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Abstract

Social network analysis focuses on modeling and understanding individuals of interest and their

relationships. Aggregation of social networks can be used both to make analysis computationally

easier on large networks, and to gain insight in subgroup interactions. Aggregation requires deter-

mining appropriate closely knit subgroups as well as choosing a measure or measures to represent

the network data.

This thesis provides the analyst with several techniques for using aggregation to analyze the

characteristics of social networks. The contribution of this research lies in its ability to analyze a wide

variety of social network structures and available data through two methods for subgroup detection

and application of two network measures. These techniques are demonstrated first on notional social

networks, then on open source information for the terrorist group, Jema’ah Islamiyah. Since analysts

rarely have perfect information of the network structure, an exploration of the effects of missing arcs

on subgroup detection is presented.
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Aggregation Techniques to Characterize Social Networks

Chapter 1 - Introduction

1.1 Problem Setting

The analysis of social networks examines the complex interactions of individuals and organi-

zations within specific environments. These associations can encompass both formal relationships,

such as an office organizational structure, and informal relationships, such as family or religious ties.

Because individuals exist in multiple contexts, their decisions in one network may affect the other in-

dividuals in that network, and also all other networks in which they are involved. For example, the

captain of a sports team may be considered an individual of power in that context. If the captain

tells the team members to boycott a brand name product, those players who are easily influenced

by their captain may then bring that ideology to other contexts in which they themselves have in-

fluence. Thus, the idea of boycotting the brand percolates throughout the larger social network of

overlapping contexts, connected by those individuals in multiple environments.

The ability to effectively model both these formal and informal relations is critical to many

aspects of information operations and other types of operations, including the war on terrorism.

Understanding relationships between individuals in a group may provide insight to the individual

interactions within the group and actions of the group as a whole. Tracking these relationships

may provide the analyst with information about ongoing changes in the network. For example,

such information might assist the analyst in identifying recruiters, individuals who are consistently

introducing other new individuals to the network. Alternatively, new connections between otherwise

isolated terrorist cells may indicate imminent organized simultaneous attacks, such as those on the

Bali nightclubs, Turkish synagogues, or U.S. embassies in Africa (http://www.cnn.com). Further,

by understanding the structural position of people or groups of high influence in a social network

it is possible to determine optimal targets of influence. An action may not require capturing or

1



disabling the individual who is considered to be most important or most influential in the network.

An action may be considered successful if an individual is simply excluded from the network, or is

fed disinformation which the target individual then disseminates to other members of the network.

The key individuals may perhaps be influenced through another person in the network who is close

to the leader, but not so securely protected.

A social network may be modeled as a graph in which the nodes represent individuals or groups

and arcs represent relationships that exist between individuals or groups. The weight on an arc

indicates the measure of association between the two nodes it connects.

Social networks distinguish themselves from the general class of graphs by possessing three

properties: 1. high local clustering, 2. low average diameter, and 3. vertex degree distributions

which follow the power law (Comellas, et al : 2000, Watts: 1999). High local clustering is common

in social situations, because two acquaintances of a person are likely to be acquaintances themselves.

If Alice and Bob are both Charlie’s friends, then they themselves are likely to meet and become

acquaintances. Small average diameter is the theory behind the popular notion “six degrees of

separation” - that two people, no matter how seemingly remote they are, can be linked by only a

small number of intermediaries. The third common characteristic of social networks states that the

degree distribution on the vertices follows a power law. This means most people have a small number

of acquaintances, and very few people have a large group to which they are immediately connected.

Sociologists have long tried to model these relationships between people, but their models

do not always employ rigorous mathematical methods. Typical sociological studies have included

surveying the group of interest to form a network representing linkages where all existing arcs have

a unity weight. This weighting shows only whether some relationship exists between individuals or

groups, but gives no indication of the level of that association. Mathematicians have provided a

rigorous foundation for analysis of all types of networks, though they rarely focus on these special

structures to try to interpret meaning in the context of social networks. Accurately modeling and

understanding social networks requires skills, knowledge and techniques from multiple disciplines.
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An early rigorous work on social networks which brings the analysis out of solely the social

science realm comes from Duncan Watts’ book, Small Worlds: The Dynamics of Networks Between

Order and Randomness. Watts defines small worlds as social networks which possess the two prop-

erties of high local clustering and small average diameter. He showed that networks with these prop-

erties are pervasive in the world, from movie actors working in films together, to research scientists

coauthoring papers, to seemingly unrelated areas as the neurological structure of nematode worms.

Captain Rob Renfro’s Ph.D. dissertation, Modeling and Analysis of Social Networks, was one

of the first research in the open literature to define a non-unity weight on the arcs. He developed

a ratio measure of social closeness, which gives, for example, a higher measure to an individual

considered to have more influence in a group. Renfro also considered an individual in more than

one context. Since interpersonal relationships are influenced in many aspects of life, (work, family,

sports groups, religious organizations), modeling social networks requires a more robust model to

accurately represent social interactions in multiple contexts. Using maximum flow algorithms,

Renfro identifies the most important person in the network to be the one that has the greatest

ability to influence the others in the network.

Many social networks include an overwhelming number of people and groups, making the task

of finding an individual of interest extremely difficult. A common technique for reducing the size

of a network is through node aggregation. Two nodes connected by an arc in the network can be

grouped together into a new, aggregated node which represents the two individual nodes in the new

network. This process can be performed iteratively until the network is sufficiently small, yet still

offers the required fidelity to conduct the desired analysis. Ideally, such aggregation of nodes would

occur by grouping individuals that are, in fact, closely associated.

The most tightly knit set of individuals occurs in a clique, in which each member of the set is

mathematically defined as having a direct relationship with every other member in the set. Since

each person interacts with every other person, a clique is well-suited for aggregation into a single

node. It is therefore important to find these structures in a network. However, sets of individuals
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in which each pair have a direct relationship are rare in true social network. Therefore, it often

is desirable to find near-cliques and other closely knit subgroups in the network. Identification of

subgroups provides the analyst with further insight on the network structure such as whether the

subgroups share liaison individuals, or are distinct and can communicate using cut-out individuals.

Alternatively, individuals not aggregated into subgroups may still be vulnerable, and serve as targets

of exploitation.

If all interactions within the network are well-known, then aggregation by closest relationship

is simply a matter of finding those collections of individuals that are most tightly bonded. Once

a single aggregated node with the properties of interest has been located, it can be disaggregated,

or expanded, into the individuals which make up the group. The process of eliminating arcs and

replacing multiple individual nodes with a single group node during aggregation, reduces the amount

of information about the relationships between individuals on the aggregated network. Renfro’s

dissertation suggests a method for aggregating nodes to more quickly find people of higher influence

(defined by his ratio measure of social closeness) in the social network, without losing any valuable

information.

1.2 Problem Statement and Approach

Renfro’s measure improves upon the single unity measures used elsewhere in the literature,

but there remain more robust ways to measure individuals of high importance in the social network.

Although a metric measure for relationships is unlikely (the triangle inequality and symmetry of

relationship often cannot be satisfied), other measures can be placed on the nodes to provide infor-

mation about relationships within the social network. Node measures indicate relative importance of

an individual or subgroup in the network. Standard arc measures are binary — nonexistent if there

is no relationship between two nodes, unity weight if there is a relationship. This thesis extends

Renfro’s ratio measure on the arcs to allow a continuous measure on the nodes.

The social networks under study in this thesis are large webs of interconnected individuals and

subgroups. Due to the large size of these social networks, the ability to aggregate nodes, while still
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being able to accurately determine individuals of interest, is critical. Large networks are not the

only ones worth aggregating. If an analyst is interested in interactions and relationships between

subgroups, aggregation of individuals into subgroups is appropriate, regardless of the size of the

network. The results of this thesis offer techniques for aggregation based on the measures assigned

to nodes or arcs in the network.

This thesis provides several methods for detecting appropriate subgroups for aggregation, and

measures for assessing individual and subgroup positions in the network, along with the conditions

when such aggregation can be performed successfully. No single method is the perfect choice for every

objective — each has its own strengths and weaknesses for different scenarios. To ensure robustness

of the aggregated network, whatever measure is being performed on the network must convey the

same information whether it is being performed on the disaggregated network of individuals, or a

smaller, denser version with aggregated nodes representing subgroups. Therefore, for each of the

node aggregation methods developed in the thesis, it is necessary to also provide conditions under

which aggregation does not affect the results of appropriate network performance measures.

Whether it is of interest to place a weight on the nodes in the network or on the arcs is also

scenario dependent. A weighted node indicates the level of importance of the individual or subgroup

represented by the node. Alternatively, a weighted arc indicates the strength of the relationship

between individuals the arc connects. Several techniques detailing how a weighting on the arcs can

be rewritten as weighting on the nodes are explored in Chapter 2, and then used in the remainder

of this thesis. Thus, it is not necessary to make a distinction between arc and node measures when

determining whether a method for node aggregation is robust.

This thesis focuses on structural characteristics of terrorist groups. While generally social net-

works possess the three properties of high local clustering, low average diameter, and power law

vertex degree distribution, the parameters of those properties can differ. The groups of interest to

the national security structure often keep individuals ignorant of one another for security reasons.

Therefore, high local clustering may not be appropriate when modeling these groups. Of interest
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in this thesis are groups that pose a threat to the United States, such as nation-state terrorists,

transnational terrorists, computer hackers, and drug operators, among others. The methods, how-

ever, also apply to business organizations, political groups, or tribal memberships. Many of the

techniques can even be partially extended to the analysis of physical networks such as computer

systems or power grids.

1.3 Research Assumptions

Initially it is assumed the analyst has perfect knowledge of the network, including who the

individuals are, as well as their relationships with others in the network (arc measure) or level of

importance in the network (node measure). Further, it is assumed that each person in the network

also has full knowledge of the relationships between everyone else. This requirement is necessary

for evaluating network measures. These assumptions allow the use of standard network algorithms

such as shortest path or maximum flow, among others. For example, consider Alice sending a

message to Bob. It is assumed that a message between two individuals always traverses the shortest

path. The assumption of perfect knowledge is then relaxed to test the effects of removing pieces of

information from the network.

1.4 Thesis Format

The remainder of this thesis begins with an overview of the sociological and mathematical

literature of social networks in the Literature Review in Chapter 2. It includes methods used in

practice to model social networks, and several techniques for aggregating nodes. Chapter 3 offers

clique detection methods as well as several methods for aggregating nodes to aid in the analysis of

social networks. Chapter 3 also provides indications for when each is appropriate, and conditions

under which aggregation will retain accuracy of network performance measures. This methodology

is demonstrated on four notional scenarios in Chapter 4 and a real-world example in Chapter 5.

Chapter 6 extends selected results to networks of imperfect information. Conclusions and limitations

of the work are offered in Chapter 7, with recommended areas of future research.
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Chapter 2 - Literature Review

2.1 Introduction

This chapter reviews the pertinent literature of social network analysis, specifically that relating

to modeling social networks and methods for aggregation of large networks. To that end, it is first

necessary to understand how network structures are modeled using graph theory. Once a graph

structure is defined for social interactions, it may be desirable to condense the structure into a

smaller, more manageable representation for performing analysis. Therefore, this literature review

offers an overview of methods for aggregating individuals in a social network into groups, as well as

measures for relationships between and among groups and individuals.

2.2 Introduction to Social Networks

Social networks have long been studied by sociologists and anthropologists, but one of the first

efforts at mathematical modeling outside of the social sciences was introduced by Duncan Watts

in Small Worlds: The Dynamics of Networks Between Order and Randomness. The small world

concept - any two people on earth can be connected through only a small number of intermediaries

- has been made popular through the “Six-Degrees-of-Kevin-Bacon” game. Watts introduced the

small world concept to improve the traditional methods of performing social network analysis. He

claims that traditional sociological and anthropological approaches to obtain data through surveys,

observations, or questionnaires, have several inherent problems: respondents are often poor at esti-

mating the number of people with whom they have a relationship, the number of such relationships

can change over time, and an individual’s definition of relationship is subjective (Watts, 1999: 23).

Though researchers have considered small worlds since the 1960s, Watts provided it a rigorous the-

oretical foundation.

Small world networks are unique within graph theory due to their structure. They reside

between perfectly ordered graphs, such as lattices, and perfectly disordered random graphs (Watts,

1999: 41). Social network analysis must consider both local and global properties. Watts discovered
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small worlds to be based on one local and one global property. Locally, these networks exhibit dense

clustering; globally, the existence of ties between seemingly far away nodes reduces the diameter of

the network, meaning that dissimilar people can be connected through a small number of nodes and

arcs. Watts found that this structure is exhibited by a wide variety of subjects: movie actors (Watts,

1999: 140), high-voltage electric lines (Watts, 1999: 147), the nervous system of the Caenorhabditis

elegans worm (Watts, 1999:153), scientific paper coauthorships and worldwide web links (Watts,

1999: 160).

Watts’ work is revolutionary for its rigor in small world analysis. Since social networks are

an application of small worlds (i.e. Six-Degrees-of-Kevin-Bacon, or scientific collaborations), Watts’

research forms a good foundation for an operations research analysis of social networks. However,

his work has several limitations that require further research. For example, he considers only arcs

of binary weight — if a relationship exists between two nodes, then those two nodes are connected

by an arc of unity weight, else there is no arc (alternatively, an arc of weight 0).

Some assumptions of small worlds are inappropriate for terrorist networks. For example, tradi-

tional social network analysis has assumed that assortative mixing, a property of networks in which

“people prefer to associate with others who are like them”, holds (Newman, Feb 2003: 1). This

can be seen in large cities that have ethnic neighborhoods. Closely associated with the property of

assortative mixing is homophily, which is the property of social groupings which leads to localized

clustering in the network representations. This is the idea that if Alice and Bob are friends, and

Alice and Charlie are friends, then Bob and Charlie have a high probability of becoming friends.

This may be true in many social situations, but is not necessarily appropriate in the study of terror-

ist networks, where many individuals are intentionally kept ignorant of one another to protect the

security of the network as a whole.

Renfro addresses some of these limitations. He defines “measures of social closeness that are

ratio in nature” (Renfro, 2001: 66). This is the first research in the open literature which expands

the weight of the relationship between individuals or groups to be other than binary. He then uses
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optimization techniques to find the most influential individual in the network. He accomplished this

through a “mapping of social network analysis terms to mathematical programming, and specifically

flow modeling” (Renfro, 2001: 67). He also extends the single context limitation in Watts’ work to

multidimensional flows of influence through the social network. Renfro does this by noting:

“Sharing capacity on the edges in a social network implies that either capacity of the
edge is an aggregate of multiple contexts, or based on a known sociological or psycho-
logical property of the measure influence where one context directly manifests itself in
another context” (Renfro, 2001: 73).

2.3 Introduction to Graph Theory

Much of what made Watts’ work the first rigorous modeling of small worlds was his ability

to define social networks in the language of graph theory. He represents individuals and their

relationships using mathematical structures investigated in graph theory. The definitions in this

section come from West’s Introduction to Graph Theory. West offers the following basic structural

definitions (West, 2001: 2):

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation that
associates with each edge two vertices (not necessarily distinct) called its endpoints . . . When
u and v are endpoints of an edge, they are adjacent and are neighbors.

The vertices and edges of a graph are referred to as the nodes and arcs, respectively, of a

network. |V (G)|, or simply |V | is the number of nodes in the vertex set. In the context of social

networks, individuals (or aggregated groups of individuals) are the nodes. The arcs in a social

network represent some form of relationship or association between two individuals or groups. These

associations signify whatever data the analyst gathers, such as family relationships, number of times

individuals share a phone call, or speed of communications, for example.

Since some of these relationships may exist in only one direction (i.e. Alice always initiates

phone calls with Bob), the direction of the relationship must be considered. West defines the

following graph structures that can be used in social network modeling to address this situation

(West, 2001: 53):

A directed graph or digraph G is a triple consisting of a vertex set V (G), an edge set E(G),
and a function assigning each edge an ordered pair of vertices. The first vertex of the
ordered pair is the tail of the edge, and the second is the head ; together, they are the
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endpoints. We say that an edge is from its tail to its head .

One method of storing the structural data of a graph is in a matrix. Two common representa-

tions are the adjacency matrix and incidence matrix, defined by West:

The adjacency matrix ofG, written A(G), is the n×nmatrix in which entry ai,j is the num-
ber of edges inGwith endpoints {vi, vj}. The incidence matrixM(G) is the n×mmatrix
in which entry mi,j is 1 if vi is an endpoint of ej and otherwise is 0. If vertex v is an
endpoint of edge e, then v and e are incident. The degree of vertex v . . . is the num-
ber of incident edges (West, 2001: 6).

Since the networks this thesis considers do not have multiple edges between the same pair of

vertices, entries in the adjacency matrix will all be either 0 (if no relationship exists between those

two individuals or groups) or 1 (if a relationship does exist). Consider an organization in which Bob

works for Alice. If an edge (i, j) in the network represents ”i is boss of j”, a digraph representation

of this relationship would show an edge from Alice to Bob and the entry aAlice,Bob in the adjacency

matrix would be 1. Alternatively, if the edge (i, j) represents ”i works for j”, the edge would be

from Bob to Alice and aAlice,Bob = 0 while aBob,Alice = 1.

This method of storing data is appropriate when it is necessary only to know who has a

relationship with whom, and the level of that relationship is unimportant. However, when a level

of relationship is known between the nodes in the network, that information can be stored in a

similarity matrix, S(G), in which the entry si,j is the weight of the relationship from i to j. Thus,

in the previous example where Alice exerts greater influence over Bob, sAlice,Bob > sBob,Alice. These

weights can be integers, continuous, or even fuzzy, as the data gathered for the analysis requires.

There are several important structures which may exist within a graph’s topology. “A clique

in a graph is a set of pairwise adjacent vertices” (West, 2001: 4). A clique on n vertices is noted

Kn. In a social network context, a clique indicates a group of people, all of whom have a direct

relationship with every other person in the group. “A path is a simple graph whose vertices can

be ordered so that two vertices are adjacent if and only if they are consecutive in the list” (West,

2001: 5). Communication through a social network from one individual or group to another is often

assumed to follow the shortest path connecting the individuals or groups.
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“The complement G of a simple graph G is the simple graph with vertex set V (G) defined by

{u, v} in E(G ) if and only if {u, v} is not in E(G)” (West, 2001: 4). “A graph G is connected if

it has a {u, v}-path whenever {u, v} is in V (G) (otherwise, G is disconnected)” (West, 2001: 20).

The concept of connectedness in social networks is important, as it indicates whether there is some

known path between each pair of vertices. If the edges represent a relationship between individuals

or groups, then a connected network means every person in the network can interact directly or

indirectly with any other person in the network.

Several of the following properties of graphs are important in the study of social networks.

Traditional graph theory defines “the length of a . . . path . . . is its number of edges” (West, 2001:

20). Again, considering the path of communication from Alice to Bob, the length of the path indicates

the distance the message must travel. “The chromatic number of a graph G, written χ(G), is the

minimum number of colors needed to label the vertices so that adjacent vertices receive different

colors” (West, 2001: 5). Graphs are almost always colored so that the colors, or labels, on each

vertex are distinct from the colors on every adjacent vertex. If the graph is colored in this manner,

a higher chromatic number is indicative of a highly dense area (possibly over the entire network,

though not necessarily). In a social network, a set of n vertices colored n unique colors signifies

a group of tightly knit individuals. These sets of nodes are candidates for aggregation, since they

form a group of individuals with a high density of interactions.

Graphs can become quite large. If a part of the graph is of interest, the analysis can focus on

a subgraph of the graph G, which is a smaller portion of the graph G. West defines a subgraph more

rigorously: “A subgraph of a graph G is a graph H such that V (H) is a subset of V (G) and E(H) is

a subset of E(G) and the assignment of endpoints to edges in H is the same as in G” (West, 2001:

6). Alternatively, to condense a large graph in order to make it easier to analyze, aggregation or

clustering techniques are commonly used.
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2.4 Node Aggregation

The purpose of node aggregation is for the analyst to be able to work with a smaller, less

detailed graph. Aggregation can be used to reduce large graphs by a node and/or link reduction.

Van Miegham describes one common clustering method, hierarchical clustering, in which the network

is partitioned into subsets of nodes (Van Miegham, 1999: 2115). Each subset becomes an aggregated

node in a reduced network, which represents the partitioning in an efficient layered form called a

hierarchy. This partitioning is a recursive process, where each new layer in the hierarchy indicates

another step in the reduction of the network. This process continues until the entire network has

been aggregated into a single node.

In Graphs as Structural Models, Godehardt claims, “The principle of cluster analysis procedures

— when detecting and outlining groups — is that of optimization” (Godehardt, 1990:15). Godehardt

lists four types of clustering, or classification: disjoint, nondisjoint, hierarchic, and quasi-hierarchic.

Disjoint and hierarchic classifications both forbid overlapping subsets, i.e. a vertex can only be in

one aggregated node. Nondisjoint and quasi-hierarchic classifications allow overlapping. As may be

the case in many social networks, Godehardt states, “In some classification problems, it is convenient

to ask for homogeneous groups and to allow objects to belong to more than one class at the same

time” (Godehardt, 1990: 42)

In hierarchic and quasi-heirarchic classification, “the objects and groups are arranged and

graphically represented in the form of a genetic tree” (Godehardt, 1990: 42). At the lowest level,

each node is an individual. Each level aggregates from the previous, until at the highest level only

one node remains, which is the aggregation of every original node.

Godehardt argues “the analyst needs a basis for the valuation of a classification, a clustering

criterion since he is interested in a ‘good partition’ of the sample into clusters, which should be

as ‘natural’ and problem-oriented as possible” (Godehardt, 1990: 43). To that end, Godehardt

presents some measures of homogeneity. However, most of his measures and methods rely on the

distances between nodes to be metric. For social networks, this is not a reasonable assumption, since
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transitivity and the triangle inequality do not necessarily hold. For example, if Alice is Bob’s boss,

Alice’s relationship to Bob is not the same as Bob’s relationship to Alice.

2.5 Blockmodeling

Blockmodeling is a common aggregation technique. Informally, Breiger notes: “social contacts

can be conceptualized in terms of ‘blocks’, in each of which the members are in ‘structurally equiv-

alent’ position (because of their similar ties with third parties) even when they are not in direct

contact with each other” (Breiger, 1991: xiii).

