

adjacency matrices for each layer must be horizontally concatenated. The output is

a symmetric matrix, SJS, where each (i, j)th element represents the strength of the

tie between actors i and j.

function [js] = jaccard(NE)

% Usage jaccard(X)

%

% - NE is the node-edge adjacency matrix of one or more layers of

% a social network. This automatically implies network symmetry.

% - js is the tie strength based upon the Jaccard Similarity

% Coefficient;

% This value ranges from zero to one

%

% - jth / last modified on 2 AUG 06

[N, numE] = size(NE);

js = zeros(N);

for i = 1:(N-1)

for j = (i+1):N

js(i,j) = sum(NE(i,:)& NE(j,:)) / sum(NE(i,:)|NE(j,:));

js(j,i) = js(i,j);

end % for j...

end % for i...
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Appendix J. Code: enumeratePaths.m

This MATLAB function enumerates all paths within a graph or digraph.

Depending upon the size and complexity of the graph, this function can be very

expensive computationally. The input is a sociomatrix. The output is a multi-

dimensional cell array with the ith entry containing all paths of length i + 1. The

code below currently limits the enumeration procedure to paths of length 6 or less,

but could be modified (see below) to continue until all paths up to length (n − 1)

are found. As this function was developed primarily for the testing and investigation

into the nature of small social networks, this function has a great deal of room for

improvements in computational efficiency.

function [PathList] = enumeratePaths(X)

% Usage enumeratePaths(X)

%

% - X is the sociomatrix (adjacency matrix) of a network (graph);

% This procedure enumerates all paths of length 1 (essentially

% the edge list) to length (n-1) if such paths exist.

% - X may be a symmetric (asymmetric) graph (digraph).

% - The output (PathList) is a cell array where PathList{n} contains

% the listing of all paths of length n.

%

% - jth / last modified on 23 NOV 05

tic % - begin time stamp

[nR nC] = size(X); % get dimensions of sociomatrix

% mpl = nR - 1; % maximum path length (mpl) is (n-1)

mpl = 6;

% paths of length 1... (essentially the edge list)

[f t] = find(X);

PathList{1} = [f t];

% find paths of length 2 to (n-1) or (mpl)

for p_length = 2:mpl

% initialize path list of length p_length

PathList{p_length} = [];

% initialize number in current path list

PathCount = 1;
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% temporary array containing path list of previous distance

tmpPrevList = PathList{(p_length-1)};

% number of paths and columns in path list of previous distance

[nPrevList colPrevList] = size(tmpPrevList);

% for each path in previous list, see if it can continue...

for i = 1:nPrevList

% get the actor index of the last in line for current path

nextStart = tmpPrevList(i,colPrevList);

% find the possible next steps that can be made

potentialEnd = find(X(nextStart,:));

% index of how many possible next steps exist

npe = nnz(potentialEnd);

% run through possibilities;

% if an edge can be added, do so...

for j = 1:npe

% if this actor has not already been visited

% in the current path, add him

if ismember(potentialEnd(j), tmpPrevList(i,:))==0 ;

PathList{p_length}(PathCount,:) =

[tmpPrevList(i,:) potentialEnd(j)];

PathCount = PathCount + 1;

end % (if) check for already visited node and update

end % (j) check for possible edges to add (nodes to visit)

end % (i) action on i-th path in previous path-length list

% if no more moves/updates are possible, end the program

% if nnz(PathList{p_length}) == 0

% break

% end

p_length

end % (p_length)

% - end time stamp (tells user how long it took this program to run)

toc
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Appendix K. Code: netflowCent.m

This MATLAB function calculates the network flow centrality measure devel-

oped by Freeman et al. [1991], given a sociomatrix and the capacity of influence that

may flow between each possible (i, j) pair of individuals. Although the sample, taken

from [Freeman et al., 1991], indicates a symmetric network, both in connections and

arc capacities, this code can accept asymmetric inputs for both categories of data.

function [ sna_flowcent ] = netflowCent( X, U )

% Useage netflowCent(X, U)

% X = Adjacency matrix (symmetric or asymmetric)

% U = Matrix capturing upper bounds -- (i,j) entries must match X

% Assumes lower bound is zero for all arcs

%

% Data from netflow article (Freeman, et al)

% X = [0 1 1 1 0

% 1 0 1 0 0

% 1 1 0 1 1

% 1 0 1 0 0

% 0 0 1 0 0];

%

% U = [0 3 1 2 0

% 3 0 3 0 0

% 1 3 0 2 2

% 2 0 2 0 0

% 0 0 2 0 0];

% Answer with X and U above is...