Wang and Wong’s seminal work, “Stochastic Blockmodels for Directed Graphs,” decomposes

the adjacency matrix of a network into “submatrices, or blocks, each of which represent ties from

individuals in some Br to individuals in some Bs” (Wang and Wong, 1987: 8), where Br and Bs are

blocks, or sets of nodes in the network. The goal in using these blocks to aggregate networks is to

decompose the adjacency matrix into blocks of highest possible density. These blocks of high density

show where sets of nodes have many edges between them. If the blocks are on the diagonal, such

that the high density is at the intersection of Bs and Bs, then this indicates that Bs is a tightly knit

group. Highly dense blocks on the diagonal suggest sets of nodes that are cliques or near cliques,

and are therefore candidates for aggregation. Alternatively, if the blocks are off the diagonal, such

that the high density is at the intersection of Bs and Br, then the two sets of nodes have many

interactions between them. This situation may occur, for example, when two neighboring families

share many of the same activities such as sports groups, school classes, and church groups.

While the blocks seem to offer a structure to aid finding closely associated groups of individuals,

finding these blocks of higher density is not an easy task. Nagpaul suggests using TABU search to

place collections of nodes into groups such that the within-block variance is minimized (Nagpaul,

2002: 224). Batagelj’s paper “Notes on blockmodeling” provides an extensive list of the types of

connections between sets of vertices in a graph, and then uses those, along with some convoluted

rules, to rearrange the adjacency matrix to produce blocks (Batagelj, et al, 1999: 502-3).
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Bonacich and McConaghy address the concern “blockmodeling is sometimes regarded as a mere

clustering method” by claiming “in actuality, it is a theoretically grounded and algebraic approach

to the analysis of the structure of relations” (Bonacich and McConaghy, 1980: 489). They define

blockmodels in terms of “the direct and compound relations among individuals or social positions”

(Bonacich and McConaghy, 1980: 490) and then uses algebraic techniques to examine the structure

of these social relations.

Similar to blockmodeling, White and Harary introduce the concept of cohesive and adhesive

blocks which measure how a group of people stay together, either by the influence of individuals in

the network (cohesion) or through the relationships between individuals (adhesion). Their paper,

entitled “The Cohesiveness of Blocks in Social Networks: node connectivity and conditional den-

sity” offers models of cohesion and adhesion and provides the graph theoretic foundation for their

measures. They use this methodology to determine how social networks will most likely split apart

if crucial links are broken. The example the authors provide is of a group in which the two leaders

have a fundamental difference of opinions and each member of the network must decide which leader

they want to follow.

The results reported in the White and Harary paper show the methodology based on the

cohesion and adhesion measures to be fairly accurate in determining which group members will

follow a given leader. These results may be useful in determining the effect of removing a node from

a network, cutting communications between leaders of terrorist cells, or driving a wedge between

leaders to split the network. The results are predictive in nature, providing a guide of which

individuals will follow each leader

Chang and Fung introduce a methodology to replace a cluster of nodes in a Bayesian network

with a single node, without changing the underlying joint distribution of the network. They define

“... a probabilistic Bayesian Network [as] a directed, acyclic graph in which the nodes
represent random variables, and the arcs between the nodes represent possible proba-
bilistic dependence between variables. A network as a whole represents the joint probabil-
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ity distribution between random variables.” (Chang and Fung, 1989: 265)

Their method joins adjacent nodes and aggregates combinable groups. “A group of nodes is

called combinable if for every pair of nodes in the group there exists no path between such pair which

contains a node outside the group” (Chang and Fung, 1989: 266). This definition of combinable

groups is an extension of the classical clique, in which every node must be adjacent to every other

node. This relaxation is appropriate in situations where it is not necessary for every individual to

have a direct relationship with every other individual, but that they do have an indirect connection

through others members of the group. Consider, for example, a group of drug dealers which has a

local provider, three middle distributors, and ten local dealers. Suppose the distributors and dealers

all know each other. The main provider may not have direct contact with any of the lower level

dealers, but he is connected to each of them through the middle distributors. The main provider

may not have a direct relationship with every individual, but he does belong in the group, and

should be in the aggregated node if this drug group is aggregated together

Seidman and Foster restructure a network with aggregated nodes in order to examine within-

and between-subgroup interactions or relations (Seidman and Foster, 1978: 139). They note an-

thropologists tie people together using family bonds, while sociologists often use a more empirical

approach. Sociologists tend to look for a person’s role within a sub-society; these social grouping

tend to be categorical and are obtained through surveys, which are murky at best. In general, the

sociologists are searching for “sets of individuals who are tied to each other more closely than to

non-members” (Seidman and Foster, 1978: 140); specifically, they look for cliques.

Seidman and Foster argue cliques are not an appropriate structure to study, since they are

difficult to find in large networks, and are in general unlikely to exist at all. They want to find a

structure that retains the property of relatively short path between all pairs of nodes, but that path

length does not have to be 1, as it is in the classical definition of a clique. This would imply near

direct communication between all members of the group. One of their concerns about the classical

definition of cliques is robustness: the clique falls apart if only a small number of arcs are removed.
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To keep the idea of a closely-knit group, but remove some of the rigid restrictions, Seidman and

Foster define a k-plex to be “a graph with n vertices in which each vertex is connected by a path

of length 1 to at least n − k of the other vertices” (Seidman and Foster, 1978: 142). Further, they

offer an algorithm for finding k-plexes in a graph. As with Chang and Fung’s combinable groups,

the k-plex offers another relaxation of the clique concept.

In a terrorist group, some individuals may be kept purposely ignorant of each other for op-

erational security reasons, so it is often difficult to find cliques. If a terrorist cell is preparing a

coordinated attack, each individual may know only his piece, and not know the members of a cell

simultaneously attacking a target on the other side of town or even that such an attack is to occur.

Consider a scenario of seven individuals in which each of the two bombing groups has two individu-

als, and three more individuals are coordinating the attacks. In this scenario, suppose each of the

three coordinators know all four of the bombers, but the pairs are unaware of each other. Each in-

dividual has a direct connection with at least n−2, or 5, other individuals. Therefore, this terrorist

cell forms a 2-plex.

When aggregating individuals into groups, it is preferable to group such that sets of individuals

most like each other end up together. It was noted earlier that cliques define a group of people who

are close to each other, but finding them in a graph is difficult. Sometimes, the actual level of

relationship between two people is not known, or is qualitative, such as “Alice and Bob are good

friends” or “Alice and Bob communicate frequently”. Fuzzy cliques offer some potential solutions

for these problems in social network analysis.

2.6 Fuzzy Cliques

The original concept of the clique in a social network, a structure in a graph where each

person has a direct connection with every other person in the group, from Luce and Perry’s 1949

seminal work is too rigid for social network analysis. Yan Xiaoyan describes five limitations of the

original clique definition: redundant connections, rigid definition of membership, uniform structure,

network weights, and computational complexity (Yan, 1988: 360-362). One of the greatest practical
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limitations is that finding cliques is an NP-complete problem, and therefore may be prohibitive for

large networks.

Yan contends that cliques as Luce and Perry define them have too many edges. It is too

difficult to find subgraph with n(n− 1) edges. The limitations of the classical definition do not offer

gradations of membership in the clique. Yan writes, “For any given clique and any given node, there

are only two possibilities. The node either belongs to the clique or does not belong to the clique”

(Yan, 1988: 360-1). A person can be removed from the clique by losing a direct connection to just

one other person in that clique. This requirement that each node be directly connected to every

other node produces an uninteresting structure in which no member of the clique is distinguishable

from any other. The original definition of clique puts a binary weight on each edge — an edge has

weight 1 if a relationship exists — which Yan argues is unrealistic. To be able to assess relationships

in a more quantitative manner, Yan recommends using edges with integers or fuzzy strengths. Yan

recalls, “In traditional set theory, given any object x and a set A, there are two possibilities: object

x either belongs to A or does not,” defining a membership function in which M(x) = 0 or 1 (Yan,

1988:366). In a fuzzy set, an element can take on any value in [0,1] (Yan, 1988: 366). These

membership values between 0 and 1 may become useful if the analyst is unsure of how integrated a

member is in the network.

As an example, let M(x) = 0 if x is not a drug smuggler, 1 if he is. Consider, an individual

who transports a package of cocaine from Colombia to the United States. The individual is clearly

a smuggler, but only small time, so merits a membership value of 0.9 Consider instead a farmer in

Afghanistan who is caught carrying opium across the border to Pakistan. When caught he claims

a local warlord offered him money if he transported a package and asked no questions. The farmer,

though not completely innocent, is only a mule, and his membership value is lower, say 0.4.

Yan defines “the strength of a path . . . as the smallest fuzzy strength of all the fuzzy strengths

on the arrows of the path” (Yan, 1988: 375) and “the length of a path is . . . the number of arrows on
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the path/the strength of the path” (Yan, 1988: 375). The length increases as more edges separate

nodes.

Finally, Yan defines a fuzzy clique (Yan, 1988: 377-8):

“... a maximum strongly connected node subgroup in which each node is connected to all
the others directly or indirectly, regardless of the number of intermediate nodes. The
core members are those nodes whose distances to and from all clique members are less than
or equal to a given fuzzy or non-fuzzy number D”

The members of a clique that are not in the core are peripheral members. Under his definition

of fuzzy clique, Yan offers several measures relating nodes to cliques and cliques with each other. He

defines a node-clique coefficient which gives a measure for a node’s relationship to a clique of which it

is not a member, a clique-clique coefficient which provides a measure of comparison between cliques,

and a node membership coefficient which measures a node’s position within the clique of which it is

a member.

To determine the node-clique coefficient, let n1, n2, ..., nm be members of a clique, C, and let

n be a node in the network that is not a member of C. The coefficient K(C,n) =
i

1
Qi

m, where

Qi is the directed distance from n to ni (or ni to n). By Yan’s definition of clique, since n is not in

the clique C, either there is a path from n to ni or ni to n, but not both. Else, n would be in C.

The node-clique coefficient tells the analyst how close an individual is to a given clique of which it

is not a member. The individual with the largest node-clique coefficient with a given clique may be

the individual who passes information to that set of individuals in the network.

To determine the clique-clique coefficient, let C1, C2 be two cliques; let the nodes in C1 be

n1, n2, ...nm and let the nodes in C2 be n1, n2, ...nk. Then the clique-clique coefficient J(C1, C2) =

i j

1
Qij

m ∗ n where Qij is the path length from ni in C1 to nj in C2(or nj in C2to ni in C1).

The clique-clique coefficient offers a measure for the aggregated relationship between two groups of

individuals in the network. If communication occurs between groups other than through the official

hierarchy, this coefficient will show how much these informal relationships add to the relationship

between groups.
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The value of a member to the clique of which it is a member is P P ≤ 1 , where P is the

number of nodes in the clique whose distance from the member is less than some threshold D and P

is the number of members in the clique. Recall that the members of the clique whose distance from

every other member in the clique is less than D are in the core of the clique. Varying the value of D

changes not only the size of the core but also the value of a node within the clique. It does, however,

keep the relative measures of nodes, and provides a method for distinguishing members within the

clique. Depending on what the weight on the arcs represents in the network, this membership value

may tell the analyst which individual in the group is most susceptible, or instigates the most phone

calls, or brings the most new members into the group (depending on what the weight on the arcs

represents).

Since Yan’s definition of a fuzzy clique does not allow a node to be in more than one clique, the

computational problems associated with finding all (overlapping) cliques in a network do not exist.

Yan offers the following algorithm for detecting fuzzy cliques (Yan, 1988: 382):

Fuzzy clique detection algorithm

1. Calculate the distance matrix for the network

2. k := 1

3. Identify all nodes in the kth clique by finding a maximum strongly connected subgraph

4. Calculate the membership values for all the clique members according to the given D

5. Are all the nodes in the network classified into cliques? If yes, stop; otherwise let k := k + 1
and go to step 3.

Yan also offers a definition of the clique network of a weighted network, w, as “a weighted

network in which the nodes are the cliques in w, and the connections and their weights are the clique-

clique coefficients in w” (Yan, 1988: 382). This provides a method for aggregating fuzzy cliques into

a smaller, denser network, in which analysis can be performed more quickly due to the smaller size.

In this aggregated network, the edge weight between the aggregated nodes (each representing a

clique) is the clique-clique coefficient. If the analyst chooses to leave some cliques disaggregated,

the edge weight between an individual node in disaggregated clique and an aggregated node is the
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node-clique coefficient described above. Further information about fuzzy networks and examples of

this method can be found in Appendix A.

2.7 Node Measures

Suppose the measure of interest is not the relationship between individuals in a network, but

a member’s position in the network as compared to others. To that end, there are several methods

for determining the centrality of an individual within the network. Three well known measures of

node centrality are degree centrality, closeness centrality and betweenness centrality.

The degree centrality measure for a node is the degree of the node (Shaw, 1954). Any individual

has a high degree centrality is able to directly communicate with a large number of other individuals.

The individual does not have to rely on other members of the network to convey information, and

so has some measure of direct influence over a large percentage of the people. However, it is not

necessarily the case that the person with the highest degree centrality measure is a person of great

importance.

For example, in a large office, the person who delivers the mail has direct contact with almost

every other person in the office every day. He may not be an important person in the company,

nor may it be obvious he can exert any influence over the employees he sees on a regular basis. He

may be the invisible person whose name no one knows. No one knows the janitor who comes to

empty the trash every evening, but he sees every scrap of paper people throw away. Alternatively,

he may be an individual who has built a personal relationship with everyone over time. If the

mail deliverer is then susceptible to outside influence, he can use this web of personal contact and

trust to disseminate that outside idea. Thus this degree centrality measure can be indicative of an

individual in a high position of power, it may also prove to be a person low in the organizational

structure who may or may not have a great deal of influence in the network. It is worth noting

that the degree centrality measure is a local property: an individual’s measure is dependent only

upon his relationships with his immediate contacts. This measure gives no indication of a person’s

relationship to other individuals more than a path of length one away.
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The closeness centrality measure for a node is the sum of the shortest paths to every other node

(Beauchamp, 1965). This measure represents independence, “the possibility to communicate with

many others depending on a minimum number of intermediaries” (Gomez et al, 2003: 28). As with

degree centrality, an individual with a high closeness centrality needs not rely on a great number of

other people in the network to disseminate information. However, the closeness centrality measure

is a global property, making it reasonable to compare each person’s measure in the entire network,

regardless of the path length between them. An individual with a high closeness centrality measure

can distribute information most quickly. In a network with two groups separated by an individual

who acts as an intermediary between the groups, that intermediary has a high closeness centrality.

If an outsider familiar with a terrorist cell needs to disseminate information quickly, he would desire

access to the person with a high closeness centrality measure, all other things being equal, in order

to get out the information as quickly as possible.

The betweenness centrality measure counts the number of shortest paths a node is on (Freeman,

1977). This is an indication of the control a node has on communication in the network, “the

possibility to intermediate in the communication of others” (Gomez et al, 2003: 29). This measure

is also a global measure, as it indicates the level to which an individual’s removal disrupts the

connectivity of the entire network. In the example above of the intermediary between the two

groups, the intermediary has an extremely high betweenness centrality, since his removal disconnects

the two groups. If the analyst’s goal is to severely hurt communications in a network, then he

should seek those individuals with high betweenness centrality. This does not require removing the

individual from the network. Instead, it may be desirable to use this individual’s position to insert

incorrect information into the network, or distort the communications between groups.

Gomez, et al suggest using the Shapley value as a node measure. The Shapley value is a

game theoretic power index that indicates marginal contribution of a player in the game. Using the

Shapley value, Gomez, et al suggests one can tell which coalitions may form within the network.

Game theory states coalitions form from a group of individuals with a common goal; the coalition
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allows the individuals to gain a higher payoff as a group then they would as individuals (Morris,

1994:149). Since the members of the coalition share a common goal, they can be aggregated together

in a social network.

2.8 Imperfect Information

In many social networks of interest, relationships between some individuals are unknown. Ana-

lytic network techniques require perfect knowledge of the network topology. When relationships are

known to exist, but there is only a limited knowledge of the level of that relationship, the analyst

can put fuzzy measures on the arcs and apply Yan’s methodology for fuzzy cliques. Parsons’ re-

search focuses on interpreting imprecise information in databases. He also recommends using fuzzy

sets when the actual value is unknown. Parsons claims:

“Most of the work on the modeling of imprecise information within databases has in-
volved the use of fuzzy sets and fuzzy logic. Fuzzy set theory is a generalization of normal
set theory in which it is recognized that the kinds of classes of objects one encounters
in the real world do not always have precisely defined criteria of membership.” (Par-
sons, 1996: 357)

When data is missing altogether, different methods are required. Philip Roth sagely advises,

“The best possible method of dealing with missing data is to avoid the problem” (Roth, 1994: 538).

Given that missing data is inevitable, however, Roth offers methods for performing analysis on

data sets with missing data, including several simple methods, hot deck imputation and maximum

likelihood estimates.

The simple methods suggested by Roth are listwise deletion, pairwise deletion, and mean sub-

stitution. When implementing listwise deletion, the analyst eliminates all data with any amount of

information. Suppose the data consists of three types of data, A, B, and C, and some of the data

for B is missing. Listwise deletion requires the analyst delete either the entire B data, or the A and

C data points where ever B is also missing.

Implementation of pairwise deletion allows the analyst to use the data available for the statistics

that can be calculated. For example, suppose again that the data consists of three types of data, A,

B, and C, and much of the data for B is missing. The analyst can still find correlations between A
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and C. This method can often lead to inconsistent correlations and covariances. Mean substitution

allows the analyst to “use the mean value of a variable in place of missing data values for the

same variable” (Roth, 1994: 540). Since mean values are used whenever missing data points are

encountered, the variance and covariance estimates tend to be unrealistically low. (Roth, 1994: 539-

540). For all of these methods, it is necessary for the analyst to be aware where information for the

network is actually missing. To possess this knowledge with certainty may be impossible for social

network analysis.

With the limitations of the simple techniques listed above, “A growing number of researchers

are choosing to estimate missing data values based on other variables in the data” often via regression

(Roth, 1994: 544). One such technique is hot deck imputation. Roth defines this as follows:

“Hot deck imputation is a strategy that has become popular in survey research. The under-
lying principle is that researchers should replace a missing value with the actual score
from a similar case in the current data set.” (Roth, 1994: 544)

Hot deck imputation has several advantages over the simple techniques suggested by Roth.

First, it uses realistic values to replace missing data. Second, the replacement values are not means,

so the variable distributions will not be distorted. Roth recommends using this approach as being

“particularly helpful when data are missing in certain patterns” (Roth, 1994: 544).

Hot deck imputation also has several disadvantages. There is little theoretical or empirical

work done to test its accuracy. It categorizes continuous variables, which causes a loss of robustness.

Since replacement values are taken to be the same as similar data points, standard errors are difficult

to estimate. Roth does not, unfortunately, offer a way to determine a similar case for replacing the

missing information.

Roth also provides a maximum likelihood estimation technique. He claims, “The relatively

simple approach generally assumes that the observed data are a sample drawn from a multivariate

normal distribution” (Roth, 1994: 545). Though not multivariate normal, it is known that the

degree distribution of the nodes in a social network follows the power law. Thus, when faced with
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a network whose degree does not follow a power law, an analyst can speculate about appropriately

placed arcs which would bring the degree distribution into line with the power law.

Roth recommends considering two factors when choosing a missing data technique (MDT) -

amount of missing data and pattern of missing data. He claims that if the amount of missing data is

small, then the choice of MDT is unimportant. As justification for this statement, he states, “Monte

Carlo studies suggest there is little difference in the parameter estimates and answers to research

questions when less than 10% of the data are missing in random patterns or systematic patterns”

(Roth, 1994: 553). The choice becomes more critical as the amount of missing data rises to 15 or

20%.

Unfortunately, in many cases of social network analysis, the analyst may not know what per-

centage of the data is missing. In this situation, it is reasonable to choose a method that pervades

all levels, such as Maximum Likelihood techniques or hotdeck imputations. As previously noted, if

the degree distribution does not follow a power law, or the diameter of the network is large, then

arcs must be appropriately inserted to meet these social network conditions.

The other factor Roth advises considering when choosing an MDT is the pattern of missing

data. Data missing at random is least problematic. When the pattern of missing data is not random,

it can be either across or within subgroups. The simple MDTs are highly likely to misestimate

correlations. Even the hot deck imputation approach is not recommended due to the effects it has on

biasing the data. Although there has not been a great deal of research done in this area, Roth believes

“the expectation maximization approach shows great promise” (Roth, 1994: 559). Further, Roth

states, “Statisticians might . . . recommend use of expectation maximization or maximum likelihood

approaches that model the missing data problem based on previous knowledge of the distributional

functions” (Roth, 1994: 560). As Parsons advises, it is important to consider what is happening

when the analyst fills in a missing data point. He cautions the analyst (Parsons, 1996: 356):

“Quite a number of schemes have been proposed [to deal with the missing value], most of which
center around the null value, a placeholder for the missing value. . .While the use of a
null value seems a very sensible way of handling the problem of representing incompleteness,
it introduces a new problem — interpreting what the null value is representing”
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2.9 Summary

This chapter has reviewed pertinent literature relating to modeling social networks, aggregation

techniques and a brief overview of methods to overcome missing information. The structures and

techniques of graph theory provide social network analysis a rigorous analytic foundation. Social

networks can be classified as those subset of graphs possessing some combination of the following

three properties: 1. high local clustering, 2. small average diameter, and 3. power law degree

distribution.

Many aggregation techniques and structures are available, but the most appealing concept lies

in blockmodeling. Blockmodeling essentially attempts to find sets of nodes that are in some way

similar. If the analysis at hand covers a community recreation league, then different sport teams

may constitute appropriate blocks. In this research, the blockmodeling concept is translated to

rearranging rows and columns, representing nodes, in the adjacency matrix to obtain blocks of 1s

on the diagonal.

Yan’s paper on fuzzy cliques offers techniques applicable to social network analysis, especially

when information is not known with certainty or the arcs are directed. If level of relationship be-

tween individuals or groups is uncertain, Yan recommends using a fuzzy number or a membership

function. In general, clique detection requires undirected arcs, but Yan relaxes many of the con-

strictive restraints of pure cliques in his definition of fuzzy cliques as maximal connected subgraphs.

While this definition may not be appropriate for undirected networks, it is for directed networks.

Further details and an example of fuzzy cliques is in Appendix A.

The node measures introduced in this chapter (degree, closeness, and betweenness centrality)

are used to transform information about relationships between nodes into information about a node.

Application of multiple measures on a network can provide insight to an individual or aggregated

subgroup’s position in the network.

Chapter 3 applies many of these techniques to offer the social network analyst a method

for characterizing social networks. To assist the analyst in performing this aggregation analysis,
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Chapter 3 focuses on clique (and its less dense cousin, the k-plex) detection and applying degree and

closeness centrality node measures to differentiate individuals or subgroups in the network. First,

two techniques for determining appropriate cliques or subgroups for aggregation are offered, using the

concepts of blockmodeling and node coloring. Then, the two node measures of degree centrality and

closeness centrality measures are further explored for their contribution to social network analysis.

The remainder of Chapter 3 provides the methodology for aggregating the appropriately determined

subgroups and applying either the degree or closeness centrality measure. The aggregation process

provides the analyst with information on individual and subgroup relationships as well as individual

and subgroup relative positional importance in the network, with respect to the data defined on

the network relationships. Chapter 4 then applies these techniques to notional social networks and

Chapter 5 uses them for real world open source data for Jema’ah Islamiyah. Chapter 6 investigates

the effect of missing information on network structures and the analytic techniques presented in

Chapter 3 and demonstrated in Chapters 4 and 5.
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Chapter 3 - Methodology for Subgroup Detection and Node

Aggregation Techniques

3.1 Introduction

The aggregation techniques in this chapter benefit not only the analysis of large networks, but

of any social network in which subgroup interactions are of interest. The techniques and calculations

developed in this chapter demonstrate how different aggregation methods and levels of aggregation

affect the information available in the aggregated network.

Aggregation of a social network requires two steps: 1. determine appropriate sets of individuals

to be aggregated into subgroups, and 2. calculate measures for the networks of aggregated nodes.

Section 3.3 offers methods for determining appropriate subgroups, and Section 3.4 details the four

aggregation measures and when each is appropriate. Naturally, no single aggregation technique

is appropriate for all social network structures; Section 3.2 characterizes the network to determine

which techniques are appropriate for a given network.

3.2 Network Structures

The first step of aggregation is to determine appropriate groupings of individuals into sub-

groups, and is dependent on the relationships in the network. This research considers two struc-

tures: 1. distinct subgroups, connected only through cut-outs, and 2. liaison individuals who have

membership in multiple subgroups. Methods for finding appropriate subgroups for both of these

network structures are detailed in the next section. If there is no previous knowledge of possible

subgroups in the network, both methods may be used for exploratory purposes.

The appropriate subgroups for aggregation are determined using one of the clique detection

methods offered in Section 3.3. Cliques are an important structure, since they represent a set of

individuals all of whom have a direct relationship with every other member in the set. If one

susceptible member of a clique can be influenced by an outsider, that member has a direct line of

communication with every other person in the clique.
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However, in social networks, it is common to find only a few cliques, as one missing arc means

the set of nodes fails to form a clique. Furthermore, when complete information of relationships in

the network is not known, the missing arcs inhibit clique detection. For the research in this thesis,

it is therefore necessary to consider subgroups that relax the pure clique constraints. To facilitate

finding candidate sets to aggregate for social network analysis, the methods developed in this chapter

allow the analyst to find groups in which not every pair of nodes has a direct relationship. Chapter

2 offers several relaxations of the pure clique definition, including k-plexes (Seidman and Foster,

1978), combinable groups (Chang and Fung, 1989), and fuzzy cliques (Yan, 1988).

The relaxation chosen for the methods below is the k-plex, in which each pair does not have

to be directly related, but each of the n nodes in the group must be adjacent to at least n−k other

individuals in the group. A smaller k produces a denser group; k = 1 yields a pure clique, since

in a clique on n nodes, each node is adjacent to each of the other n − 1 other nodes. k-plexes

are an appropriate relaxation for the clique structure in which it is known information is imperfect,

or some members are intentionally kept ignorant of one another. When k is still relatively small

compared to n, then the k-plex on n nodes is still fairly tightly connected, and a small number of

missing direct relationships does not imply the group has lost cohesion.

The second step assigns a positional weight, via a node measure, to each node in the aggregated

network. Assigning positional weights to individuals or subgroups in the network provides the

analyst with relative measures of those individuals or subgroups. This offers information on relative

importance of each node to the measure definition. In Chapter 2, several node measures were

introduced; degree centrality and closeness centrality are further explored in the remainder of the

thesis.

The degree centrality measure is a local property indicating the strength of an individual’s

relationship with immediate neighbors. The original introduction of this measure assumes each arc

has a unity weight and the network is undirected (Shaw, 1954); thus the measure assigned to the node

is simply the degree of the node. In this research, the degree centrality measure is extended to allow
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for non-unity weight on the arcs and for the arcs to be directed. This extended degree centrality

measure may be appropriate when considering an individual’s relationship with his direct contacts.

For example, this measure can be used to model a supervisor’s relationship with his subordinates,

or the interactions involving otherwise ignored individuals such as the mail delivery person. The

boss may not be aware how much influence the person who passes out the mail has on all the office

employees, but the mailman’s low position in terms of money and respect by the supervisors may

make him a susceptible target for outside influence. Thus, the typical office structure may not

provide the necessary information for exploiting the network.

The closeness centrality measure is a global property indicating the efficiency with which an

individual can disseminate information or materiel throughout the network. As with the degree

centrality, the original implementation of this measure assumed the arcs are undirected and have

unity weight (Beauchamp, 1965). The closeness measure is also expanded in this thesis to allow non-

unity weights and directed arcs. This measure is appropriate when the analyst seeks an individual

who can communicate easily with the rest of the network. Consider a scenario in which individuals

or subgroups in a network are about to be apprehended, and only a few members in the group

have a small closeness centrality measure. If those few individuals can be incapacitated, then the

network loses much of its ability to communicate quickly and efficiently, preventing individuals not

yet detained from being warned of imminent threat.

Once subgroups are known and an appropriate node measures chosen, the network can be

aggregated into subgroups and the degree or closeness centrality measure can be assigned. Section

3.4 provides the necessary calculations for aggregation depending on subgroup structure and the

node measure used. The analysis in this thesis assumes the network under consideration has arc

weights. However, if arcs are known to exist, but their weights are unknown, they can all be assigned

a unity weight. Alternatively, if some weights are known, but not all, the unknown weights can

be approximated by giving them a fuzzy number (see Yan, 1998) or using a maximum likelihood

function (see Roth, 1994).
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Weights on arcs in a network give a relational measure between two nodes, while weights on

nodes are positional. Depending on the purpose of the social network analysis at hand, the network

may be aggregated whether the weight is on the arcs or on the nodes, and the two steps of aggregation

and assigning a node measure can be done in either order. In general, if aggregation precedes

assigning node measures, more information is masked in the aggregation step. Any weight on an arc

with both endpoints in the same subgroup is lost in the aggregation step. However, if a node measure

is assigned to each individual before aggregating the network into subgroups, the information from

each individual is carried into the aggregation step and considered when aggregating the individual

nodes into aggregated nodes.

At first glance, it may seem at this point that in the interest of saving information, aggregating

nodes which have already been assigned measures is preferable. However, there are circumstances

when it is important to understand a network that has been aggregated with weights on the arcs.

If the analyst is interested only in the relationships between subgroups, then aggregating the social

network with weighted arcs (instead of weighted nodes) provides the analyst with measures that are

not clouded with information from within groups.

3.3 Subgroup Detection Techniques

This section develops two techniques for determining sets of individuals to be aggregated into

subgroups. The first, in Section 3.3.1, requires an individual to be in only one subgroup, whereas the

second, in Section 3.3.2, allows liaison individuals as members of multiple subgroups. Traditional

clustering techniques, such as those implemented in UCINet or JMP, allow an individual in only one

subgroup.

Both methods developed here first seek maximal cliques. A clique is said to be maximal if no

larger clique contains it. Cliques are desirable for subgroups, since every pair of individuals has a

direct relationship and no structural information about the subgroup is masked in the aggregation. If

all aggregated nodes are cliques, then the structure of the disaggregated network is known. However,
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if some of the aggregated nodes represent k-plexes (for k ≥ 2) the exact structure of that subgroup

is not completely known.

Pure cliques are likely to be rare in social networks, especially in networks of imperfect informa-

tion. Once it has been determined that aggregating only pure cliques does not produce a sufficiently

small aggregated network, it may be necessary to extend the clique subgroups to k-plexes. The

clique detection methods detailed in Sections 3.3.1.2 and 3.3.2 demonstrate how to find maximal

cliques, and can be expanded to include k-plexes. All of these methods are only suited for undi-

rected networks. For directed networks, Yan’s method, which defines a clique to be a maximally

connected subgroup is appropriate, as described in Chapter 2 and further detailed in Appendix A.

3.3.1 Non-Overlapping Subgroups

Generating a set of non-overlapping cliques is accomplished by rearranging the adjacency matrix

into blocks, utilizing the blockmodeling concept introduced in Chapter 2. A set of nodes forms a

block at their intersection in the adjacency matrix. If every entry in that block is a 1 (except for

the diagonal entries which are all 0), then the set of nodes forms a clique.

The method for finding non-overlapping cliques seeks to blockmodel by node coloring the

complement of the network. Recall that node coloring a network requires placing a color, or label,

on each node such that no two adjacent nodes share the same color. The greedy method outlined in

this section colors each node with the smallest color available. A color is available for node i when

no adjacent node to i is already labelled with that color. Since the complement G of the graph

G uses the same node set as G, and has an arc exactly where G does not, node coloring G by this

method finds maximal cliques in the graph itself.

Complement Coloring Algorithm:

1. Node color an uncolored node in G by assigning it the smallest color available.

2. Repeat Step 2 until all nodes have been colored.

3. Order the nodes in the adjacency matrix by grouping nodes together by their color.

As coded in MATLAB for this thesis, this algorithm runs in O(n6)
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Theorem 3.1 The Complement Coloring Algorithm partitions the node set of a graph G into non-
overlapping cliques of G. If one or more nodes is in multiple cliques, this algorithm finds only one
of the multiple cliques.

Proof. It is necessary to show the following: 1. every node is in exactly one clique, and 2. the

cliques are non-overlapping.

1. Every node in the network is colored exactly one color in steps 1 or 2. By proving the set of

nodes colored the same color are a clique, it will be shown that every node is in exactly one clique.

Without loss of generality, consider the nodes colored i. This set of nodes can be colored i since no

pair of them have an arc connecting them in G . Therefore, all pairs have a connecting arc in G,

forming a clique. This is true for every color used, so the network partitions into cliques.

2. Since no node receives more than one color, the cliques cannot overlap.

If two cliques share a node, this methods requires that individual to be in only one group. It

is the user’s choice whether to remove a node from one clique to enter it in another. If there is

some outside knowledge of group dynamics, then that information can be applied to determining the

clique to which the individual belongs. However, if individuals are in multiple groups, then it may

not be appropriate to try to aggregate the network as if the groups are distinct, such as in Figure 1

on page 36. It would perhaps be preferable use the method in Section 3.3.2, allowing an individual

to have membership in multiple subgroups.

The initial run through the method may find cliques {1, 2, 3} and {4, 5, 6}. A reexamination

of the adjacency matrix yields the clique {2, 3, 4, 5, 6}. Any column of a block off the diagonal that

is all 1s can be added to the clique in those rows.

As another example, consider the following adjacency matrix representing a network G :

1 2 3 4 5 6 7
1 0 1 1 0 0 0 0
2 1 0 1 0 0 0 0
3 1 1 0 1 1 1 0
4 0 0 1 0 1 1 1
5 0 0 1 1 0 1 1
6 0 0 1 1 1 0 1
7 0 0 0 1 1 1 0
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The coloring of G has picked up a K3 of nodes {1, 2, 3} and a K4 of nodes {4, 5, 6, 7}, where

Kn denotes a clique on n nodes. Since the off-diagonal block showing the arcs connecting the K3

and K4 has a column of 1s, node 2 can be augmented to the K4 and it becomes a K5. This is

accomplished at the expense of the K3 which would then only be an arc on nodes {1, 2}. Thus, the

method did determine a maximal clique of which node 2 is a member, but not the maximum one,

the K5 consisting of nodes {2, 4, 5, 6, 7}.

This method finds only pure cliques. As previously stated, cliques are likely to be rare in

social networks, especially when there is not perfect information and operational security does not

allow members of a group to associate freely with other members. It is therefore necessary to relax

the clique definition and seek subgroups where individuals know most, but not necessarily all, of the

other members in the subgroup. The amount by which the cohesiveness of the subgroup can be

relaxed into k-plexes is a subjective decision that must be made by the analyst.

Now that all the cliques have been found, it is necessary to consider the possibility that many

of the individuals in the network are in a clique of size 1 - themselves. When analyzing social

networks, it is highly likely that not have all of the information regarding interpersonal relationships

is available, or that an otherwise tightly knit group may be a couple of arcs short of a clique. To

address this situation, the following calculations provide the density of groups in which members that

may or may not have a direct relationship with every other individual in the subgroup are added .

Three sets of calculations are presented. The first shows augmenting a nonmaximal clique

with a node adjacent to every member of the clique simply increases the size of the clique and does

not decrease the density of arcs in the subgraph. This shows that removing a node from one clique

to add it to another if necessary does not affect the density of either clique. The second shows how

the density of the arcs in the subgroup changes when a node is added to a clique adjacent to n − 1

of the nodes on a clique of size n. The decrease in density is dependent only on n. The third

calculation extends the second to show the decrease in density when a node is added to a clique when

it is adjacent to only n− c (c > 1) of the nodes in the clique. The largest c among the additional
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nodes to the clique determine the k coefficient in the k-plex. Let c be the largest c; the subgraph

then obtained is a (c + 1)-plex.

In graph theory, it is generally assumed that a clique has density one, since every arc between

all distinct pairs of nodes in the subgraph exist. This definition of density allows the range of

acceptable densities for a graph to fall within [0, 1], where 0 density is a set of isolated nodes with

no arcs, and 1 density is a full clique. As the density of the subgraph decreases, the group becomes

less well connected. It is therefore often necessary to find a trade-off between density that is not

too low, but which condenses the graph enough to be able to perform analysis on the aggregated

network quickly, still meeting the operational requirement.

If the clique is not already maximal, adding another node to the clique (identified with a column

of 1s in an off-diagonal block) has a density equal to the sum of the following:

1. the clique on n nodes out of (n+ 1)2:
n2 − n

(n+ 1)2 − (n+ 1)

2. the row and column for the n+ 1st node:
2n

(n+ 1)2 − (n+ 1)
The denominator in these fractions subtracts the 0s on the diagonal of the adjacency matrix,

or self loops (n+ 1) from the total number of possible arcs (n+ 1)2, which includes the self-loops.

n(n− 1) + 2n
(n+ 1)2 − (n+ 1) =

n2 − n+ 2n
n2 + 2n+ 1− n− 1

=
n2 + n

n2 + n

= 1

Since adding this node simply made a larger clique, the outcome of density 1 is expected.

If the clique is maximal, to keep the density as high as possible add a node connected to n− 1

of the nodes in the clique. Such a node can be found if a block off the diagonal has a column of

(n− 1) ones and one zero. By adding this node to a clique of size n, the set of nodes has density:
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n(n− 1) + 2(n − 1)
(n+ 1)2 − (n− 1) =

n2 − n+ 2n− 2
n2 + 2n+ 1− n − 1

=
n2 + n− 2
n2 + n

=
(n+ 2) (n− 1)
n(n+ 1)

(3.1)

= 1− 2

n2 + n
(3.2)

Equations (3.1) and (3.2) show the density of the new subgroup. Equation (3.2) shows specif-

ically how the density decreases from that of a pure clique when a node adjacent to only n− 1 other

nodes is added to the subgroup.

In general, adding a node connected to (n − c) of the nodes in the clique of size n gives that

set density:

n(n− 1) + 2(n− c)
(n+ 1)2 − (n− 1) =

n2 − n+ 2n− 2c
n2 + 2n+ 1− n− 1

=
n2 + n− 2c
n2 + n

(3.3)

= 1− 2c

n2 + n
(3.4)

Equation (3.3) and (3.4) show the density of the new subgroup. Equation (3.4) shows specifi-

cally how the density decreases from that of a pure clique when a node adjacent to only n− c other

nodes is added to the subgroup.

The clear disadvantage to finding only non-overlapping maximal cliques is that many cliques

may be ignored. Consider the network on six nodes shown in Figure 1. The two maximal cliques

are {1, 2, 3} and {2, 3, 4, 5, 6}. Building a clique starting with arc {1, 2} produces the cliques {1, 2, 3}

and {4, 5, 6}. Alternatively, the seven node network in Figure 2 has a more appropriate structure

for aggregation into non-overlapping cliques, since the subgroups are distinct. The method finds

{1, 2, 3, 4} and {5, 6, 7}. It is therefore necessary to consider the network topology and the mission

requirements before deciding on a clique detection technique.
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Figure 1. Poor choice for non-overlapping clique detection method

Figure 2. Appropriate Network for Non-Overlapping Clique Method
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This implies that before selecting a method for determining which sets of nodes form appropri-

ate aggregated subgroups, some preliminary checks of the network data must be performed. This

could include producing a visual representation of the network, if possible. Any prior knowledge

of intergroup relationships can be used. If nothing is known about the network or suspects the

subgroups are connected through liaison individuals, then the techniques offered next for finding

overlapping subgroups can provide insight to the network structure.

3.3.2 Clique Detection for Overlapping Subgroups

The method introduced in this section offered finds overlapping subgroups, appropriate when

subgroups interact through liaison individuals. Seeking subgroups in this manner removes one of

the concerns found in non-overlapping cliques: that some cliques may be missed entirely. It is,

however, computationally more complex.

Finding every clique in a graph is a difficult problem. Every clique can be found in non-

polynomial time by taking every subset of the node set and testing to see if there is an arc between

every distinct pair in the subset chosen. Bron and Kerbosch developed an algorithm finding every

clique in 3k steps, where k is a number of distinct K3s in the network (Bron and Kerbosch, 576:

1973).

By starting with the largest of the 2N (where N is the number of nodes) subsets and checking

the subsets in decreasing number of nodes, it may not be necessary to check every subset. For

example, if a K5 is found, then the subsets of the nodes in the K5 do not also need to be examined.

However, if the network is completely disconnected, there are no arcs and this method requires

checking all 2N − 1 subsets to find N K1s.

It will be proven that the polynomial method offered in this section finds at least 75% of the

cliques in a network. The innermost loop allows for groups of lower density than a pure clique.

This step can be omitted only pure cliques in the network or faster performance are desired.

Overlapping Cliques Heuristic:

1. Let G = (V,E) be an undirected network, with node set V and arc set E .
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2. Let A be the adjacency matrix for G.

3. Let k ≥ 1 be the number of nodes each individual does not have to be directly related to (as in
k-plex). k = 1 is a pure clique

4. Let C be a set that tracks the set of nodes in a given clique.

5. For every node i ∈ G = (V,E)
6. For every node j such that (i, j) ∈ A
7. C = {i, j}
8. As long as there exists some node x ∈ V \C such that (x, n) ∈ A ∀ n ∈ C
9. C = C ∪ {x}
10. Output C

11. if k > 1

12. As long as there exists some node {x} ∈ V \C such that (x, n) ∈ A for at least
(n− k) of the nodes in C

13. C = C ∪ {x}
14. End

15. Next j

16. Next i

Each output C from the method produces a set of not necessarily unique k-plex on |C| nodes

with a clique in its core. This research considers only the cliques and k-plexes on three or more

nodes. There are two main difficulties with this method: 1. though polynomial, it can be relatively

slow (especially when seeking subgraphs less dense than cliques), 2. it is not guaranteed to find

every clique. The MATLAB code currently runs on this algorithm in O(n6). This is a theoretical

maximum number of operations that may have to be run, and decreases significantly in a sparse

network.

Theorems 3.2 through 3.6 show that the heuristic is guaranteed to find at least 75% of all

cliques. The method does not find a given clique when each arc in the “missing” clique is used

as the initial arc in a clique (in Step 7 of the heuristic) builds some other clique. A clique can be

missing when only when the union of other cliques covers every arc of the missing clique. These

theorems show that it requires at least three other cliques to cover the “missing” clique. Then the
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structure of the networks for which the method does not find every clique is presented, along with

an example of this rare case.

Theorem 3.2 Two maximal overlapping cliques must be unique up to a node.

Proof. Let Ki and Kj be maximal cliques. Suppose Ki has no node unique from Kj . Then

Ki ⊆Kj. But Kicannot be a proper subset of Kj, or Ki is not maximal, violating the assumption.

The only option is for Ki =Kj, in which case the two maximal cliques are not unique.

Corollary 3.3 Two maximal cliques are unique up to an arc.

Proof. By Theorem 3.2, if two maximal cliques are unique up to a node, then they are unique up

to at least |K|− 1 arcs. The smallest clique of interest is size 3, so any clique has more than one

unique arc.

Theorem 3.4 Two maximal unique overlapping cliques, Ki and Kj, can share no more than
|K|
2

− (|K|− 1), where K = min(Ki,Kj).

Proof. A clique of size K has
|K|
2

arcs (when excluding self-loops). Since we have shown

that Ki and Kj must be unique up to a node, then there is some node, v, in K = min(Ki, Kj) that

is not in the larger clique. Therefore, K has at least deg(v) = |K|− 1 arcs not in the larger clique.

If any of those arcs were in the larger clique, then the endpoint v would also have to be in the clique,

contradicting the assumption that the cliques are unique. Therefore, Ki and Kj, can share no more

than
|K|
2

− (|K|− 1)

Theorem 3.5 Let K,Ki,Kj be three unique maximal overlapping cliques such that |K| ≤ |Ki| and
|K| ≤ |Kj |. Then K ∩K1 ∩K2 can contain no more than |K|

2
− 2(|K|− 1) + 1 arcs.

Proof. Suppose K contains one node, vi /∈ Ki. By Theorem 3.2, we know at least one such node

must exist. By Theorem 3.4, we know K and Ki share no more than
|K|
2

− (|K| − 1) arcs

(recalling |K| ≤ |Ki|). A second clique unique from both K and K1, K2, can also share no more

than
|K|
2

−(|K|−1) withK. If each of Ki andKj share this many arcs with K, then many of
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those arcs are the same. They overlap on at most |K|−2 nodes for a total of |K|
2

−2(|K|−1)+1

arcs.