% 1.0000 7.0000 20.0000 0.3500

% 2.0000 5.0000 20.0000 0.2500

% 3.0000 13.0000 20.0000 0.6500

% 4.0000 6.0000 24.0000 0.2500

% 5.0000 0.0000 30.0000 0.0000

tic

% n = number of nodes (and number of rows) for A

[n m] = size(X);

% Develop A matrix from X...

xij = nnz(X); % xij = number of edges (columns) for A

A = zeros(n,xij); % initialize

[pos neg] = find(X > 0); % index for +/-1
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for i = 1:xij % update A

A(pos(i),i) = 1;

A(neg(i),i) = -1;

end

% develop s-t pairs to solve for...

nstPairs = nchoosek(n,2); % number of solution pairs required

stPairs = nchoosek((1:n),2); % index of solution pairs

% objective function (note -1 since linprog always minimizes)

f = [zeros(1,xij) -1]’;

% lower bounds (always assumed to be zero

lb = zeros(1,xij)’;

% upper bounds

if isempty(U)

ub = ones(1,xij)’;

else

uidx = find(U>0);

ub = U(uidx)’;

end % if isempty...

% right-hand side

beq = [zeros(1,n)]’;

% initialize place to store results...

results = [];

tstData = [];

objfns = [];

% for each possible s-t pair t>s, solve

for stflow = 1:nstPairs

s = stPairs(stflow,1);

t = stPairs(stflow,2);

fCol = zeros(n,1);

fCol(s) = -1;

fCol(t) = 1;

Aeq = [A fCol];

[x, fval] = linprog(f,[],[],Aeq,beq,lb,ub);

objfns = [objfns; [s t x’]];

results = [results; [s t 0 -fval 0]];

% for each possible s-t pair t>s solution,

% remove all other nodes other than s or t to ascertain the flow

for killNode = 1:n % for all nodes...

% if it is neither s nor t

if killNode ~= s & killNode ~= t

% find cols associated with this node

killCols = find(Aeq(killNode,:)~=0);
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tmpAeq = Aeq;

% remove those columns

tmpAeq(:,killCols)=[];

% remove that row

tmpAeq(killNode,:) = [];

% adjust the length of the objective function, f

tmpf = [zeros(1,(xij-nnz(killCols))) -1]’;

% adjust the length of the rhs, beq

tmpbeq = [zeros(1,(n-1))]’;

% adjust the length of the lower bounds, lb

tmplb = zeros(1,(xij-nnz(killCols)))’;

% adjust the length of the upper bounds, ub

tmpub = ub;

tmpub(killCols) = [];

% resolve on new graph with s-t and killNode removed...

[kx, kfval] =

linprog(tmpf,[],[],tmpAeq,tmpbeq,tmplb,tmpub);

% store results

results =

[results; [s t killNode -kfval (-fval + kfval)]];

end %if killNode...

end % for killNode...

end % for stflow

% calculate measure for each actor....

% get index of number of solution pairs to facilitate measure

[solPairs, c] = size(results);

for i = 1:n

tmpDenom = 0;

tmpNumer = 0;

for j = 1:solPairs

% denominator data

if results(j,1)~=i & results(j,2)~=i & results(j,3)==0

tmpDenom = tmpDenom + results(j,4);

end % if results(j, 1)...

% numerator data

if results(j,3) == i

tmpNumer = tmpNumer + results(j,5);

end % if results(j,3)...

end % for j = ...

% Layout for tstData is ...