Theorem 3.6 The percent of undetected unique maximal cliques is bounded below by 75%.

Proof. The method to detect cliques starts with each arc in the network, and builds a clique from

it. Corollary 3.3 states each pair of cliques is unique up to an arc, and if a clique has an arc in

no other clique, then the method builds that clique. However, if each arc of a clique K is also in

another clique, then the method may build the clique that is not K at each of those arcs. Thus, it

is necessary to find the smallest number of cliques that can cover every arc in K.

Given the three unique maximal cliques as described in Theorem 3, K,Ki,Kj , we have shown

in Theorem 3 they overlap in at most
|K|
2

− 2(|K|−1)+1 arcs, and each pair K,Ki and K,Kj

overlap in at most
|K|
2

− (|K|− 1) arcs. Thus, (K ∩Ki) \Kj overlap in at least the following

number of arcs:

|K|
2

− (|K|− 1) − |K|
2

− 2(|K|− 1) + 1 = |K|− 2

This means each of Ki and Kj share |K|− 2 unique arcs with K. Thus (K ∩Ki) ∪ (K ∩Kj) has

2(|K|− 2) + |K|
2

− 2(|K|− 1) + 1

arcs. The first part of this sum is what Ki and Kj have unique in K, while the second part is what

they share in K (from Theorem 3).

2(|K|− 2) + |K|
2

− 2(|K|− 1) + 1 =
4|K|− 8 + |K|(|K|− 1)− 4|K|+ 4 + 2

2

=
|K|2 − |K|− 2

2

=
|K|2 − |K|

2
− 1
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The clique K has the following number of arcs:

|K|
2

=
|K|(|K|− 1)

2

=
|K|2 − |K|

2

Since

|K|2 − |K|
2

− 1 <
|K|2 − |K|

2

=
|K|
2

it takes at least three cliques = K whose union would cover K. Therefore, an upper bound on the

number of undetected cliques is 1 out of 4, and the percent of detected cliques is bounded below by

75%

This proof also implies that the undetected clique will be totally surrounded by other cliques.

Such a topology may force the method to fail to detect all cliques. In fact, the upper bound is strict,

as demonstrated in Figure 3. The method may fail to find the K3 = {2, 3, 5}. When building off

of arc (2, 3), it may build the K3 = {1, 2, 3}. Similarly, building off of (2, 5) and (3, 5), it may find

{2, 5, 6} and {3, 4, 5}, respectively, never detecting {2, 3, 5}.

3.4 Aggregation Techniques

At this point, appropriate subgroups for aggregation in the network are known, whether from

previous knowledge of the network or from one of the methods described in this chapter. Assuming

that the sets of nodes to be aggregated are known, it is now necessary to choose an appropriate

node measure before beginning the aggregation analysis. As previously stated, most social network

analysis does not have a weight to the arcs representing the relationship between individuals (or

groups). If adequate information about the strength of the relationship is not known, then the

methods introduced in this section simply assign each existing arc a unity weight. McAndrew

suggests there are occasions when it may be preferable to assign each arc a unity weight, even when
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Figure 3. Example of when the overlapping clique detection method fails to find a clique
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more information is available. He notes “discrepancies may occur due to more information being

collected on ties between two individuals relative to other pairs” (McAndrew, 1999: 152).

The fact that a small number of individuals may be targets for intelligence collecting often

means that there may be disproportionately more information about those few individuals. This

might lead to fallaciously assigning the individuals under observation a higher positional weight than

they merit. Consider a situation in which the weight on an arc is the number of phone conversations

the individuals at each endpoint share. Suppose Alice and Bob are two suspected drug dealers,

who know each other in multiple social contexts. Perhaps they are neighbors and attend the same

school. Of their 30 conversations in one month, it is not necessarily known how many of those

conversations are specifically related to drug dealing or any other illegal activity (McAndrew, 1999:

152). In each of these situations, it may be preferable to have only unity weights on the arcs, to

avoid over or under-estimating weights due to imperfect information.

Alternatively, if the strength of relationships is known, then that information can be used in

the analysis, providing more robust measures. These arc weights can be used to assign a measure

to each node in the network. The two measures explored in this thesis, extensions of degree and

closeness centrality, were chosen for their versatility and ease of use.

The degree centrality measure, a local property which assigns to each node the sum of the

weights on arcs emanating out of the node, is appropriate when it is of interest to understand

an individual’s relationship with immediate neighbors. A person can only directly interact with

immediate neighbors, and must rely on them to disseminate any information. A high measure may

be indicative of an individual who communicates with many people - one who bridges the distance

between scattered groups, for example. Alternatively, it may indicate an individual who has great

influence, but directly interacts with only a few other individuals.

The closeness centrality measure, a global property which assigns to each node a weight equal

to the sum of the lengths of shortest paths to every other node, considers the relative position an

individual has to efficiently communicate with every individual in the network, not just the ones

43



with whom there is a direct relationship. Since the measures are based on length of the shortest

path, it is important that a smaller weight on the arc represents a stronger level of relationship. If

the arc weights instead has a positive correlation with the strength of the relationship of the two

individuals the arc connects, then it is necessary to perform a transformation of that measure.

Any traditional transformation can be used. The one implemented in this thesis assigns to

each arc the reciprocal of the weight. For example, if the weights on six nodes are {1, 2, 4, 4, 5.5, 7},

where the weight of 7 represents a stronger relationship than 5.5, then the transformation provides

the following respective arc weights: {1, 1/2, 1/4, 1/4, 2/11, 1/7}. With a weight of 1/7, that pair of

individuals has the shortest path, and quickest communication where length relates to speed in the

network. If any arc weight is not greater than one, then each weight can be scaled by multiplying

by a factor which makes the smallest weight ≥ 1.

3.4.1 Overview of Aggregation Order

Arc weights are relational, representing a strength of relationship between the individuals con-

nected by the arc, while node weights are positional, representing an individual’s relative position

in the network. Network data may be in the form of arc weights or node weights, so it is necessary

to consider aggregating the network having weighted arcs or weighted nodes. Naturally, aggregat-

ing having weights on nodes or arcs provides different, but complementary, insights on the network;

therefore, when possible, it is recommended to perform both. Since each can be appropriate, the

definitions of aggregation provided in Sections 3.4.2-3.4.5 describe the aggregation process for either

an arc weighted or node weighted network.

The strengths and weaknesses of aggregating weighted nodes or arcs are:

1. Assigning node measures before aggregating weighted individual nodes:
Strength: This provides a smaller network with node measures. The measure is a function of
an internal measure of the subgroup as well as its measure with other subgroups. The analyst
can monitor all activity within the network.
Weakness: It is difficult to distinguish how much of the measure on a node is from the weights
within the aggregated node or from the weights to nodes outside of the aggregated node, as this
distinction may get lost in the aggregation of the node measures.

2. Aggregate the network with arc weights before assigning node measures to the aggregated nodes
Strength: This also provides a smaller network with node measures. In this instance, however,
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the measure on the nodes is a function only of the weights between nodes in different groups.
It is easier for the analyst to detect subtle intergroup activity
Weakness: Any weights between nodes within the set of nodes making up the aggregated node
is lost in the process.

The strengths and weaknesses of the two methods underscore the benefit of aggregating both

orders whenever possible to gain as much understand of the network structure and relationships as

possible. This insight on aggregation order can now be added to the information of how to detect

subgroups and which node measures are appropriate to begin the actual calculations associated with

aggregating the network.

The remainder of this chapter develops the aggregation calculations for each of the node mea-

sures previously described, as well as an indication of when each might be appropriate. Each of the

measures are given for when the aggregation allows overlapping subgroups or only non-overlapping

subgroups. Faced with a disaggregated network of weighted arcs, it is possible to perform analysis

is two orders, by first assigning to each node a measure and then aggregating, or by aggregating and

then assigning to each aggregated group node a measure.

The subgroup detection methods for finding non-overlapping and overlapping subgroups, and

the two node measures can be combined. Each of these four combinations is examined in the

remainder of this thesis. Table 1 provides an indication of when each might be appropriate.

Table 1. Summary Table of Four Aggregation Techniques

Non-Overlapping Subgroups Overlapping Subgroups

Degree Centrality
- distinct subgroups
- local property
- additive measure

- liaison individuals mem-
bership in multiple groups
- local property
- additive measure

Closeness Centrality
- distinct subgroups
- global property
- speed or distance measure

- liaison individuals mem-
bership in multiple groups
- global property
- speed or distance measure

3.4.2 Non-Overlapping Subgroups, Degree Centrality Node Measure (NSDC)

The first subgroup detection method/node measure pair introduced is for the aggregation of

non-overlapping subgroups and degree centrality node measure. Though the subgroup detection
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methods assume the network is undirected, assigning the measure to a node does not require the arcs

be undirected, and can be applied to any network. Aggregating individuals into non-overlapping

subgroups is appropriate when the natural subgroups in the network are distinct, with no individual

having membership in multiple subgroups. The degree centrality node measure is appropriate when

a local property is of interest, as this measure encompasses only the individual and any immediate

neighbors. Further, in the aggregation step, the weight of aggregated nodes or arcs is the sum of

their components. Therefore, it is necessary when using this method to ensure the arc weights are

additive. For example, number or frequency of phone calls in a month is an appropriate weight for

this method, but speed of message traffic is not.

Equations (3.5) through (3.8) provide the definitions for network weights during aggregation.

In Equations (3.5) and (3.6) each individual is assigned a degree centrality node measure and then

the network is aggregated.

Let aij be the measure on the arc (i, j) and αi be the measure on node i.

Define the measure of each individual node to be the sum of the weights on arcs out of that

node:

αi =
j∈A(i)

aij (3.5)

Then aggregating into subgroups, define the node measure of Ci to be the sum of individuals

in the subgroup:

αCi =
i∈Ci

αi

αCi =
i∈Ci j

aij (3.6)

It is worth noting that the weight on an arc within a subgroup is accounted for twice in this

definition for αCi . Now consider aggregating a network before assigning degree centrality node

measures. In the aggregation step, the weights of arcs between two aggregated nodes Ci and Cj are

added (in each direction, if the network is directed).
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Define the weight of the new directed arc from Ci to Cj to be the sum of arcs connecting the

subgroups:

aCiCj =
i∈Ci
j∈Cj

aij (3.7)

Then in the measuring step, define the node measure on Ci, αCi to be the sum of the weights of

arcs from Ci.

αCi =
Cj

aCiCj

αCi =
i∈Ci
j /∈Ci

aij (3.8)

By comparing the final sums of each of the two αCi from Equations (3.6) and (3.8), it can be

seen that the order of aggregation affects the final subgroup positional node measure. Specifically,

when assigning an arc measure precedes aggregation it can be seen that the final node measure on

an aggregated subgroup is the sum of all arc weights incident to any individual in the subgroup.

Alternatively, when aggregating a network with the arc weights, the node measure is a function only

of the arc weights emanating from the set of nodes within the aggregated node to only those arcs

outside of the aggregated node. Thus, it only gives an indication of the weight of relationship of

one node to another, without regard to the aggregated node’s internal weight. The information

internal to the aggregated node is masked, and a subgroup’s positional weight is all that remains.

This shows a subgroup’s position within the network related to other subgroups.

The rest of this subsection addresses the question of whether order matters in aggregation: Is

αCi or αCj affected by whether Ci or Cj is aggregated first? It will be shown that the order of

aggregation of sets of nodes into aggregated nodes representing subgroups does not affect the final

node measure on the aggregated node for the aggregated defined in this NSDC method. Intuitively,

it make sense that the order does not matter, since any individual node can be aggregated into at

most one aggregated node, and the aggregation and measuring operations used in this study are

all additive. Theorem 3.7 shows order does not matter for aggregation with weighted nodes, while

Theorem 3.8 demonstrate the robustness of order when aggregating a network with weighted arcs.
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Theorem 3.7 Let each node in network N be assigned a degree centrality node measure and aggre-
gated into non-overlapping subgroups (as in Equations (3.5) and (3.6)) The final node measure on
the aggregated subgroups is not affected by the order of aggregation of the subgroups.

Proof. Without loss of generality, by showing robustness of aggregation order on two generic

aggregated subgroups, then it must be true for every pair of aggregated nodes, and therefore the

entire network.

First focus on a subgraph of n nodes. Suppose each of the n nodes has already been assigned

its degree centrality value as defined in Equations (3.5) and (3.6).

Let x1, x2, ..., xk (k < n) be aggregated into the node C1. By Equations (3.5) and (3.6),

αC1 =
xk∈C1

αxk (3.9)

Let y1, y2, ..., yl (l + k = n and no yi = xj) be aggregated into the node C2. Then

αC2 =
yl∈C2

αyl (3.10)

Since no y is the same as any x, the value of αC1 is independent of the calculation of αC2 . Thus

the order of aggregation of the two groups is irrelevant.

Theorem 3.8 Let a network N be aggregated with weighted arcs such that the aggregated arcs
have weight described in Equation (3.7). Then each aggregated node is assigned a degree centrality
measure described in Equation (3.8). The final node measure on the aggregated subgroups is not
affected by the order of aggregation of the subgroups.

Proof. Again, let x1, x2, ..., xk (k < n) be aggregated into the subgroup C1 and let y1, y2, ..., yl

(l + k = n and no yi = xj) be aggregated into the node C2.

Aggregating C1 first yields a graph on l + 1 nodes: C1, y1, y2, ..., yl. The weight on all arcs

connecting any of the xk to one another is now masked. Arcs connecting any of the yl to each

other do not affect the weights of the arcs between C1 and any of the yl. For this calculation, it

is necessary only to consider arcs between C1(ultimately the xk) and yl. For any yl adjacent to
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multiple xi the weight on that arc becomes

aC1yl =
i:(xi,yl)∈A

axiyl (3.11)

Note that if a yl is adjacent to only one xi, then this sum reduces to the original arc weight between

xi and yl: aC1yl = axiyl

Once C1 has been aggregated, the yl can be aggregated to form the aggregated node C2 and

the arc weights between C1 and any yl sum to form aC1C2 , the arc weight of the arc (C1, C2). Then

the node measure assigned to C1 becomes:

αC1 =
yl

aC1yl

=
xi∈C1 yl /∈C1

aC1yl

αC1 = aC1C2 (3.12)

(once the yl have been aggregated into C2). Similarly the node measure assigned to C2 becomes

αC2 =
yl

aylC1

αC2 = aC2C1 (3.13)

Aggregating C2 first produces a similar argument. The yl are aggregated into the node C2 and

αC2 =
xk

aC2xk

=
yl∈C2 xk /∈C2

aC2xk

αC2 = aC2C1 (3.14)

As in Equation (3.14), when the xk are aggregated into the node C1,

αC1 =
xk

aC2xk

αC1 = aC1C2 (3.15)

49



Thus it is shown that order of aggregation does affect the degree centrality node measures on the

aggregated subgroups.

This subsection has provided the calculations for assigning degree centrality node measures

for networks with distinct subgroups and additive measures. Table 2 provides a summary of the

calculations as well as when this method is appropriate, what useful information comes out of it and

examples of necessary arc and node data. The next section also uses the degree centrality node

measure, considers a network structure allowing overlapping subgroups. Recall subgroups overlap

when liaison individuals have membership in multiple groups.

3.4.3 Overlapping Subgroups, Degree Centrality Node Measure (OSDC)

The second subgroup detection method/node measure pair introduced considers the aggre-

gation of overlapping subgroups, with degree centrality measure. Recall the subgroup detection

methods assume the network is undirected. Aggregating individuals into overlapping subgroups is

appropriate when one or a small number of individuals serve as liaisons between groups. These in-

dividuals are not cut-outs, as a person in multiple subgroups has a stronger relationship with each

of the subgroups they connect than a cut-out would. Two examples are an Al Qaeda representative

to Jema’ah Islamiyah, belonging to both groups, and a state law enforcement official on a federal

task force.

Equations (3.16) through (3.19) provide the basic definitions for determining the positional

weight of an aggregated node. Equations (3.16) and (3.17), assume a node measure has been

assigned to each node equal to the sum of the weights on arcs out of the node. The aggregation

step then assigns to each aggregated node the sum of the weights of the set of nodes aggregated into

a node, say Ci.

Define the measure assigned to each individual node i to be the sum of weight on arcs out of i:

αi =
j

ai,j (3.16)
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Table 2. Summary for NSDC

aggregate weighted nodes aggregate weighted arcs

appropriate when

- positional or relational data
- additive data definition
- distinct groups communicating
through cut-outs
- interest in within and inter
group interactions

- relational data
- additive data definition
- liaison individuals have
membership in multiple
subgroups
- interest in intergroup
interactions only

examples

if starting with positional
node data:
- number of meetings an
individual attends
- number of phone calls
individual initiates
if starting with relational node
data: same as next column

- number of emails the two
individuals share
- length of phone calls
between individuals

calculations:
- ai,j is the arc
weight on arc (i, j)
-αi is the node
measure for node i

if beginning with positional node
data, skip to step 2, otherwise
step 1 gives each node degree
centrality positional measure
1. assign to each node, i, a
degree centrality measure
αi =

j
ai,j

2. aggregate into subgroups by
assigning to each subgroup, Ci, a
measure equal to the sum of the
individuals in the subgroup:
αCi =

i∈Ci
αi

1. aggregate into subgroups
by giving the aggregated arc a
weight equal to the sum of
arcs with exactly one endpoint
in each subgroup:
aCi,Cj =

j∈Cj
i∈Ci

ai,j

2. assign to each subgroup a
degree centrality measure
αCi =

Cj

aCi,Cj

input
-positional or relational
additive data
-weighted adjacency matrix

-relational additive data
-weighted adjacency matrix

output

Step 1: individual node measures
indicating individual position
w.r.t the data definition
Step 2: subgroup node measures
indicating subgroup position and
amount of activity within and
between subgroups

Step 1: aggregated arc
weights indicating total
communication between two
subgroups
Step 2: subgroup node
measures indicating subgroup
position and intergroup
activity
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Then aggregate the set of nodes i into the node Ci, and define the subgroup’s weight to be the

sum of its member’s weights:

αCi =
i∈Ci

αi

αCi =
i∈Ci

⎡⎣
j

ai,j

⎤⎦ (3.17)

Note that αi will contribute its weight into every aggregated node of which it is a member.

Equations (3.18) and (3.19) consider the situation when the aggregation occurs on a network with

weighted arcs.

Let Ci and Cj be two subgroups; k ∈ Ci ∩ Cj; j ∈ Cj\Ci; i ∈ Ci\Cj

Define the arc weight between Ci and Cj to be the sum of arcs connecting them:

aCi,Cj =
i∈Ci\Cj
k∈Ci∩Cj

ai,k +
k∈Ci∩Cj
j∈Cj\Ci

ak,j +
i∈Ci\Cj
j∈Cj\Ci

ai,j (3.18)

Thus the measure between two aggregated nodes with overlapping membership is defined to

be the sum of three types of arcs: 1. those that connect individuals only within Ci to the liaisons,

2. those that connect the liaisons to the individuals only within Cj , and 3. those that connect

individuals only in Ci directly with individuals only in Cj .

Then each aggregated subgroup node, Ci, is assigned a node measure, defined to be the sum

of arcs out of the subgroup:

αCi =
Cj

aCi,Cj (3.19)

It is worth noting that the aggregated node measure presented here subsumes all weight on

arcs which have both endpoints in the same subgroup and neither endpoint is in multiple subgroups.

Though the information on weights within a subgroup may not be apparent in this aggregated

network, if the purpose of the analysis being considered focuses primarily on interaction between

groups, then this aggregation will be appropriate. The within-subgroup weights will be required to

adequately depict the final positional aggregated measures in such an analysis.
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Theorem 3.9 shows that the aggregation of order is robust for aggregating a network with node

weights. Theorem 3.10 shows the same for when the network is aggregated with weighted arcs

instead of nodes.

Theorem 3.9 Let each node in network N be assigned a degree node measure and aggregated into
overlapping subgroups (as in Equations (3.16) and (3.17)) The final node measure on the aggregated
subgroups is not affected by the order of aggregation of the subgroups.

Proof. Suppose the node set is to be aggregated into two nodes Ci and Cj. If robustness of order

can be shown to be true for two non-specified aggregated nodes, then without loss of generality, it

is true for any number, by considering them two at a time.

Let each node i be assigned its node measure αi. It is assumed that the node measures have

already been assigned to each node i in the network. Aggregate Ci first, as defined in Equation

(3.17).

αCi =
i∈Ci

αi (3.20)

Aggregation of Cj without previous knowledge that at least one node i ∈ Ci is the same as some

j ∈ Cj, leads to the following inappropriate measure for αCj :

αCj =
j∈Cj\Ci

αj

This differs from expected the definition for αCj , since ignoring any node in multiple ag-

gregation sets makes it impossible to add its weight to any other aggregated node after its initial

aggregation into a node. However, previous knowledge of the sets to be aggregated yields the fol-

lowing appropriate node measure for the aggregated Cj

αCj =
j∈Cj

αj

The measure for each aggregated node is precisely the sum of the measures of every node in

the subgroup, whether the Ci or Cj is aggregated first. It has been shown that this is dependent

upon having full knowledge of each set of nodes to be aggregated together.
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It is dangerous, when faced with a large network, to start aggregating sets of nodes without

first defining all the subgroups. If so, then the analyst has reverted to the case where the subgroups

are non-overlapping and no individual is represented in more than one aggregated node. It is

therefore necessary to complete the overlapping subgroup detection methodology before attempting

to aggregate the network.

Theorem 3.10 Let a network N be aggregated with weighted arcs such that the aggregated arcs have
weight described in Equation (3.18). Then each aggregated node is assigned a degree centrality
measure described in Equation (3.19). The final node measure on the aggregated subgroups is not
affected by the order of aggregation of the subgroups

Proof. When aggregating nodes, it is necessary to consider new arc weights between the aggregated

node C and other nodes in the network

aC,j =
i∈C
j/∈C

(i,j)∈A

ai,j +
i,k∈C
j/∈C
(i,j)∈A

ak,i (3.21)

Then when C is aggregated, the new arc measure between C and C is as follows:

aC,C =
j∈C

aC,j

=
j∈C

⎡⎢⎣ i∈C,
j∈C

(i,j)∈A

ai,j +
i,k∈C
(i,j)∈A

ak,i
⎤⎥⎦ (3.22)

When the
i∈C,
j∈C

(i,j)∈A

ai,j summand is broken into
i∈C∩C
j∈C
(i,j)∈A

ai,j +
k∈C\C
(k,j)∈A

ak,j ., then Equation (3.22) looks

like Equation (3.16). This substitution gives the expected aggregated node measure to match the

calculation for an aggregated node given in Equation (3.19).

Theorems 3.9 and 3.10 have shown that order of aggregation does not affect the final aggre-

gated subgroup node measure. It is, however, necessary to have determined every subgroup before

performing any aggregation. It has been shown that aggregating a network one subgroup at a time,

without considering the fact that a node i may belong in more than one aggregating set, will not

lead to consistent positional node measures on the aggregated nodes.
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This subsection has provided the calculations for assigning degree centrality node measures for

networks with overlapping subgroups and additive measures. Table 3 provides a summary of the

calculations as well as when this method is appropriate, what useful information comes out of the

aggregation proccess and examples of appropriate arc and node data.

3.4.4 Non-Overlapping Subgroups, Closeness Centrality Node Measure (NSCC)

The third subgroup detection method/node measure pair considers the aggregation of non-

overlapping subgroups, with closeness centrality node measure. Aggregating individuals into non-

overlapping subgroups is appropriate when the natural subgroups in the network are distinct. The

closeness centrality node measure is appropriate when a global property is of interest, as this measure

encompasses an individual’s relationship with every other individual in the network. Since the

closeness centrality is based on the length of shortest path, it is important that a smaller weight on

an arc represents a stronger relationship.

In the aggregation step, the weight of aggregated nodes or arcs is the minimum of their com-

ponents. If the measure is already on the nodes before aggregation, the aggregated node weight is

equal to the minimum of the node measures to be aggregated. Alternatively, if the measure is on

the arcs, the new arc between aggregated nodes will be the minimum of the arcs from any node in

the first subgroup to any node in the second set.

Equations (3.23) through (3.26) provide the basic definitions for the weight of an aggregated

node. Equations (3.23) and (3.24) consider the situation when the node measure has been assigned

to each node (equal to the sum of the shortest paths to every other node) before aggregating the

network into the predetermined subgroups. The aggregation step then assigns to each aggregated

node the minimum of the weights of the set of nodes aggregated into a node, say Ci. As before,

assume all sets to be aggregated together have been determined, and they are non-overlapping
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Table 3. Summary for OSDC

aggregate weighted nodes aggregate weighted arcs

appropriate when

- positional or relational data
- additive data definition
- distinct groups communicating
through cut-outs
- interest in within and inter
group interactions

- relational data
- additive data definition
- liaison individuals have mem-
bership in multiple subgroups
- interest in between subgroup
interactions only

examples

if starting with positional
node data:
- number of meetings an
individual attends
- number of phone calls
individual initiates
if starting with relational node
data: same as next column

- number of emails the two
individuals share
- length of phone calls
between individuals

calculations:
- ai,j is the arc
weight on arc (i, j)
- αi is the node
measure for node i

if beginning with positional
node data, skip to step 2,
otherwise step 1 gives the
node degree centrality
positional measure
1. assign to each node, i, a
degree centrality measure
αi =

j
ai,j

2. aggregate into subgroups
byassigning to each subgroup,
Ci, a measure equal to the
sum of the individuals in the
subgroup:
αCi =

i∈Ci
αi

1. aggregate into subgroups
by givingthe aggregated arc
a weight equal tothe sum of
arcs with exactly one endpoint
in each subgroup:
aCi,Cj =

j∈Cj\Ci
i∈Ci\Cj

ai,j+

k∈Ci∩Ck
i∈Ci\Cj

ai,k +
k∈Ci∩Ck
j∈Cj\Ci

aj,k

2. assign to each subgroup
a degree centrality measure
αCi =

Cj

aCi,Cj

input
-positional or relational
additive data
-weighted adjacency matrix

-relational additive data
-weighted adjacency matrix

output

Step 1: individual node
measures indicating individual
position w.r.t the data definition
Step 2: subgroup node
measures indicating subgroup
position and amount of
activity within and between
subgroups

Step 1: aggregated relational
data indicating total commun-
ication between two subgroups
Step 2: subgroup node mea-
sures indicating subgroup
position and intergroup activity

56



Let dij be the distance of the shortest path from node i to node j in the network. Define the

weight of node i to be the sum of shortest paths to every other individual:

αi =
j

dij (3.23)

The positional weight of the aggregated subgroup Ci is defined to be the smallest of its

members weights:

αCi = min
i∈Ci

j

dij (3.24)

Equations (3.25) and (3.26) define the aggregated node measure when aggregating a network

with the weights on the arcs. Define the arc measure between aggregated subgroups Ci and Cj to

be the minimum of arcs connecting the subgroups:

aCiCj = min
i∈Ci,j∈Cj

aij (3.25)

Then the positional weight of the aggregated subgroup Ci is defined to be the sum of the shortest

paths to every other subgroup:

αCi =
Cj

dCiCj (3.26)

Again, it is worth noting the arc weights within an aggregated node do not add their weight in

this calculation. Thus, all apparent knowledge of the internal structure of the aggregated node is

lost when the aggregated network is analyzed. Of course, if the original data is stored, a subgroup

of interest can be disaggregated to further explore individuals.

Theorems 3.11 and 3.12 show that the order of aggregating subgroups into aggregated nodes

does not affect the aggregated node weight.

Theorem 3.11 Order of aggregation does not affect the node measure for an aggregated node Ci
when node measures are assigned to each individual before aggregation, for the aggregation as defined
in Equations (3.27) and (3.28).

Proof. Without loss of generality, showing robustness of aggregation order on two generic aggre-

gated subgroups, shows it to be true for every pair of aggregated nodes, and therefore the entire

network.

57



Suppose Ci is a predetermined set to be aggregated into a subgroup. Aggregate the appropriate

set of nodes i ∈ Ci into the subgroup. By the definition, Ci’s measure is

αCi = min
i∈Ci

αi (3.27)

Then aggregation of the j nodes into Cj yields

αCj = min
j∈Cj

αj (3.28)

Since no i is the same as any j (recall the aggregated nodes do not overlap), the measures

αCi and αCj are independent, and the order of aggregation does not affect the measures, and the

theorem is shown to be true.

Theorem 3.12 Order of aggregation does not affect the node measure for an aggregated node Ci
when aggregation precedes assigning a node measure to each aggregated node, for the aggregation
defined in Equations (3.25) and (3.26).

Proof. First aggregate the previously determined nodes i into the aggregated node Ci. All

(directed) arcs from i ∈ Ci to any j ∈ Cj = Ci become a single arc (Ci, j) in the aggregation step.

The weight on that arc is now aCi,j = min
i∈Ci

ai,j . Similarly, for all (directed) arcs from j /∈ Ci to

i ∈ Ci also become a single arc (j,Ci) in the aggregation step. The weight on that arc is now

aj,Ci = min
i∈Ci

aj,i.

Aggregation of the set of nodes j into the subgroup Cj yields the following weighted arc from

Ci to Cj :

aCi,Cj = min
i∈Cj

aCi,j

aCi,Cj = min
j∈Cj
i∈Ci

ai,j (3.29)

Similarly,

aCi,Cj = min
j∈Cj

aCi,j

aCi,Cj = min
j∈Cj
i∈Ci

ai,j (3.30)
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From these arc measures, the node measure for any aggregated node Ci can be assigned as

αCi =
Cj=Ci

dCi,Cj (3.31)

Alternatively, consider aggregating Cj first. All (directed) arcs from j ∈ Cj to any i /∈ Cj become a

single arc (Cj, i) in the aggregation step. The weight on that arc is now aCj ,i = min
j∈Cj

aj,i. Similarly,

for all (directed) arcs from i /∈ Cj to j ∈ Cj also become a single arc (i,Cj) in the aggregation step.

The weight on that arc is now ai,Cj = min
j∈Cj

ai,j.

Aggregation of the set of nodes i into the node Ci yields the following weighted arc from Cj to

Ci :

aCi,Cj = min
i∈Ci

ai,Cj

aCi,Cj = min
j∈Cj
i∈Ci

ai,j (3.32)

Similarly,

aCi,Cj = min
j∈Cj

aCi,j

aCi,Cj = min
j∈Cj
i∈Ci

ai,j (3.33)

From these arc measures, the node measure for any aggregated node Ci can be assigned as

αCi =
Cj=Ci

dCi,Cj (3.34)

All arc weights between the aggregated nodes Ci and Cj are the same whether Ci is

aggregated before Cj or after. Therefore, order of aggregation under the NSCM method as defined

does not affect the node measure for an aggregated node Cj when aggregation precedes assigning a

node measure to each aggregated node.

The next question investigated is whether the node with minimum closeness centrality measure

is in the aggregated subgroup with the smallest measure. A positive answer to this question implies

that finding the individual of smallest measure in a large network can be found quickly. First the
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analysis can be run quickly on the aggregated network to identify the subgroup of minimum measure.

Then that subgroup can be disaggregated to find an individual of small measure. Alternatively,

suppose information is known only about a subgroup, and not an individual. Then a positive answer

to the question would help find an individual of small measure.

Suppose the person who can disseminate information most quickly is in the group with the

smallest measure. Given only data on an aggregated network, an analyst can focus further intelli-

gence resources only on individuals known to be in the aggregated node to learn more about those

individuals and possibly others in this group that show such efficiency in communication. Even if

the individual with smallest measure is not in the subgroup of smallest measure, the analysis still

reveals some insight of a subgroup’s relative position in the network. Theorem 3.13 and Remark 1

give results of whether the node with minimum measure is indeed in the aggregated node of mini-

mum measure for aggregating a network with weights on nodes or arcs, respectively.

Theorem 3.13 The node of minimum node measure is in the clique of minimum measure when
node measures are assigned before individual nodes are aggregated.

Proof. By contradiction: Suppose j is the node of smallest measure in the network, but it is

aggregated into an aggregated node, Cj , that does not have the smallest measure. Instead, let some

other aggregated node, say S, has smallest measure assigned to it in the aggregation step.

Let j be the node satisfying min
i

αi; j ∈ Cj ; S be min
Ci

αCi Then αCj > αS . Since αj is the

smallest in the network, it is also the smallest in any subset of the network, specifically in Cj . By

the definition of the aggregation step αCj = αj .

min
i∈S

αi = αS < αCj = αj = min
i

αi ≤ min
i∈S

αi, which is impossible. =⇒⇐=

It is therefore true that the node of minimum node measure is in the clique of minimum measure

when node measures are assigned before individual nodes are aggregated, and property 3 is shown

to be true.

Remark 1 It is not in general true that the individual with the smallest closeness centrality measure
will be in the aggregated node with the smallest measure when aggregation precedes measure, as
measuring and aggregation operation have been defined.
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In Figure 4, node A has a smaller measure than node B, but CA (the K3 containing A) has a

greater measure than CB (the K3 containing B) after aggregation. The weight of M on an arc is a

number sufficiently large that it will not be used in any shortest path.

Figure 4. Example of the individual of minimummeasure not in the aggregated subgroup
of minimum measure

Remark 1 shows that when aggregating a network with weighted arcs and closeness centrality

node measure as defined in this section, the individual with minimum measure is not guaranteed to

be in the aggregated subgroup of minimum measure. However, if the analyst is interested only in a

subgroup’s relative position in the network, and unconcerned with an individual, then aggregation

of the network with weighted nodes is appropriate. For example, when trying to determine com-

munication time between terrorist cells in the network (where speed of communications is related to

path length), then only the weights between subgroups are of interest.

When aggregation preceded assigning a node measure, many strict requirements must be made

on the network structure in order to assure the individual of smallest measure is in the subgroup of

smallest measure. Equations (3.35) through (3.38) demonstrate the necessary constraints on network
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structure. There are many parts of the network structure that can cause the individual of smallest

measure to be outside of the subgroup of smallest measure. One such structure occurs when the

weights between members in a subgroup are substantially larger than the weights between members

in different subgroups. This is unlikely in a social network, however, since members generally have

stronger relationships with other individuals in their own group. Another structure occurs when the

subgroup of smallest measure, say Ci, has many leaves, individuals of degree 1. The path distance

to an overabundant number of individuals of degree 1 in Ci from another subgroup, say Cj , inflates

the individual weights of Cj members.

Consider the node measure of a generic node i. Let i be in the set of nodes to be aggregated

into the node C; dCmax be the length of the longest shortest path in C; ∆ = max
C
dC max; pC,K be

the set of nodes on the shortest path from C to K, not including C and K.

In closeness centrality, recall an individual’s node weight is the sum of shortest paths to every

other node. This weight, di,j can be broken into the distance to nodes either in the same subgroup,

or to those in other subgroups, as seen in Equation (3.35).

αi =
j

di,j

αi =
j∈C

di,j +
j /∈C

di,j (3.35)

The shortest path from i to any other node in the subgroup is bounded above by dCmax. Since

i ∈ C, its subgroup has |C|−1 other nodes in it. Therefore the sum of shortest paths from i to every

other node in the same subgroup is bounded above by the calculation seen in Equation (3.36).

j∈C
di,j ≤ (|C|− 1)dC max (3.36)

The shortest path from i to individuals in other subgroups consists of two parts: 1. arcs within

i’s subgroup and 2. arcs outside of i’s subgroup to the final node. Equation (3.37) shows the

calculation for the upper bound of the shortest paths from i to nodes outside of i’s subgroup, C.

The first term represents the portion of the path necessary to get out of the subgroup, C, and the
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second represents the portion of the path outside of C. This second term finds an upper bound

which considers three terms: 1. the distance on paths from C to K, the subgroup of the endpoint of

the path, 2. the longest shortest path in the subgroup of the endpoint of the path, and 3. any path

between subgroups between C and K.

j /∈C
di,j ≤

j /∈C
dC max +

K=C

|K|
⎛⎝dC,K + dKmax +

K ∈pC,K
dKmax

⎞⎠ (3.37)

Equations (3.36) and (3.37) are substituted into Equation (3.35). The equations are then simplified

and given an upper bound in the next series of equations:

αi ≤ (|C|− 1)dCmax +
j /∈C

dCmax +
K=C

|K|dC,K +
K=C

|K|dKmax +
K=C K ∈pC,K

|K|dKmax

= (|C|− 1)dCmax + (|G|− |C|)dCmax +
K=C

|K|dC,K +
K=C

|K|dKmax +
K=C K ∈pC,K

|K|dKmax

≤ (|C|− 1)∆+ (|G|− |C|)∆+
K=C

|K|∆+
K=C

|K|dC,K +
K=C K ∈pC,K

|K|∆

= (2|G|− |C|− 1)∆+
K=C K ∈pC,K

|K|∆+
K=C

|K|dC,K (3.38)

Note if (C,K) is an arc in the aggregated network, then pC,K = φ and
K ∈pC,K

dKmax
= 0

It can be seen that the measure on an individual node is dependent on each of the following:

1. the size of every set of nodes to be aggregated

2. the length of the longest shortest path in every set of nodes

3. the shortest paths between the aggregated nodes

It therefore would require some complicated, strict requirements to ensure the individual node

of smallest measure is in the aggregated node of smallest measure. Though it has become apparent

that the individual with the smallest sum of shortest paths is not necessarily within the group of

smallest measure, analysis of the aggregated network does provide information on what subgroups

have the smallest closeness centrality measure. Aggregation of the network using this global measure

offers information on how quickly or efficiently individuals or subgroups can disseminate information

or materiel throughout the network (depending on the defined arc data).
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Table 4. Summary for NSCC

aggregate weighted nodes aggregate weighted arcs

appropriate when

- positional or relational data
- node weights representing
speed or distance
- distinct groups
communicating through
cut-outs
- interest in within and inter
group interactions

- relational data
- arc weights representing
speedor distance
- liaison individuals have
membership in multiple
subgroups
- interest in intergroup
interactions only

examples

if starting with positional
node data:
- ability of an individual to
influence everyone else in the
network
- speed of sending a message
to every other individual
if starting with relational node
data: same as next column

- time for an email to pass
between individuals
- cost of transmitting goods
between two locations

calculations:
- ai,j is the arc
weight on arc (i, j)
-αi is the node
measure for node i
- di,j is the shortest
path from i to j

if beginning with positional
node data, skip to step 2,
otherwise step 1 gives the node
closeness centrality positional
measure
1. assign to each node, i, a
closeness centrality measure
αi =

j
di,j

2. aggregate into subgroups by
assigning to each subgroup, Ci,
a measure equal to the min of
the individuals in the subgroup:
αCi = min

i∈Ci
αi

1. aggregate into subgroups
bygiving the aggregated arc a
weightequal to the min of arcs
withexactly one endpoint in
eachsubgroup:
aCi,Cj = min

i∈Ci
j∈Cj

ai,j

2. assign to each subgroup a
closeness centrality measure
αCi =

Cj

dCi,Cj

input
-positional or relational data
-weighted adjacency matrix

-relational additive data
-weighted adjacency matrix

output

Step 1: individual node
measures indicating individual
position w.r.t the data definition
Step 2: subgroup node
measures indicating subgroup
position and amount of
activity within and between
subgroups

Step 1: aggregated relational
data indicating minimum
communication between
two subgroups
Step 2: subgroup node
measuresindicating minimal
speed ofinteractions between
subgroups
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Table 4 provides summary information for the NSCC method. The next section this measure

for a network structure in which liaison individuals have membership in multiple subgroups.

3.4.5 Overlapping Subgroups, Closeness Centrality Node Measure (OSCC)

The fourth subgroup detection method/node measure pair considers the aggregation of over-

lapping subgroups, with closeness centrality measure. Equations (3.39) through (3.42) provide the

basic definitions for the weight of an aggregated node. Equations (3.39) and (3.40) assume the node

measure has been assigned to each node, i, equal to the sum of the shortest path from i to every

other node in the network. The aggregation step then assigns to each aggregated node the minimum

of the weights of the set of nodes aggregated into a node, say Ci.

Define the node measure for a node to be the sum of shortest paths to all other individuals:

αi =
j

dij (3.39)

The aggregated subgroup has measure defined to be the minimum of its members weights:

αCi = min
i∈Ci

j

dij

αCi = min
i∈Ci

αi (3.40)

Any node i in multiple aggregated nodes will be considered when calculating the minimum

measure for every aggregated node in which it is a member. Alternatively, when aggregating the

network with weighted arcs, the calculations are slightly more complex.

Define the arc between aggregated subgroups Ci and Cj to be the minimum of arcs connecting

the two subgroups:

aCi,Cj = min
min

i∈Ci\Cj
k∈Ci∩Cj

ai,k, min
i∈Ci\Cj
j∈Cj\Ci

ai,j, min
k∈Ci∩Cj
j∈Cj\Ci

ak,j
(3.41)

The positional measure on the aggregated subgroup Ci is defined to be the subgroup’s sum of shortest

paths to every other subgroup:

αCi =
Cj

dCiCj (3.42)
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Theorems 3.14 and 3.15 examine whether order of aggregation affects the final measure on the

aggregated nodes. These theorems show robustness of order of aggregation on networks that are

aggregated with weights on the nodes and the arcs, respectively.

Theorem 3.14 Order of aggregation does not affect the node measure for an aggregated node C
when node measures are assigned to each individual before aggregation, when sets of nodes to be
aggregated are known before any aggregation begins, and the node measures for each individual node
can be stored.

Proof. First assign each node i its node measure as defined in Equation 3.39:

αi =
j

dij

Suppose there are at least two sets of nodes to be aggregated into Ci and Cj. Aggregate first all

nodes i ∈ Ci. Then αCi = min
i∈Ci

αi.

If any j ∈ Cj = Ci is adjacent to any node i ∈ Ci, it is important to store the node measure

information for those individual nodes i in aggregated nodes that have already been aggregated.

When aggregating the individual nodes into Cj, it is necessary to consider not only the indi-

vidual nodes on the remaining network, but any liaison node i that was aggregated into Ci that also

belongs in Cj . Assuming all sets to be aggregated together are already known, let αCj = min
j∈Cj

αj .

Suppose instead that the individual nodes j are aggregated into Cj before Ci.

αCj = min
j∈Cj

αj

It must be noted that if the sets of nodes to be aggregated together for every aggregated node are

not known before any aggregation begins, then it is not guaranteed that order of aggregation will be

robust. This implies it is necessary to have completely determined the sets of nodes to be aggregated

together into possibly overlapping subgroups before beginning the aggregation step in certain types

of analysis.

Theorem 3.15 Order of aggregation does not affect the node measure for an aggregated node C when
aggregating a network with weights on the arcs, when the subgroups are known before any aggregation
begins, and the node measures for each individual node can be stored. Again, this is true only when
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the sets of individual nodes will be aggregated together are known and have been stored before any
aggregation begins.

Proof. Aggregate Ci first. Then any arc between a node i ∈ Ci and any j /∈ Ci becomes

aCi,j = min
i∈Ci

ai,j

When aggregating Cj, if the arc measures between i ∈ Ci and k ∈ Ci ∩Cj have been stored, then it

is possible to assign the following arc measure:

aCi,Cj = min
min

i∈Ci\Cj
k∈Ci∩Cj

ai,k, min
i∈Ci\Cj
j∈Cj\Ci

ai,j, min
k∈Ci∩Cj
j∈Cj\Ci

ak,j

Aggregation of Cj first gives the following measure for the aggregated arc between any j ∈ Cj

and any i /∈ Cj

ai,Cj = min
j∈Cj

ai,j

When aggregating Ci, if the arc measures between j ∈ Cj and k ∈ Ci ∩ Cj are known, then it

is possible to assign the following arc measure:

aCi,Cj = min
min

i∈Ci\Cj
k∈Ci∩Cj

ai,k, min
i∈Ci\Cj
j∈Cj\Ci

ai,j, min
k∈Ci∩Cj
j∈Cj\Ci

ak,j

Thus if the individual arc information is stored and the sets to be aggregated are already known,

then robustness of order does occur.

Alternatively, if the information is not stored or the sets are not known, then the order of

aggregation does affect the final arc measure. Therefore, if the sets are not known before aggregation

begins, it is important to carefully select which nodes to aggregate, since this reverts to the case in

which an individual node cannot be in more than one aggregated node.