% Col 1: Actor ID (i)

% Col 2: Flow that must pass through i from...
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% Col 3: Sum of all s-t max flows where i is neither s nor t

% Col 4: (Col 2) / (Col 3) the centrality measure for i

tstData = [tstData; [i tmpNumer tmpDenom (tmpNumer/tmpDenom)]];

end % for i = ...

sna_flowcent = tstData;

toc
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Appendix L. Code: gnfCent.m

This MATLAB function calculates generalized network flow centrality mea-

sure developed in chapter VI. This measure is based upon the centrality measure

posited by Freeman et al. [1991], but also incorporates the interpersonal gain multi-

pliers as discussed in chapter VII.

function [ tstData ] = gnfCent( G, U )

% Useage gnfCent(G, U)

% G = Gains (or loss) matrix -- (i,j) entries must match X

% U = Matrix capturing upper bounds -- (i,j) entries must match X

% Assumes lower bound is zero for all arcs

tic

% n = number of nodes (and number of rows) for A

[n m] = size(U);

look = 0;

% Develop A matrix from X...

% ***** Still need to incorporate G once this is working well *****

xij = nnz(U); % xij = number of edges (columns) for A

A = zeros(n,xij); % initialize

% [pos neg] = find(X > 0); % index for +/-1

[pos neg] = find(G > 0); % index for +/-1

for i = 1:xij % update A

A(pos(i),i) = 1;

A(neg(i),i) = -G(pos(i),neg(i));

end

% develop s-t pairs to solve for...

nstPairs = nchoosek(n,2); % number of solution pairs required

stPairs = nchoosek((1:n),2); % index of solution pairs

% objective function (note -1 since linprog always minimizes)

f = [zeros(1,xij) -1]’;

% lower bounds (always assumed to be zero

lb = zeros(1,xij)’;

% upper bounds

if isempty(U)

ub = ones(1,xij)’;

else

uidx = find(U>0);

ub = U(uidx)’;

end % if isempty...
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% right-hand side

beq = [zeros(1,n)]’;

% initialize place to store results...

results = [];

tstData = [];

objfns = [];

% for each possible s-t pair t>s, solve

for stflow = 1:nstPairs

s = stPairs(stflow,1);

t = stPairs(stflow,2);

fCol = zeros(n,1);

fCol(s) = -1;

fCol(t) = 1;

Aeq = [A fCol];

[x, fval] = linprog(f,[],[],Aeq,beq,lb,ub);

objfns = [objfns; [s t x’]];

results = [results; [s t 0 -fval 0]];

% for each possible s-t pair t>s solution,

% remove all other nodes

% other than s or t to ascertain the flow

for killNode = 1:n % for all nodes...

% if it is neither s nor t

if killNode ~= s & killNode ~= t

% find cols associated with this node

killCols = find(Aeq(killNode,:)~=0);

tmpAeq = Aeq;

% remove those columns

tmpAeq(:,killCols)=[];

% remove that row

tmpAeq(killNode,:) = [];

% adjust the length of the objective function, f

tmpf = [zeros(1,(xij-nnz(killCols))) -1]’;

% adjust the length of the rhs, beq

tmpbeq = [zeros(1,(n-1))]’;

% adjust the length of the lower bounds, lb

tmplb = zeros(1,(xij-nnz(killCols)))’;

% adjust the length of the upper bounds, ub

tmpub = ub;

tmpub(killCols) = [];

% resolve on new graph with s-t and killNode removed...

[kx, kfval] =

linprog(tmpf,[],[],tmpAeq,tmpbeq,tmplb,tmpub);
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% store results

results =

[results; [s t killNode -kfval (-fval + kfval)]];

look = look + 1

end %if killNode...

end % for killNode...

end % for stflow

% calculate measure for each actor....

% get index of number of solution pairs to facilitate measure

[solPairs, c] = size(results);

for i = 1:n

tmpDenom = 0;

tmpNumer = 0;

for j = 1:solPairs

% denominator data

if results(j,1)~=i & results(j,2)~=i & results(j,3)==0

tmpDenom = tmpDenom + results(j,4);

end % if results(j, 1)...

% numerator data

if results(j,3) == i

tmpNumer = tmpNumer + results(j,5);

end % if results(j,3)...

end % for j = ...

% Layout for tstData is ...

% Col 1: Actor ID (i)

% Col 2: Flow that must pass through i from...