Table 5 provides a summary information for the OSCC method. All the methods demonstrated

require perfect knowledge of the network’s topology and measures. It was mentioned in Chapter 2

that the latter problem can be appeased by using fuzzy measures, if relationships are known to exist,

but the level of the relationship is uncertain. (See Appendix A for more information and examples.)
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Table 5. Summary for OSCC

aggregate weighted nodes aggregate weighted arcs

appropriate when

- positional or relational data
- node weights representing
speed or distance
- distinct groups
communicating through
cut-outs
- interest in within and inter
group interactions

- relational data
- arc weights representing speed
or distance
- liaison individuals have mem-
bership in multiple subgroups
- interest in between group
interactions only

examples

if starting with positional
node data:
- ability of an individual to
influence everyone else in the
network
- speed of sending a message
to every other individual
if starting with relational node
data: same as next column

- time for an email to pass
between individuals
- cost of transmitting goods
between two locations

calculations:
- ai,j is the arc
weight on arc (i, j)
-αi is the node
measure for node i
- di,j is the shortest
path from i to j

if beginning with positional
node data, skip to step 2,
otherwise step 1 gives the node
closeness centrality positional
measure
1. assign to each node, i, a
closeness centrality measure
αi =

j
di,j

2. aggregate into subgroups
by assigning to each
subgroup, Ci, a measure
equal to the min of
the individuals in the subgroup:
αCi = min

i∈Ci
αi

1. aggregate into subgroups by
giving the aggregated arc a
weightequal to the min of arcs
with exactlyone endpoint in
each subgroup:
aCi,Cj = min{ min

i∈Ci\Cj
j∈Cj\Ci

ai,j ,

min
i∈Ci\Cj
k∈Ci∩Cj

ai,k, min
k∈Ci∩Cj
j∈Cj\Ci

ak,j}

2. assign to each subgroup a
closeness centrality measure
αCi =

Cj

dCi,Cj

input
-positional or relational data
-weighted adjacency matrix

-relational additive data
-weighted adjacency matrix

output

Step 1: individual node
measures indicating individual
position w.r.t the data definition
Step 2: subgroup positional
data indicating subgroup’s
position and amount of
activity within and between
subgroups

Step 1: aggregated relational
data indicating minimum
communication between two
subgroups
Step 2: subgroup positional
data indicating minimal speed
ofinteractions between
subgroups
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However, if it is uncertain whether a relationship exists or not, different techniques must be used to

work around the missing information.

3.5 Summary

This chapter has provided the necessary information for the two steps in aggregating a network:

1. determine appropriate subgroups for aggregation, and 2. select an appropriate node measure for

the calculations in aggregation. The subgroups detection methods, detailed in Section 3.3, allow the

subgroups to be distinct, connected only through cut-outs, or overlapping, with liaison individuals

having membership in multiple subgroups. The node measures utilized in this thesis are an extended

degree centrality and closeness centrality measures. These two measures encompass a variety of

data possibilities, such as speed, distance, and counts. Then calculations for each combination of

subgroup structures and node measures are described in Section 3.4

Chapter 4 demonstrates the four techniques with notional networks, partially generated using

the method in Appendix B. Further, open source information on Jema’ah Islamiyah is analyzed in

Chapter 5 using appropriate techniques to gain insight to the social network. Then Chapter 6 offers

an exploration of how imperfect information (in the form of missing arcs) affects subgroup detection.
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Chapter 4 - Demonstration of Methodology

4.1 Introduction

Chapter 4 demonstrates the methodology detailed in Chapter 3 through four notional scenarios.

These scenarios are tailored to each of the four techniques introduced in Sections 3.4.2 - 3.4.5.

The networks for each of the four scenarios are partially generated from the method presented in

Appendix B. The aggregation process requires identification of subgroups which provides structural

information about the network. The nature of the subgroups offers information on whether the

network is split into distinct cells with cut-outs providing the link between subgroups, or whether

subgroups have merged and some liaison individuals are full members of several groups. The density

of subgroups can give insight to the cohesiveness of each of the subgroups, suggesting which groups

are most easily infiltrated or otherwise exploited. Individuals that analysis shows not to be a

subgroup member may also be targets of influence. These are individuals that are perhaps new to

the network, whose views can still be changed. Alternatively, it may be an individual who was once

a trusted member, and therefore knows a great deal of information, but is no longer in a position of

direct authority. The individual’s discontent at falling to the fringe of the network may make such

an individual a potential person of interest for possible influencing.

The first two scenarios examine a social network with distinct subgroups, while the latter two

examine a second social network allowing individual membership in multiple subgroups. For each

of the scenarios, the arc weights are randomly assigned using a uniform distribution, in which indi-

viduals within the same subgroup are assumed to have a stronger relationship than any relationship

between individuals in different subgroups. Details on the values used for the distributions can be

found in each section.

As stressed in Chapter 3, the aggregation step can be accomplished with weighted nodes or

weighted arcs, revealing different insight into network activity. The methodology detailed in Chapter

3 use aggregation of weighted nodes to show total activity in the network, both within and between

subgroups, while aggregation of weighted arcs reveals more subtle insight to the interactions only
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between subgroups. Each of the four scenarios in this chapter mirrors the calculations in Chapter

3, and performs aggregation both with weighted nodes and weighted arcs. All calculations were

performed using a script coded in MATLAB on a 2 ghz Dell Dimension XPST800 Pentium 4 Mobile.

4.2 Notional Network of Distinct Subgroups

Figure 5 shows the network structure used as the notional example for the demonstration of

techniques in this scenario. A close look at the network appears to show several distinct subgroups:

{1,2,3,4,5,6,7}, {9,10,11,12,13,14,15,16},{30,31,32,33,34,35},{36,37,38,39,40}. Only one of these

subgroups is actually a clique; subgroup detection will find all cliques first and then extend them

to k-plexes. At an initial review, these node sets seem to be good candidates for subgroups, but a

more rigorous demonstration of subgroup detection is in Section 4.2.1.1. Furthermore, though most

of the subgroups communicate only through cut-outs, it is assumed node 32 does not practice good

OPSEC by ignoring the rules against direct communication between subgroups.

In the initial look at the network, it seems no single subgroup is too far removed from the

others, and each can receive information or materiel from several other subgroups. Even if a small

number of cut-outs are removed from the network, information and goods can still flow, though

perhaps with less efficiency. Thus, this network shows good connectivity. There are two individuals

(represented by nodes 15 and 16) that are on the periphery of the network. They do not appear

to belong in a subgroup, nor do they act as cut-outs to any known subgroup. It is possible that

they connect this network to another and information about them is incomplete. Alternatively, it

is possible that they are new members or fringe members to the network. Either way, while these

individuals do not play a central part in the aggregation analysis, gaining more information about

them may be worthwhile.

4.2.1 Subgroup detection for network with distinct subgroups

Application of the techniques for finding cliques non-overlapping cliques in Section 3.3 yields

the following cliques on three or more nodes: {1,2,3,4,5}, {9,10,11,12,13}, {21,22,23}, {21,22,24}

{30,31,32,34}, and {36,37,38,39,40}. The performance time for the clique detection was 0.06 seconds.
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Figure 5. Disaggregated network structure for NSDC
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Each of these cliques is part of a subgroup identified visually in the introduction to Figure 5.

However, most of the subgroups clearly contain more members than those in just the pure cliques.

It therefore appears promising to relax the pure clique constraint and extend the cliques found

to k-plexes. The value of k is dependent on the density of the subgroups present, and how the

operational setting suggests the density of a cell may be. k = 1 requires every individual in the

group to be adjacent to all but one individual in the group (themselves). Thus k = 1 finds only

the pure cliques again. As k increases, the density of the subgroup decreases, and the number of

individuals in the subgroup increases. It is important at each increase in k to ensure no members

outside of the subgroup are falsely entering. This may be difficult in some situations, requiring a

review and analysis of the groups formed. In this notional scenario, however, the subgroups are

distinct, and it is clear which individuals are in a particular subgroup, which individuals are cut-outs

who pass information and goods from one group to another, and which are peripheral members.

Table 6. k-plexes for network of distinct subgroups

k k-plexes computational time

2

{1, 2, 3, 4, 5}
{9, 10, 11, 12, 13}
{21, 22, 23, 24}
{30, 31, 32, 33, 34}
{36, 37, 38, 39, 40}

0.20 sec

3

{1, 2, 3, 4, 5, 6}
{9, 10, 11, 12, 13}
{21, 22, 23, 24}
{30, 31, 32, 33, 34, 35}
{36, 37, 38, 39, 40}

0.20 sec

4

{1, 2, 3, 4, 5, 6}
{9, 10, 11, 12, 13, 14}
{18, 21, 22, 23, 24}
{30, 31, 32, 33, 34, 35}
{32, 36, 37, 38, 39, 40}

0.21 sec

The k-plexes for k = 2 to k = 4 are summarized in Table 6. By k = 4, the k-plexes start

inserting non-subgroup members into the k-plex. Consider the 4-plex {32,36,37,38,39,40}. An

examination of Figure 5 shows that nodes {36,37,38,39,40} clearly form a K5, a clique on five

nodes, while node 32 is in another subgroup. Although the individual represented by node 32

does communicate directly with two members in the K5, node 32 is not actually a member of the
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subgroup. The appropriateness of other 4-plexes is not so clear. Consider, for example, the 4-

plex {9,10,11,12,13,14}. It is not immediately obvious whether node 14 functions as a cut-out,

merely shuttling information between the two subgroups, or if 14 is actually a member of the group

{9,10,11,12,13}, who simply does not deal directly with several members of the group. In either

case, node 14 is not as close to {9,10,11,12,13} as they are to each other.

This process shows that determining which individuals belong together in subgroups is not

always clear, even when the subgroups are non-overlapping. The techniques offer options, but there

are no definitive rules for every situation, and the analyst must make the decision on which is most

appropriate for the problem at hand. Any other information known about a network can be used

when determining subgroups. All further analysis of this network structure uses the 3-plexes to

represent subgroups. Figure 6 shows the aggregated network structure.

Figure 6. Structure of aggregated 3-plex network for NSDC
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4.2.2 Scenario 1: Non-overlapping subgroups, Degree centrality (NSDC)

Sleeper cells are starting to become active and interact with one another. Intelligence data

has been gathered on length of communications. It is assumed in this scenario that a higher weight

on an arc represents a greater relationship. The cells are distinct groups, connected mostly through

cut-outs. Though the bulk of the communications between subgroups occurs only through cut-outs,

some members do communicate directly with individuals in another cell. It is not known specifically

why some individuals are communicating directly, but two possibilities are that they share family

ties or attended training together and have since kept in touch.

The additive nature of the data makes the degree centrality node measure appropriate. Since

for this scenario, the separate groups are just starting to come together and are still distinct, an

individual is assumed to have membership in only one aggregated subgroup. Each arc has been

assigned a notional weight, corresponding to the length of the endpoints’ shared communications.

An arc within a subgroup was assigned an arc weight randomly from a uniform distribution on [6,

10]. Arcs in which both endpoints are not in the same subgroup,were assigned a weight randomly

from a uniform distribution on [1, 4]. Weighting the arcs in such a manner represents the situation in

this scenario that relationships within subgroups are stronger than relationships between individuals

in different subgroups. Figure 7 shows these weights. Table 7 summarizes of the calculations and

interpretations of the aggregation for NSDC.

Table 7. Summary of Calculations for NSDC

Aggregation Order Calculations Interpretation

Assign node measures
then aggregate

αi =
j
aij

Individual’s total length of
communication

αCi =
Cj

aCiCj
Total subgroup communication
within and between subgroups

Aggregate then assign
node measures

aCiCj =
i∈Ci
j∈Cj

aij
Total length of communication
between subgroups

αCi =
Cj

aCi,Cj
Total subgroup communication
between subgroups only
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Figure 7. Disaggregated network with weighted arcs for NSDC
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4.2.2.1 Apply degree centrality node measures before aggregation for NSDC. Re-

call in this method that a node, i, is assigned a weight, αi, equal to the weight on arcs out of i.

Figure 8 shows the network in which every individual has been assigned the appropriate degree cen-

trality node weight. The weights in the network represent each individual’s position with respect to

length of communication. Since individuals within groups communicate more with others in their

own subgroups, and have longer conversations than the cut-outs do, individuals in subgroups have

higher weights. In general, individuals in groups have a higher positional weight with respect to

lengths of phone calls in which they are engaged. Individuals within the same subgroup have ap-

proximately the same measure. Similarly, the cut-outs are not distinguishable from one another in

their positional weights.

The discrepancy between subgroups and cut-outs is even clearer in Figure 9, which shows the

weight of each subgroup or individual in the network. Recall the weight of a subgroup, C, is

equal to the sum of the weights of the individuals in that subgroup. At this level of the analysis,

the measures on the nodes represent the total length of all communications a subgroup has. Any

communications between individuals in the same subgroup has been double counted. It was noted

in Chapter 3 that any arc weight connecting nodes in a subgroup are accounted for twice in the

degree centrality measure on the aggregated subgroups.

4.2.2.2 Aggregate before applying degree centrality node measures for NSDC. Re-

turning to Figure 7 on page 76, the network is first aggregated into appropriate subgroups and then

each subgroup or remaining individual is assigned a positional node weight. Recall that when ag-

gregating a network with weighted arcs, the arc connecting two aggregated subgroup has weight

equal to the sum of the arcs with exactly one endpoint in each subgroup.

These arc weights for this scenario can be seen in Figure 10. These weights are relatively

small, since they do not measure communications between members of the same subgroup. Thus

if only concerned with intergroup relationships, these weights provide an indication of the level of

those communications.
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Figure 8. Individual positional degree centrality measures for NSDC
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Figure 9. Node weighted 3-plex aggregated network for NSDC
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Figure 10. 3-plex aggregated network with weighted arcs for NSDC
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The next step of the analysis is to assign each subgroup a degree centrality node measure to

the subgroups. Figure 11 shows these measures for each of the aggregated subgroups. These

weights represent the positional weight a subgroup has among the subgroups with respect to length

of communication. Since these weights do not include communications within the subgroup (as

those in Figure 9 on page 79), they do not overwhelm the weights on the individuals.

Figure 11. 3-plex aggregated network of intergroup communications for NSDC

When considering only intergroup interactions, the subgroup {30,31,32,33,34,35} has the great-

est positional weight; they communicate more with other subgroups or individuals than any other

subgroup. However, recall that node 32 in this subgroup has some direct communications with

other groups, a property not exhibited by any other individual in the group. Node 32’s neglect in

following good OPSEC makes that individual a potential target for exploitation. Though the direct

phone calls to individuals in other groups may not necessarily contain important content, they give
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an indication of where the groups are located or how accessible they are. Furthermore, any drastic

change in 32’s unofficial communications, either increased or decreased, may be of interest as it may

portend a changing level activity for subgroup {30,31,32,33,34,35}.

The cut-outs hold a great deal of power in this network, as they control the flow of information

and materiel through the network. Their measured communications are all fairly small, indicating

that they are used only when necessary. Though it is tempting to think of these cut-outs as promis-

ing targets for severing the network, it is also worth considering them as targets for exploitation.

Knowledge of the content of their messages may give indication of what multi-subgroup activities

are planned. Any information that is essential for the network must pass through these cut-outs.

Overall, the analysis of this network in this scenario demonstrates the discrepancy between

cut-outs and group members. Since degree centrality is a local property, a node’s location is

irrelevant. The cut-outs, though necessary to pass messages along, are not used more than necessary

and therefore have much lower measures in this scenario. However, this implies the contents of

communications involving the cut-outs may be more worthwhile for intelligence resources.

Subgroup {30,31,32,33,34,35,36} has the highest weight, followed closely by {1,2,3,4,5,6}. This

is because the measure considers only direct communications, and each is a large subgroup, so

individuals communicate directly with many others. In addition, node 32’s direct communication

to individuals in other subgroups increases the total length of conversation of the subgroup.

This scenario has considered this social network with an additive weight to learn more about

the local properties of individuals and subgroups. The next scenario continues analysis on the

same network structure, but transforms the weights for application of the closeness centrality node

measure.

4.2.3 Scenario 2: Non-overlapping subgroups, Closeness centrality (NSCC)

It is suspected that some separated groups are in the planning stages of a simultaneous attack on

multiple targets. Individuals who are organizing attacks or other events have positioned themselves

and the people who are loyal to them such that the organizers can disseminate orders and information
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quickly. However, the groups are distant enough that no single person acts as a liaison between

groups. Examining communication with everyone else in the network requires using the global

property of closeness centrality, defined as the sum of shortest paths. Since the measure is based on

shortest path for this scenario, it is important that a smaller weight on the arc represent a higher

level of communication. Two techniques for transforming the arc weights are offered in Section

3.4.4. Since each arc has weight ≥ 1 (see Figure 7 on page 76), the transformation is as follows: if

the arc has weight ai,j then the new weight for this scenario is 1 aij. These weights can be seen

on the network in Figure 12. Table 8 shows a summary of the calculations and interpretations of

the aggregation for NSCC. All the aggregation and node measure calculations for the analysis in

this section were performed in 35.75 seconds of processing time. All shortest path calculations were

performed using Dijkstra’s shortest path algorithm.

Table 8. Summary of Calculations for NSCC

Aggregation Order Calculations Interpretation

Assign node measures
then aggregate

αi =
j

di,j
Individual’s total time of
communication

αCi = min
i∈Ci

αi
Minimum subgroup communication
within and between subgroups

Aggregate then assign
node measures

aCi,Cj = min
i∈Ci
j∈Cj

ai,j
Minimum time of communication
between subgroups

αCi =
Cj

dCi,Cj
Total subgroup communication
time between subgroups only

4.2.3.1 Apply closeness centrality node measures before aggregation. The first

aggregation method assigns to each individual a closeness centrality node measure. Then in aggrega-

tion, each subgroup is assigned the weight of the minimum weighted node in that subgroup. Figure

13 shows the positional weights of each individual with respect to the relative speed of communicate

with every other individual in the network. Recall from Figure 12 that the weights on arcs within

a subgroup are smaller (uniformly distributed on 1
10
, 1
6
) than the arcs connecting subgroups or

cut-outs (which are uniformly distributed on 1
4 , 1 ). This weighting supports the assumption that
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Figure 12. Disaggregated network with tranformed arc weights for NSCC
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members are closer and therefore communicate more quickly and efficiently with other individuals

within their own subgroup than they do with members outside of their subgroup.

Since closeness centrality is a global property, the entire network structure affects which indi-

viduals have high or low node measures. The closeness centrality measures assigned to individuals

can be seen in Figure 13, where the closeness centrality weights have been rounded to the third dec-

imal. While most of the cut-outs actually have a fairly high measure, node 27, with a weight of

52.861, has a substantially lower weight than any of the other cut-outs.

It was expected that nodes 1 through 6 would have the lowest node measures since their

subgroup appears to hold the most central position. The subgroup {1,2,3,4,5,6} is the only one that

can communicate with every other subgroup, without relying on a third subgroup as an intermediary.

However, even being in that position in the network, the individuals in subgroup {1,2,3,4,5,6} have

weights greater than those for individuals in subgroup {30,31,32,33,34,35}. This is due to node 32’s

ability to interact directly with individuals in two of the other four subgroups without having to

incur the extra time spent passing information or materiel through cut-outs.

In the aggregation step individuals are aggregated into their appropriate subgroups and the

weight on a subgroup node is equal to the minimum of the member’s weights. For example,

α{1,2,3,4,5,6} = min{α1,α2,α3,α4,α5,α6}

α{1,2,3,4,5,6} = min{54.967, 53.387, 53.800, 53.968, 51.404, 57.086}

α{1,2,3,4,5,6} = 51.404

This definition of a subgroup’s measure of communication speed means that its ability to

disseminate information or materiel to the rest of the network rests upon the individual in the

network who can do so the quickest. Of course the method would be as effective with any other

additive measure in the same circumstances. Figure 14 shows the weighted aggregated network.

The individual with the smallest node measure, node 32, makes subgroup {30,31,32,33,34,35}

the subgroup of smallest measure. The depiction of the aggregated network in Figure 14 shows
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Figure 13. Individual positional closeness centrality weights for NSCC
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Figure 14. Closeness centrality measures for 3-plex aggregated weighted nodes for NSCC
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that while subgroup {1,2,3,4,5,6} lies in a central position in a network, it also becomes clear why

subgroup {30,31,32,33,34,35} has such a low weight. The latter’s use of few cut-outs makes for

stronger closeness centrality measure. Subgroup {30,31,32,33,34,35}uses no cut-outs to two of

the other subgroups, one cut-out to subgroup {9,10,11,12,13}, and two cut-outs to {1,2,3,4,5,6}.

Subgroup {1,2,3,4,5,6}, however, must pass all information or goods to every other subgroup through

two cut-outs. Since the weights on paths utilizing cut-outs are greater than weighted arcs within

subgroups, using cut-outs to disseminate information to the other subgroups increases the weight

for subgroup {1,2,3,4,5,6}.

4.2.3.2 Aggregate before assigning closeness centrality node measures. The second

aggregation technique aggregates individuals into subgroups with weighted arcs, and then assigns to

each subgroup a closeness centrality node measure. In the aggregation step, the arc between two

aggregated subgroups is defined to be the minimum weighted arc among the arcs with exactly one

endpoint in each of the two subgroups. The aggregated network with weighted arcs is shown in

Figure 15. Following the same notional scenario, these weights are defined to show the minimum

speed with which subgroups can exchange information or materiel with each other. Therefore, a

smaller weight implies quicker or more efficient interactions.

Aggregation of the network in this manner does not take into account the speed of commu-

nications within a subgroup. In many practical situations, the within-subgroup communications

may not be important, since each of the subgroups has only one or a small number of individuals

who interact with the cut-outs and act as representatives for their subgroup. The aggregation step

then assigns to each subgroup a closeness centrality node measure. Figure 16 shows the subgroups’

weights for their positional measures in the network. Again, subgroup {30,31,32,33,34,35} has the

lowest weight, since it can communicate directly with two other subgroups. Its shortest paths to

every other subgroup requires the use of very few cut-outs.
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Figure 15. Weighted arcs in 3-plex aggregated network for NSCC
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Figure 16. 3-plex aggregated closeness centrality weights for NSCC
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The first order of analysis for aggregation, in which each individual is assigned a closeness

centrality measure before aggregation results in the weights shown in Figure 14, gives the following

list of subgroups, in increasing order of closeness centrality measure:

1. {30, 31, 32, 33, 34, 35}
2. {21, 22, 23, 24}
3. {36, 37, 38, 39, 40}
4. {1, 2, 3, 4, 5, 6}
5. {9, 10, 11, 12, 13}

In the second order of analysis for aggregation, in which individuals are aggregated and sub-

groups are assigned a closeness centrality measure, shown in Figure 16, the increasing order of sub-

group closeness centrality measures through NSCC is slightly different, as {1,2,3,4,5} shows itself to

have a smaller weight than {36,37,38,39,40}:

1. {30, 31, 32, 33, 34, 35}
2. {21, 22, 23, 24}
3. {1, 2, 3, 4, 5, 6}
4. {36, 37, 38, 39, 40}
5. {9, 10, 11, 12, 13}

The reason the order changes stems from whether the distances within subgroups are included in

the subgroup node measures. In the former, within-subgroup weights are included and an individual

(the one with minimum weight) represents the subgroup. In the latter, however, subgroup weight

is determined solely by length of paths between subgroups. It has been shown that the analysis

differs whether the aggregation is performed with weighted arcs or weighted nodes. Rather than

choose which method to use, it is suggested that both be performed to understand the most about

the network at hand.

Analyzing this illustrative network structure with a global property closeness centrality shows

the extent to which node 32’s direct relationships with members of other subgroups speeds up

network communications. Though {1,2,3,4,5,6} appears to hold a central position, disseminating

information or materiel to the rest of the network requires the use of many cut-outs, driving up
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the total speed. This implies that proper use of the cut-outs may slow down communications.

Consider a scenario in which a governing council of an organization is careful to use cut-outs then

the leadership forms the slowest link in the chain, if the lower level members choose to use direct

connections instead of the cut-outs.

The closeness centrality measure, unlike the degree centrality measure, considers a node’s

position in the network. Therefore, in this second scenario, the cut-outs, as gate keepers, become

more important, as they control the flow of communications by being on many of the shortest paths.

These first two scenarios have examined a notional network with distinct subgroups through

a local and global property, degree and closeness centrality, respectively. In both, node 32 has

distinguished himself as being more communicative than anyone else. This has raised the degree

centrality measure both for him and his subgroup, simply because he communicates directly with

many people. It has also improved the closeness centrality measure for him and his subgroup, as he

can avoid the extra time incurred by using the cut-outs. There is no official line of communication

from subgroup {30,31,32,33,34,35} to {36,37,38,39,40} (as evidenced by the lack of cut-outs), but

node 32 circumvents that by communicating directly with 37 and 38. The rest of the network

structure shows that node 5 is supposed to control communications to the latter subgroup.

The next two scenarios use the same node measures to analyze a network in which some

individuals serve as liaison members between subgroups. Without cut-outs to control the flow of

information, the liaisons, as group members, hold what seems to be a position of great power. The

analysis in the two scenarios shows that to be true.

4.3 Notional Network of Overlapping Subgroups

Figure 17 shows the structure for a second notional network with overlapping subgroups. Nodes

{4,5,11,15} are the liaison individuals that connect subgroups, though not all subgroups have such in-

timate connections. Note that arc (7,8) holds the entire network together; communications through-

out the network can be severed quite easily by removing that single arc. However, arc (7,8) is the
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only weak place in terms of connectivity. The rest of the network is held together quite strongly by

either multiple liaison nodes such as 4 and 5, or by redundant arcs such as (10,20) and (13,17).

4.3.1 Subgroup detection for network of overlapping subgroups

It is clear that the subgroups in this scenario share members. Therefore, the technique in-

troduced in Section 3.3.2 for detecting overlapping subgroups is appropriate. This method recom-

mends first finding all overlapping cliques and then, if necessary, extending those cliques to k-plexes.

Though the heuristic for finding overlapping cliques is only guaranteed to find 75%, this network

does not have the structure for which the method fails. Therefore, it is expected that all cliques

will be detected. The overlapping cliques found in 0.18 seconds using a MATLAB script on the 2

ghz Dell Dimension XPST800 Pentium 4M:

{1, 2, 3, 4, 5}
{4, 5, 6, 7}
{8, 9, 10}
{8, 10, 11}
{11, 12, 14, 15}
{12, 13, 14, 15}
{15, 16, 18, 19, 20}
{16, 17, 18, 19, 20}

Observe cliques {11,12,14,15} and {12,13,14,15}, which overlap in three nodes and have only

one node different. The structure of these two cliques shows that one missing arc, (11, 13), keeps

this set of five nodes from being a K5. This is a situation in which it is appropriate to consider

extending cliques to k-plexes, and examining them as candidates for subgroups. k = 1 finds only

the pure cliques which have already been determined, so the k-plex analysis starts with k = 2. The

k-plexes for k = 2 to k = 4 are shown in Table 9.

The list of 3-plexes shows {1,2,4,5,6,7}, which is inappropriate in missing node 3. The list

of 4-plexes in the table shows {7,8,9,10,11}; however, a review of Figure 19 shows this to be an

inappropriate subgroup. For this notional example, further analysis of this network structure uses

the 2-plexes to aggregate into subgroups. Figure 18 shows the structure of the aggregated network

with five aggregated subgroups and one remaining disaggregated individual, node 21.
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Figure 17. Disaggregated Network Structure for Overlapping Subgroups
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Figure 18. Structure of 2-plex aggregated network of overlapping subgroups
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Table 9. k-plexes for network of overlapping subgroups

k k-plexes computational time

2

{1, 2, 3, 4, 5}
{4, 5, 6, 7}
{8, 9, 10, 11}
{11, 12, 13, 14, 15}
{15, 16, 17, 18, 19, 20}

0.30 sec

3

{1, 2, 3, 4, 5}
{1, 2, 4, 5, 6, 7}
{8, 9, 10, 11}
{11, 12, 13, 14, 15}
{15, 16, 17, 18, 19, 20}

0.36 sec

4

{1, 2, 3, 4, 5, 6, 7}
{7, 8, 9, 10, 11}
{11, 12, 13, 14, 15}
{15, 16, 17, 18, 19, 20}

0.42 sec

4.3.2 Scenario 3: Overlapping subgroups, Degree centrality (OSDC)

Terrorist cells have now become connected to the rest of the network. Some individuals within

subgroups act as liaisons between groups, implying these individuals may need to be modeled as

members of multiple aggregated subgroups. The intelligence data gathered is assumed to be numbers

of conversations, in which a greater arc weight is assumed to represent a stronger relationship. The

structure of the network and the arc data can be seen in Figure 19. All arcs in this illustration are

assigned a weight randomly from a uniform distribution on [1, 5]. Any arc incident to an apparent

liaison individual (4, 5, 11, or 15), is randomly assigned a weight from a uniform distribution on [1, 6].

This allows the liaison individuals to communicate more than individuals in only one subgroup. The

additive nature of the data represented by the arc weights makes using the degree centrality node

measure appropriate. Table 10 shows a summary of the calculations and interpretations of the

aggregation for OSDC.

4.3.2.1 Assign degree centrality node measures and then aggregate into subgroups.

The analysis in this section first assigns to each individual in the network a degree centrality node

measure. The individuals are then aggregated into the 2-plex subgroups. The measure on the

aggregated subgroup node is the sum of the weights of the individual members of that subgroup.
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Figure 19. Arc weighted disaggregated network for OSDC
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Table 10. Summary of Calculations for OSDC

Aggregation Order Calculations Interpretation

Assign node measures
then aggregate

αi =
j

ai,j
Individual’s total
communication

αCi =
i∈Ci

αi
Total subgroup communication
within and between subgroups

Aggregate then assign
node measures

aCi,Cj =
j∈Cj\Ci
i∈Ci\Cj

ai,j+

k∈Ci∩Ck
i∈Ci\Cj

ai,k +
k∈Ci∩Ck
j∈Cj\Ci

aj,k

Total communication
between subgroups

αCi =
Cj

aCi,Cj
Total subgroup communication
between subgroups only

Determining all weights for nodes and arcs in the remainder of the analysis in this section took 0.761

seconds of computer processing time on the 2ghz Dell Dimension XPST800 Pentium 4M.

Figure 20 shows the first step of the aggregation, in which each individual has been assigned

a degree centrality measure. Each individual node is given a weight equal to the sum of weight

on arcs incident to the node. This is a local property, representing the number of conversations in

which the individual has been a participant. Not surprisingly, the highest weight is held by node 15,

who is able to communicate directly with so many other individuals. Similarly, node 21, who has

direct communication with only one individual has a low weight. Perhaps 21 is new to the network

and has not yet developed many direct relationships with any other network members, or perhaps 21

is not well trusted by the rest of the network. Conversely, node 21 may be the actual organizational

head and only rarely communicates through node 18. Without knowledge of the content of their

conversations, it is difficult to know the relationship shared by nodes 18 and 21.

The second step of the aggregation technique aggregates individuals into appropriate subgroups.

Each subgroup’s weight is equal to the sum of the individual weights in the subgroup. Those

individuals who are members of more than one subgroup (11, for example) contribute their individual

weight to each subgroup to which they belong.

Figure 21 shows the weighted network after the aggregation step. The weight on a node

represents the total number of conversations or meetings in which any individual in the subgroup
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Figure 20. Individual positional weights for OSDC
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Figure 21. Subgroup positional weights for OSDC
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has participated. This does include some double counting, but still offers a relative measure among

the subgroups of the amount of communications subgroup members are having. The subgroup

{15,16,17,18,19,20} has the highest measure mainly because the subgroup is large and is fairly dense.

Position of the subgroup in the network is not a consideration in this analysis, since degree centrality

is a purely local property.

4.3.2.2 Aggregate individuals into subgroups and assign degree centrality node

measures. The second aggregation technique demonstrated for OSDC performs the aggregation

steps in the opposite order: first individuals are aggregated into predetermined subgroups, and then

each subgroup is assigned a degree centrality node measure. The aggregation occurs with weighted

arcs: the arc connecting two aggregated subgroup nodes is given a weight equal to the sum of all

arcs with exactly one endpoint in each of the two subgroups. The arc weights between aggregated

subgroup nodes count the number of phone calls or meetings the subgroups share.

Since members can be in multiple subgroups, this arc weight is actually the sum of the weights

on arc in three sets. Let C and C be two subgroups. Then the three sets are:

1. any arc with one endpoint in C\C and one in C \C
2. any arc with one endpoint in C\C and one in C ∩ C
3. any arc with one endpoint in C ∩ C and one endpoint in C

Consider Figure 19 on page 97, and let {11,12,13,14,15} be subgroup C and let {15, 16, 17,

18, 19, 20} be subgroup C . Arc (13, 17) has one endpoint in C\C and one in C \C, but neither

endpoint in both, so (13, 17) belongs in the first set. Arc (14, 15) has one endpoint (node 14) in

C\C and one endpoint (node 15) in C ∩C , so (14, 15) belongs in the second set. Arc (15, 20) has

one endpoint (node 15) in C ∩ C and one endpoint (node 20) in C \C. Each of these three arcs

will add their weight to the final weight on arc (C,C ). It is worth noting that the arc weights in

the aggregated network do not count conversations or meetings between individuals wholly within

one subgroup. This includes arc weights on arcs such as (19, 20) and (4, 5). The arc weights are

shown in Figure 22.
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Figure 22. Arc weights for 2-plex aggregated network in OSDC
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The precarious single arc (7, 8) representing the relationship between nodes 7 and 8 still shows

itself to be crucial for network connectivity, but its weight is low. This implies that the two sets of

subgroups do not interact often.

The arc connecting subgroups {8,9,10,11} and {15,16,17,18,19,20}, while also of small weight is

not as crucial as the (7, 8) arc. Removal of arc (10, 20) would make communications slower between

the two subgroups, but does not disconnect them completely. Any information or materiel the two

subgroups need to share could still pass through subgroup {11,12,13,14,15}.

The second part of the aggregation places a node measure on each subgroup or remaining

individual equal to the sum of the weights on arcs incident to the subgroup. This yields the

network in Figure 23. These subgroup node measures count the number of phone conversations

and meetings an individual in a subgroup is a participant only with individuals in other subgroups.

Any conversations within a subgroup conversations, except those held with the liaison nodes, are not

counted in these node weights. Again, in this notional scenario, more communication is assumed

to imply a stronger relationship.

Unlike the first aggregation technique, whose final aggregated node measures can be seen in

Figure 21 on page 100, here subgroup {11,12,13,14,15} has the greater measure. In Figure 21,

{15,16,17,18,19,20} had the higher measure since the number of phone conversations and meetings

held between individuals within a subgroup distorted the subgroup’s node measure.

This scenario has considered a social network with an additive weight to learn more about the

local properties of individuals and subgroups when individuals can have overlapping membership.

The next scenario continues analysis on the same network structure, but transforms the arc weight

for appropriate use of the closeness centrality node measures. Since the entire network structure

affects these measures, the limiting arc (7,8) that controls the flow of information will be seen to

greatly affect the network measures.
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Figure 23. Positional 2-plex aggregated subgroup weights for OSDC
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4.3.3 Scenario 4: Overlapping subgroups, Closeness centrality (OSCC)

Several groups are in close communication as they plan a coordinated simultaneous attack. The

individuals who are organizing the attacks have positioned themselves and the people who are loyal

to them such that the organizers can disseminate orders and information quickly. Some individuals

are known to be liaisons between subgroups but have membership ties with each of the subgroups,

and therefore belong in more than one aggregated subgroup. The data gathered reflects speed with

which an individual can pass a message to immediate neighbors. This data is assumed to be the

critical measure for this notional analysis. A smaller measure with this data represents a stronger

relationship.

Since this is a shortest path analysis, the arc weights must be transformed such that a smaller

weight represents faster communication. The network for this scenario has the structure of Figure

17 on page 94, but an arc’s weight is the reciprocal of the weight shown in Figure 19 on page 97.

Specifically, for a pair of individual nodes i and j with weight ai,j in Figure 19, for this scenario, the

same arc has weight 1 aij. These weights can be seen in Figure 24. Table 11 shows a summary

of the calculations and interpretations of the aggregation for OSCC.

Table 11. Summary of Calculations for OSCC

Aggregation Order Calculations Interpretation

Assign node measures
then aggregate

αi =
j

di,j
Individual’s total
communication

αCi = min
i∈Ci

αi

Minimum subgroup
communication within
andbetween subgroups

Aggregate then assign
node measures

aCi,Cj = min{ min
i∈Ci\Cj
j∈Cj\Ci

ai,j,

min
i∈Ci\Cj
k∈Ci∩Cj

ai,k, min
k∈Ci∩Cj
j∈Cj\Ci

ak,j}
Minimum speed of
communication
between subgroups

αCi =
Cj

dCi,Cj

Total subgroup speed
of communication be-
tween subgroups only

4.3.3.1 Apply closeness centrality node measures before aggregation. In the

first order of analysis for this scenario, each individual is assigned a closeness centrality measure.
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Figure 24. Notional arc weights for OSCC
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Then the network is aggregated into the subgroups previously determined, and each subgroup or

remaining individual is assigned a weight equal to the minimum of the individual node weights of

its membership. This allows the analyst to consider one individual, the fastest communicator, as

representing the entire network.

Figure 25 first shows each individual node’s closeness centrality measure. Not surprisingly,

the highest measure in the network is at node 21, due to its position at the fringe of the network.

Furthermore, almost every subgroup’s smallest weighted node is an individual who is the liaison

between groups. The exception is subgroup {4, 5, 6, 7}, whose smallest weighted member is node 7.

Though node 7 is not in multiple groups, it does serve as the liaison from subgroups {1, 2, 3, 4, 5}

and {4, 5, 6, 7} to the rest of the network. For that reason, it is reasonable that node 7 would have

the smallest measure of any of the nodes in {1, 2, 3, 4, 5} and {4, 5, 6, 7}.

The aggregation step takes the node-weighted network in Figure 25, aggregates individuals into

subgroups, and assigns to each subgroup a weight equal to the minimum of the weights of individuals

in the subgroup. The weighted subgroups and remaining individual can be seen in Figure 26. Since

the individual of smallest weight, represented by node 11, is in both subgroups {8,9,10,11} and

{11,12,13,14,15}, node 11’s weight is incorporated in both aggregated subgroup nodes.

4.3.3.2 Aggregate before assigning closeness centrality node measures. The second

order of aggregation analysis for this scenario first aggregates the individuals into their subgroups,

and then assigns to each subgroup or remaining individual a closeness centrality measure. This

technique ignores arc weights between individuals wholly contained within the same subgroup, and

provides information focused on intergroup relationships. This methodology is appropriate when

unconcerned with the details within subgroups, but seeks to find information on the speed with

subgroups can pass information or goods to the rest of the network. This aggregation technique

allows the analyst to detect subtle changes in subgroup interactions, eliminating the noise of within-

subgroup interactions.
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Figure 25. Individual positional weights for OSCC
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Figure 26. Aggregated 2-plex subgroup positional weights for for OSCC
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The arc between two aggregated subgroups is defined to be the minimum of any arcs connecting

those two subgroups. The arcs connecting two subgroups can be broken down into three sets:

1. any arc with one endpoint in C\C and one in C \C
2. any arc with one endpoint in C\C and one in C ∩ C
3. any arc with one endpoint in C ∩ C and one endpoint in C

Consider Figure 17 on page 94, and let {11,12,13,14,15} be subgroupC and let {15,16,17,18,19,20}

be subgroup C . Arc (13, 17) has one endpoint in C\C and one in C \C, but neither endpoint in

both, so (13, 17) belongs in the first set. Arc (14, 15) has one endpoint (node 14) in C\C and one

endpoint (node 15) in C ∩ C , so (14, 15) belongs in the second set. Arc (15, 20) has one endpoint

(node 15) in C ∩ C and one endpoint (node 20) in C \C. The min of each of these three arcs will

become final weight on arc (C,C ). It is worth noting that the arc weights in the aggregated net-

work do not consider arc weights between individuals wholly within one subgroup. This includes

arc weights on arcs such as (19, 20) and (4, 5). The weighted arcs are provided in Figure 27. These

weights show only interactions of the entire subgroup; this assumes that one member of the group

represents the entire group.

It is worth taking a moment to consider what these arc weights really represent. Consider the

1/5 weight connecting subgroups {1,2,3,4,5}. That weight is the minimum of any pair of weights in

which one endpoint is in {1,2,3,4,5} and the other is in {4,5,6,7}, excluding the arc (4, 5). Recalling

the weighted arcs in the disaggregated network in Figure 24 on page 106, this minimum measure is

on two arcs (3, 5) and (5, 7). Therefore, the information or goods can get from subgroup {1,2,3,4,5}

to {4,5,6,7} (or vice versa), but relies on node 5, one of the liaisons between the two groups. It is

the same situation with every other pair of subgroups, even in the pairs of subgroups that have a

connection that avoids the cut-out (specifically arcs (13, 17) and (10, 20)). This implies that when

considering the minimum speed of information or goods that reach the entire network, the direct

relationships do not decrease the speed. Moving goods or information relies on the liaison individuals

who have membership in more than one subgroup in this scenario. If the liaison individuals are not
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Figure 27. 2-plex aggregated arc weights for OSCC
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efficient at performing this function, it is likely arcs (10,20) and (13,17) would become more heavily

utilized to avoid the inefficient liaisons.

The aggregation step now assigns to each subgroup or remaining individual a weight equal to

the sum of shortest paths to the rest of the network. Figure 28 shows each subgroup’s positional

weight. These weights represent the speed with which a subgroup can pass information or goods

to the rest of the network. It assumes that each subgroup works as a whole; i.e. in subgroup

{8,9,10,11}, as soon as the subgroup receives a package from {4,5,6,7} it immediately passes it on

to subgroup {15,16,17,18,19,20}, ignoring the fact that individual 8 actually receives the package

and 11 has to send it on to the next subgroup. If critical to the analysis, a node delay might be

added to the aggregated node. In the case of subgroup {8,9,10,11} having to send a package to

{11,12,13,14,15}, this is not an issue, since 11 is a member of both subgroups. Again, it becomes

clear these individuals in multiple nodes are very important.

Figure 28. 2-plex aggregated subgroup weights for OSCC
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Figures 28 and 26 both show an aggregated social network with positional subgroup weights.

Figure 28 considers only the speed of communications between groups, while Figure 26 also takes

into account speed within the subgroup. It is interesting to note that in both figures, each of the

six subgroups holds the same relative position in the order of increasing node weights:

1. {8,9,10,11}

2. (tie) {11,12,13,14,15}

3. {15,16,17,18,19,20}

4. {4,5,6,7}

5. {1,2,3,4,5}

6. {21}

4.4 Summary

The analysis in this chapter has demonstrated the four techniques introduced in Chapter 3

with four notional networks. Each of these notional networks have complete information and

weighted arcs. These scenarios are informative to exhibit the information obtained from the two

node measures and the subtle insight gained from the different orders of aggregation. The definition

of arc weights in the notional examples are but a small number of appropriate arc weights. Any

additive weight can be used with these techniques analysis, such as distance, time, length, frequency,

cost, speed, etc.

This chapter demonstrates the techniques to find appropriate subgroups and aggregate networks

introduced and detailed in Chapter 3. The aggregation techniques allow the analyst to consider

a local property through the extended degree centrality measure, and a global property through

the extended closeness centrality measure. The four scenarios demonstrate the techniques on

notional networks, designed specifically to be appropriate for each of the subgroup detection/node

measure pairs introduced in Chapter 3. The use of the degree and/or closeness centrality measures

is scenario dependent, but using both can provide more information about the network interactions

and structure.
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It is tempting to aggregate leaves (nodes of degree 1) immediately into the node to which they

are adjacent. However, the analysis in this chapter has shown that leaves can offer the analyst a

great deal of information, as well as potentially good targets for exploitation, in some situations.

Any aggregation analysis can be performed with positional node weights or relational arc

weights. All of the analysis in this thesis assume the analyst begins with weights on the arcs,

representing the strength of relationship between the two endpoints. However, in the course of the

analysis, nodes become weighted as well; thus, if the analyst begins with weighted nodes, representing

the positional weight of an individual or subgroup in the network, he can pick up the aggregation

process there.

Each of the four techniques detailed in Chapter 3 and explored through examples in this

chapter, demonstrate first aggregation after each node has been assigned a node measure, and

second aggregation with weighted arcs, after which each subgroup is assigned a node measure. The

first includes within group interactions, providing the analyst with information about activity in the

network as a whole. The second explores only between group interactions, allowing the analyst to

detect more subtle changes in the network. Neither of the two orders of the process of aggregation

and assigning a node measure are preferable in every situation. Occasionally, the scenario may

make only one order applicable. In general, however, it is recommended that the analyst perform

both to obtain greater information about the network.