% Col 3: The sum of all s-t max flows where i is neither s nor t

% Col 4: (Col 2) / (Col 3)... the centrality measure for i

tstData = [tstData; [i tmpNumer tmpDenom (tmpNumer/tmpDenom)]];

end % for i = ...

toc
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Appendix M. KPP-2 and Layered Networks

The underlying assumption applicable to the KPP-2 methodologies devel-

oped is that the network of interest is connected. When applying the key player

methodologies developed in this dissertation to layered networks, not all layers are

guaranteed to be connected. In addition, not all layers may share the same set of

actors. Therefore, slight modifications to the constraint matrix must be considered.

The code presented in this appendix facilitates the analysis methodology described

in Section 5.7.

The following function, buildKPPA.m, takes a sociomatrix of a given layer

as input, and provides the requisite constraint matrix for the KPP-2 applications

presented within this research.

function [kppA] = buildKPPA(X)

%

[N,m] = size(X);

notavail = find(sum(X)==0);

kppA = -(X + eye(N));

kppA(notavail,:) = [];

Assuming a symmetric sociomatrix, this function prevents the inclusion of rows

associated with actors that do not have interpersonal relationships within the given

context of interest. If the sociomatrix is asymmetric, then X′ must be input into

this function.

To account for multiple layers simultaneously, the output of this function for

each layer must be horizontally concatenated, forming the multi-layer constraint

matrix for input into a modified version of the KPP-2 programs presented. Note that

this approach currently presented assumes a reach of one-step. If a reach greater than

one between a key player and its assigned actors is desired, the analyst should input

a dichotomized version of the 2-step reachability matrix, which can be determined

by the code presented in Appendix C. An example of the modification required for

the NRm.m code is provided below.
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function [ kp_nr ] = NR_layers( A , enum )

% Useage NR_layers(A, enum)

% A - Multi-layer constraint matrix

% enum - Enumerate solutions until infeasible or maximum

% number have been found

% (maxsol is currently set at 100 solutions)

% Requires the MATLAB Optimization Toolbox

% This determines the minimum number of key players required to

% cover multiple relationship layers. The input A must be

% developed prior to implementing this function.

tic

% ***** initialize variables *****

maxSol = 100; % maximum number of solutions (for enum = 1)

numSol = 0; % current number of solutions

[N, M] = size(A); % dimension of X

b = - ones(N,1); % column vector as RHS

f = ones(M,1); % column vector as obj. function coeff.

kp_nr = []; % storage for solutions

firstSol = 1; % boolean flag to control enumeration loops

foundall = 0; % boolean flag to control enumeration loops

kpK = 0; % kp-set size, facilitates enumeration loops

if enum

while not(foundall)

% column vector of x as solution

[mpSol, obj, flag] = bintprog(f, A, b);

if firstSol

kpK = obj; % size of min. dom. set

firstSol = 0;

end % if firstSol...

if flag == -2 | (numSol == maxSol) | (obj ~= kpK)

foundall = 1

else

kp_set = find(mpSol==1);

kp_nr = [kp_nr kp_set];

% add extra rhs

b = [b; (kpK - 1)];

% add extra constraint

A = [A; mpSol’];

numSol = numSol + 1;

end % if flag...

end % while not...

% Plot data in histogram (only when enumerating solutions)
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[a, b] = size(kp_nr);

pdata = [];

xaxis = 1:N;

for j = 1:a

pdata = [pdata kp_nr(j,:)];

end

hist(pdata,xaxis);

xlim([0 N]);

ylim([0 b]);

else

% column vector of x as solution

mpSol = bintprog(f, A, b);

kp_nr = find(mpSol==1) % key players

end % if enum...

toc % time elapsed
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Appendix N. Pair-wise Gains Process

This appendix details the process used to develop pair-wise gain multipliers.

The steps of the process include:

1. Collect personal attribute data on individuals of interest. This data must

comprise components of the charisma model depicted in Figure 7.2.

2. Determine which individuals are charismatic (combination of authority and

persuasive influence) and which are not. Assign a response variable 1 (0) for

charismatic (non charismatic) individuals.

3. Use logistic regression to determine a model sufficient for use in obtaining

probability estimates P (Yi = 1|X).

4. Use vector of probability estimates and appropriate sociomatrix as input to

the MATLAB function provided below.

5. Output of generateG is an n × n matrix of gain multipliers gij that can be

used as input for the generalized network flow centrality measure provided

in Appendix L or as input to the influence course of action analysis process

described in Section 7.3

function [G] = generateG(ep, X)

% Useage, generateG(ep, X) generates a gain matrix for use in the

% gnfCent( G, U ) generalized network flow centrality measure.

% ep is a vector of estimated probabilities of a set of actors

% based upon a logistic regression

% G is the gain multiplier matrix as applied to all pair-wise

% links in X

[n, m] = size(X); G = zeros(n,n); noX = find(X==0); [i, j] =

find(G==0); idx = [i j]; for k=1:(size(idx,1))

G(idx(k,1),idx(k,2)) = 1+ep(idx(k,1))-ep(idx(k,2));

end G(noX) = 0;
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Appendix O. JI Member Data

This appendix provides the descriptive data of the 48 JI members of interest

used in various portions of this research. The network and attribute data are derived

from Sageman’s book, Understanding Terror Networks, published in 2004. Tables

15.1 and 15.2 provide the index and list of study names, full names, age of the

member when he joined JI, and the year when the member joined JI. The latter

two columns present the data used in the logistic regression approach to measuring

interpersonal gains (or losses) of influence.
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Table 15.1: JI Membership (Subset of 48 Actors)
Year Age

Index Study Name Full Name Joined Joined

1 Baasyir Abu Bakar Baasyir 1989 51
2 Sungkar Abdullah Sungkar 1989 52
3 Hambali Encep Nurjaman 1989 25
4 Mukhlas Ali Ghufron bin Nurhasyim 1989 29
5 Iqbal Fikiruddin Muqti 1989 30
6 Faruq Omar al-Faruq 1991 20
7 Syawal Yassin Syawal 1989 24
8 Ghozi Fathur Rahman al-Ghozi 1989 18
9 Samudra Abdul Aziz 1991 21
10 Jabir Enjang Bastaman 1991 31
11 Amrozi Amrozi bin Nurhasyim 1992 30
12 Imron Ali Imron bin Nurhasyim 1990 18
13 Sufaat Yazid Sufaat 1998 33
14 Dwikarna Agus Dwikarna 1990 26
15 Mobarok Hutomo Pamungkus 1990 20
16 Yunos Saifullah Yunos 1989 19
17 Mistooki Jafaar bin Mistooki 1990 29
18 Faiz Faiz bin Abu Bakar Bafana 1991 29
19 Hasyim Hasyim bin Abbas 1991 30
20 Sulaeman Mohammed Nasir bin Abbas 1989 20
21 Hussein Abdul Rahman Ayub 1989 23
22 Ayub Abdul Rahim Ayub 1989 23
23 Azahari Azahari bin Husin 1990 33
24 Zulkarnaen Aris Sumarsomo 1989 26
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Table 15.2: JI Membership (Subset of 48 Actors)
Year Age

Index Study Name Full Name Joined Joined

25 Ghoni Suranto Abdul Ghoni 1991 23
26 Top Noordin Mohammad Top 1990 20
27 Idris Jhoni Hendrawan 1993 23
28 Mustofa Pranata Yudha 1989 27
29 WanMin Wan Min bin Wan Mat 1990 29
30 Maidin Ibrahim bin Maidin 1989 39
31 Sani Asmar Latin Sani 1993 18
32 Dulmatin Umar Dul Matin 1990 20
33 Farik Mohammad Farik bin Amin 1993 26
34 Lillie Bashir bin Lap 1993 26
35 Yunos2 Muhammad Amin Mohamed Yunos 1999 17
36 Naharudin Muhammad Arif Naharudin 2000 17
37 Gungun Rusman Gunawan 1999 23
38 Marzuki Zulkifli Marzuki 1990 26
39 Kastari Mas Selamat bin Kastari 1990 29
40 Hafidh Mohammed Faiq bin Hafidh 1989 31
41 Setiono Edy Setiono 1989 28
42 BinHir Zulkifli bin Hir 1991 25
43 Rusdan Thoriqudin 1989 29
44 Mustaqim Mustaqim 1989 28
45 Fathi Fathi Abu Bakar Bafana 1991 26
46 Khalim Mohamed Khalim bin Jaffar 1993 31
47 Roche Jack Roche 1998 45
48 Thomas Jack Thomas 2001 27
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