While this chapter examined notional networks of complete information, the next chapter

examines a real-world social network of incomplete information through open source data on Jema’ah

Islamiyah, and exhibit how to approach a not-so-perfect social network.
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Chapter 5 - Analysis of Jema’ah Islamiyah

5.1 Introduction

Jema’ah Islamiyah (JI) is a terrorist group, allegedly connected to Al Qaeda. This analysis

to characterize the structure and activity of JI is approached in the two steps Chapter 3 recom-

mends: 1. determine appropriate subgroups, and 2. aggregate using degree and closeness centrality

measures to learn the level of within and between subgroup interactions. First, section 5.2 seeks

appropriate subgroups for aggregation. Then, Sections 5.3 and 5.4 demonstrate the application

of the degree centrality and closeness centrality node measures, respectively, to the aggregated net-

work. This allows investigation of both a local and a global property for this network to obtain as

much information as possible.

Figure 29 shows an undirected, unweighted network of individuals in JI from open source

information as of April, 2003. As an open source example, it is recognized that the information

is possibly both incomplete and inaccurate. Much of the information is obtained from individuals

who have been apprehended, and is therefore quite biased and incomplete. It is not presented here

as an operational analysis of JI. It is offered to illustrate the approaches developed in this research

on an open source, real world network. The arcs represent the existence of a relationship between

individuals. Since the strength of the relationship between individuals are unknown, each arc is

assigned a unity weight.

It is worth noting that the structure of the network may be an artifact of the the method by

which data is collected. Many of the individuals in the network have been apprehended, so more

information is known about them and their relationships with other individuals. It is important to

remember that this may cause some bias in the network structure, and therefore the insight gained.

The data is collected in such a manner that the individuals are not ordered sequentially, as they had

been the previous notional examples. The names associated with each of the individual numbered

nodes can be found in Appendix C.
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Figure 29. Disaggregated Open Source Network Structure for JI
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5.2 Subgroup Detection in JI Network

An initial review of the network in Figure 29 shows there are no obvious distinct subgroups.

All cliques in the network on three or more nodes are:

{1, 3, 4}
{1, 4, 10, 27, 54, 66}
{10, 16, 27, 54, 66}
{10, 16, 27, 48, 61, 67}
{10, 20, 27, 54}
{20, 22, 37}
{22, 37, 55}
{27, 36, 63}
{27, 47, 63}

It is tempting to think that since both 22 and 66 are in two cliques, they are in some way equal

in importance. However, 22 is in two K3s, while 66 is in a K4 and a K5. In fact, nodes 10, 27,

and 54 are also in both the K4 and the K5, implying that 10’s power to control communications

between the two cliques is not as strong as if he were the only liaison between the two cliques.

The aggregation of the individuals into cliques does not greatly reduce the size of the network.

This suggests representing subgroups with k-plexes (for some empirically determined k). Several

values of k and the associated k-plexes are shown in Table 12.

Note that as k increases, the subgroups contain more individuals and become less dense. It is

also interesting to note that the subgroups are simply overlapping more, rather than encompassing

nodes not already in a clique. Since increased relaxation of the clique to k-plexes serves only to de-

crease the distinctiveness of subgroups, the rest of the analysis of this network uses 2-plexes. Figure

30 shows the aggregated network used in the remainder of the analysis of JI, and the aggregated

subgroups are :

{1, 3, 4, 10}
{1, 4, 10, 27, 54, 66}
{1, 10, 20, 27, 54}
{10, 16, 27, 48, 61, 67}
{20, 22, 37, 55}
{27, 36, 47, 63}

Nodes 1, 4, 10, 27, and 54 are liaison individuals in multiple subgroups, and therefore merit

consideration. Individuals in multiple groups interact with a greater number of people and are
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Table 12. k-plexes for JI

k k-plex
2 {1, 3, 4, 10}

{1, 4, 10, 27, 54, 66}
{1, 10, 20, 27, 54}
{10, 16, 27, 48, 61, 67}
{20, 22, 37, 55}
{27, 36, 47, 63}

3 {1, 3, 4, 10, 27}
{1, 4, 10, 20, 27, 54}
{1, 4, 10, 27, 54, 66}
{10, 16, 27, 48, 61, 67}
{20, 22, 37, 55}
{27, 36, 47, 63}

4 {1, 3, 4, 10, 27, 54}
{1, 4, 10, 20, 27, 54, 66}
{1, 4, 27, 36, 47, 63}
{10, 16, 27, 48, 61, 67}
{10, 20, 22, 27, 37, 55}

6

{1, 3, 4, 10, 20, 27, 54, 66}
{1, 4, 10, 16, 27, 48, 54, 61, 66, 67}
{1, 4, 10, 27, 36, 47, 54, 63}
{1, 10, 20, 22, 27, 37, 54, 55}

10
{1, 3, 4, 10, 16, 20, 22, 27, 37, 54, 55, 66}
{1, 3, 4, 10, 16, 20, 27, 36, 47, 54, 63, 66}
{1, 3, 4, 10, 16, 20, 27, 48, 54, 61, 66, 67}

involved in more activities than anyone else in the network. Changes in their behavior may portend

a change in overall network activity or imminent action.

It is important to consider the structure of the aggregated network in Figure 30. The network

gives the appearance of more connectedness than truly exists. Consider, for example, nodes 18

and 19, each of which have degree 3. In Figure 29, these same nodes have only degree 1, and are

adjacent to node 27. Since node 27 is a member of three aggregated subgroups, all of its neighbors

(including 18 and 19) are also adjacent to each of the subgroup nodes into which 27 is aggregated.

Care must be taken to not become overwhelmed by the number of arcs in the aggregated network.

5.3 Application of degree centrality node measure to JI

This analysis first considers the application of the local property, degree centrality, to the open

source network. This measure assigns to each individual or subgroup a weight equal to the sum of

the weight on arcs incident to the node which represents that individual or subgroup. Since the
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Figure 30. 2-plex aggregated structure for open source JI
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network is undirected and unweighted, this measure will equal the degree of the node. All the

degree centrality calculations were performed in 0.6710 seconds of computer time on a 2 ghz Dell

Dimension XPST800 Pentium 4M.

5.3.1 Assign degree centrality node measures before aggregating

Each individual in the network is first assigned a degree centrality measure equal to the node’s

degree. These weights are shown in Figure 31. Not surprisingly, the individuals in multiple large

subgroups have the highest measures. These are nodes 10 (Ali Gufron/Muklas), 27 (Hambali),

and 54 (Imam Samudra). The degree centrality measure is a local property, and considers only an

individual’s relationship with immediate neighbors. This is why node 4 (Abu Bakar Bashir), though

somewhat on the edge of the network, can still have a relatively high measure for this network of 7.

The aggregation step now replaces individuals in the network with the appropriate subgroups,

previously determined, listed on page 117. The weight on each remaining individual does not

change in the aggregation step, but each aggregated subgroup is assigned a weight equal to the sum

of the individual weights of its members. The weighted nodes in Figure 32 measures the relative

strength of the relationships of members of each subgroup. This means, for example, that node

27 (Hambali) assigns his weight to subgroups {1,4,10,27,54,66}, {1,10,20,27,54}, {27,36,47,63}, and

{10,16,27,48,61,67}.

It was noted that nodes 10 (Ali Gufron/Muklas), 27 (Hambali), and 54 (Imam Samudra) have

the highest individual weights; not surprisingly, the groups of which they are members, {1,4,10,27,54,

66} and {1,10,20,27,54}, also have the highest weights, 57 and 51, respectively. It was shown in

Chapter 3 that theoretically this is not necessarily the case, in practice, it is likely to occur, as it has

in this open source JI example. Since every arc is accounted for in each endpoint, the weights are

large, but they provide the analyst with information about the relative strength of the relationships

of the subgroups.
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Figure 31. Weighted individual nodes under OSDC for open source JI
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Figure 32. 2-plex aggregated network of within and between subgroup OSDC weights
for open source JI
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5.3.2 Aggregate before assigning degree centrality node measures

The second method of aggregation explores only intergroup relationships. Any edges that exist

wholly within a subgroup are not counted in the calculations. The network with aggregated arc

weights is shown in Figure 33. Recall the weight of an arc connecting two subgroups (or individuals)

is assigned a weight equal to the sum of the arcs in which exactly one endpoint is in each subgroup.

For ease of examining the network in Figure 33, any unity weighted arc is left unlabeled.

Figure 33. 2-plex aggregated arc weights for OSDC for open source JI

Naturally the highest weighted arcs are those between the aggregated subgroups, as they not

only have multiple members, but many have multiple members in common. Node 27 (Hambali),
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which had the highest individual measure in Figure 31, is a member of the three subgroups with the

highest arcs connecting the trio, {1,4,10,27,54,66}, {1,10,20,27,54}, and {10,16,27,48,61,67}. The

weighted subgroup nodes in Figure 34 show interactions between adjacent subgroups.

Figure 34. 2-plex aggregated between subgroup OSDC weights for open source JI

Leaf nodes that appear unimportant in the disaggregated network in Figure 29 such as 18,19,

or 42, seem much more integrated into the network in the aggregated network. These three nodes

now have a measure of 4, but only because each is adjacent to 27, who is in 4 aggregated subgroup

nodes. This method can therefore be used to identify an individual who is not himself an inner

circle member, but is connected to such an individual. Node 42, for example, has a relationship
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with the clearly important node 27, but node 42 is on the fringe of the disaggregated network. Node

42 may possibly be a susceptible target.

Both of the degree centrality aggregation methods produce an aggregated network with po-

sitional node measures as a final product. Note that in this example, unlike some of the earlier

notional examples, the five largest subgroups order the same weight in both techniques. The sub-

groups, in order of decreasing weight, are:

1. {1, 4, 10, 27, 54, 66}
2. {1, 10, 20, 27, 54}
3. {10, 16, 27, 48, 61, 67}
4. {1, 3, 4, 10}
5. {27, 36, 47, 63}

Naturally the liaison individuals have proven to have the highest degree centrality measure,

since they communicate directly with the most number of other people. The individuals with low

weight should not be discounted, however, since they also can be viable intelligence targets. Consider

nodes 18, 19, and 42, who are adjacent to 27. Any of these three could provide information on 27.

Similarly, nodes 9, 12, 53 and 64 are adjacent to 54.

This section examined the large component of JI in an open source network using a local

property, degree centrality. This property examines an individual or group only in the context of

its immediate neighborhood, without consideration of its place in the network. The next section

re-examines the network with a global property using the closeness centrality node measure. This

considers the cumulative sum of total length of all paths an individual or subgroup must use to

disseminate information to every other individual or subgroup in the network. The entire network

structure affects these measures, so individuals who have positioned themselves to give orders quickly

have the lowest weight. It is expected that the liaison individuals identified earlier as highly

communicative (1, 4,10, 27, and 54) can also disseminate information quickly and have low closeness

centrality measures. The subgroups of these individuals will also have small weight. Using the
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global property, those on the fringe of the network will have high weights, as they are not as well

integrated into the network.

5.4 Application of closeness centrality node measure to JI

In the aggregation, each subgroup is assigned a weight equal to the minimum of the weights of

its members. Individuals who are not aggregated keep their individual weight in the aggregation

step. Alternatively, in the second order of analysis in section 5.4.2, the individuals are aggregated

into subgroup first. The methodology introduced in Section 3.4.5 assigns to each arc connecting

a pair of subgroups a weight equal to the minimum among arcs with exactly one endpoint in each

subgroup. However, since each arc in this network is unity weighted, each arc connecting aggregated

subgroups also has unity weight. Each subgroup or remaining individual is then assigned a weight

equal to the sum of shortest paths from it to every other node. All closeness centrality calculations

were accomplished in 289.1060 seconds of computational time on the 2 ghz Dell Dimenstion XPS

T 800 Pentium 4M. Computationally, these calculations have taken longer since the aggregated

network has many more nodes than any of the notional examples.

5.4.1 Assign closeness centrality node measures before aggregating

Figure 35 shows the closeness centrality individual weights. Naturally, the largest weights are

on individuals at the fringe of the network, such as node 49, who is on a path of length three from

a denser part of the network. The five smallest weighted nodes in the network, in increasing order

of weight are 27, 10, 54, 20, 1. These are also exactly the members of one of the subgroups. It is

therefore expected that this subgroup will also have the least weight after aggregation.

It is interesting to consider the great disparity that exists on individual weights within a

subgroup. Consider, for example, the subgroup {20, 22, 37, 55}. The node that forms the liaison to

the rest of the network, 20, has the smallest measure. The largest weight in the subgroup, on node

55, which is only a path of length 2 away from node 20, has a weight of 117, which is almost double

the weight of node 20, 61. Another subgroup on four nodes, {27, 36, 47, 63} does not have such a

great difference of weights within the subgroup, due to its structure and how it connects to the rest

126



Figure 35. Disaggregated network of node weights under OSCC for open source JI

127



of the network. In this latter subgroup, the liaison node, 27, is adjacent to every other member of

the subgroup, whereas in the former subgroup, the liaison node, 20 is not adjacent to node 55, which

has the greatest weight. Consider also the clique on six nodes, {10, 27, 16, 67, 48, 61}. It is worth

pointing out that the way the network is drawn make nodes 48 and 61 appear to be less involved in

the network than nodes 16 or 67. However, all four nodes are structurally the same, as evidenced

by their node measures: all a weight of 71. In fact, a review of the network in Figure 31, listing the

individual degree centrality weights, shows these four nodes to have the same weight as each other,

which is not surprising if they are structurally the same. Of course it should be recalled that the

data used is all open source and potentially biased by the large number of apprehended individuals

in the data.

Figure 36 shows the closeness centrality weights for the subgroups and remaining individuals

after the aggregation step. Each subgroup receives a weight equal to the minimum weight of

each member in the subgroup. Individuals who are not aggregated keep the same weight after the

remainder of the network is aggregated.

Node 27, who has an individual measure of 50, gives his weight to each of the aggregated

subgroups of which he is a member. These weights represent how quickly some individual in each

subgroup can disseminate goods or information to everyone else in the network. For this to be a

realistic interpretation, it is necessary to assume that the groups are very cohesive, and an individual

can represent the entire group. This may be a reasonable assumption if it is known each group has

a leader or a go between who is responsible for goods and information flowing into and out of his

subgroup.

5.4.2 Aggregate before assigning closeness centrality node measures

This aggregation procedure, in which the subgroups are aggregated before node measures are

assigned to each aggregated subgroup or individual, examines the interactions between subgroups

without the noise of within subgroup interactions. If data on relationships in JI are taken regularly
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Figure 36. 2-plex aggregated node weights for OSCC for open source JI
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over time, then this procedure can help to determine subtle changes in subgroup interactions, which

may be indicative of increased activity and future hostile actions.

This procedure assigns to an arc connecting two aggregated nodes a weight equal to the mini-

mum of arcs with exactly one endpoint in each subgroup. Since every arc has unity weight, every

arc in the aggregated network also has unity weight.

Now each arc is equal in its length for traversal. Since the closeness centrality measure is

a global property, the subgroup nodes weights show positional superiority in the network for the

dissemination of goods and information. These weights can be seen in Figure 37, where a low weight

indicates a greater ability to disseminate information throughout the network. Not surprisingly,

the individuals at the fringe of the network have the highest weights. It is interesting to consider

the disparity of the weights on those individual nodes of degree 1, such as nodes 46 (weight of 38),

53 (weight of 40), and 49 (weight of 63). Merely having degree 1 does not make a node unworthy

of further study. It has already been noted that a leaf could be a person new to the network,

and easily influenced, or an individual who interacts with an important person in the network in a

different context, in which case the leaf can be exploited. Thus when considering node 49, who has

the highest weight in the network, it may be reasonable to deduce that he does not wield a great deal

of influence. However, when considering node 18, who has a fairly low weight of 37, it is clear that

he is an individual who interacts directly with node 27, a person who does exert a lot of influence

in the network as a whole.

It was supposed earlier in this section that the subgroup {1, 10, 20, 27, 54} would appear most

efficient as disseminating information and goods, since its members are the five individuals with the

lowest weight. Indeed, this subgroup does hold the lowest weight, but it shares that position with

another subgroup, {1, 4, 10, 27, 54, 66}. These two subgroups share three members, so it is not too

surprising that their ability to reach out to the rest of the network is similar.
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Figure 37. 2-plex aggregated subgroup weights under OSCC for open source JI
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5.5 JI Analysis Summary

This chapter used the methodology introduced in Chapter 3 to apply to a scenario not built

specifically to demonstrate a technique (as Chapter 4 was). The open source JI data is real-world,

and probably biased by the number of apprehended subjects. It is therefore “messier” than the

notional networks examined in Chapter 4. The first step in the aggregation analysis of a new

network is to determine appropriate subgroups. This network is small enough to allow a visual

examination of the network structure, which showed several overlapping groups, along with some

leaves. There is no obvious distinction in the subgroups, and detection of the pure cliques showed

them to not appropriately define subgroups. Therefore, the non-overlapping subgroups methodology

for k-plexes was used, and the 3-plexes were determined to be appropriate for the JI analysis

Since the interactions in the Jema’ah Islamiyah data are basically unknown, this research

examined both the local and global properties to understand as much as possible about the structure

and relationships of the network. The individuals acting as liaisons between the larger cliques, nodes

27, 10, 54, and 1, became the focus of the analysis very quickly. Every calculation performed on

the network showed some subset of these individuals to exhibit the greater amount of influence.

Often individuals connected to these four nodes also showed better measures than individuals who

seem structurally the same in other parts of the network. It is therefore recommended to obtain

more information on how to influence the network behavior, that these four individuals, and their

immediate neighbors be the target of further investigation.

It is important when considering the analysis in this chapter, that this is not presented as a

meaningful intelligence analysis of JI. This investigation is offered as a demonstration of the methods

in Chapter 3 on a network of incomplete and inaccurate information. Thus, the reader’s focus in

this chapter should be on the application of aggregation techniques to gain information about the

network rather than the actual results.
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Chapter 6 - Exploration of Imperfect Information

6.1 Introduction

Modeling the effects of missing information in social networks is of great importance. Rarely do

analysts have perfect information of the social group they wish to study. It is therefore necessary for

the analyst to understand how missing information impacts the analysis of the network. This chapter

provides the analyst with an introduction to the effects of missing information, by considering how

unknown arcs can make it difficult for the analyst to identify appropriate subgroups in a network.

Four distinct methods of arc removal protocol are identified in Section 5.2 and implemented in

Section 5.3 to show how missing arcs inhibits the analyst’s ability to find appropriate subgroups.

This work is demonstrated on a network previously investigated in Chapter 4.

6.2 Methodology

The network used for this assessment is the one introduced in Section 4.2.2, with overlapping

cliques, shown again here as Figure 38. Since this network has overlapping subgroups, some indi-

viduals will be in multiple subgroups. Recall the appropriate subgroups chosen for aggregation are

the following set of 2-plexes:

{1, 2, 3, 4, 5}
{4, 5, 6, 7}
{8, 9, 10, 11}
{11, 12, 13, 14, 15}
{15, 16, 17, 18, 19, 20}

The impact of missing arcs is determined by removal of a given percentage of the arcs in the

network, and then reassessing the subgroups formed. The user inputs a percentage of the total

number of arc in the network to be removed and an adjacency matrix for the network under study.

A MATLAB script outputs an adjacency matrix and boolean variable indicating whether the new

adjacency matrix can produce the subgroups originally found in the complete network. A confidence

interval is placed on p, the proportion of networks which still produce the same 2-plexes, for each of

the four removal methods at several levels of percent arcs missing.
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Figure 38. Disaggregated network of complete arc structure
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A user-given percentage of the arcs are targeted for removal. In the experiment, the percentage

starts at 2.5%, and increments by 2.5% until p = 0. The arcs are targeted in the following four ways:

1. any random arc

2. any random arc with each endpoint at nodes of lower than average degree

3. any random arc incident to individuals of higher than average degree

4. any random arc incident to individuals in multiple subgroups

The first approach assumes that any arc in the network is equally likely to be unrecorded.

It is appropriate to consider this situation when there is a high degree of uncertainty about the

individuals in the network. Suppose, for example, that a previously unknown group of people are

under investigation, and the arcs in the network represent observed contacts. Any of the contacts

are equally likely to be missed.

The second method for arc removal considers only those arcs connecting two individuals of

low degree. This is appropriate when individuals believed to be low level associates are not being

tracked with as much diligence. Again, if the arcs represent contacts, and only the prominent

members are being watched, then any contact between individuals of low importance in the network

may continue unnoticed.

The third method for arc removal focuses only on individuals with high degree. This method is

appropriate when such individuals know they are highly interconnected and practice good operational

security. Because of this heightened OPSEC, their interactions with other individuals are assumed

to be more likely to be unknown.

As in the third method, the fourth investigates those individuals who act as liaisons between

two groups. This occurs when the liaison individuals know they are chokepoints for the goods and

information passing through the network and practice good operational security, to continue being

effective in their roles.

Each run of the program analyzes a total of 500 randomly reduced networks, in twenty sam-

ples of size twenty-five networks. Twenty samples were drawn to have enough data to ensure the

distribution of the p (the percent of reduced networks with the same 2-plexes as the complete net-
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work) is approximately normal. This is confirmed through a normal probability plot, a graphical

method for determining whether the data follows a normal distribution. If the data points approx-

imate a straight line on the normal probability plot, it is reasonable to use the normal distribution

(Montgomery, 2001: 110).

It is necessary to choose an appropriate sample size to ensure 95% confidence intervals. The

information for finding the sample size is inWackerly, Mendenhall, and Scheaffer’s text,Mathematical

Statistics with Applications, in Section 8.7, starting on page 395. Since each of the distributions of

p are normal (shown in section 5.2), approximately 95% of the data will fall within two standard

deviations of the mean of p. This research is interested in having a 95% confidence interval with

error of estimation of p less than 5%.

2σp = 0.05 (6.1)

The estimate of the standard deviation for p is

σp =
p(1− p)
n

(6.2)

Substituting the value for σp into Equation 6.1 yields

2
p(1− p)
n

= 0.05

n =
p(1− p)
(0.1)2

(6.3)

Since an estimate for p is not yet known, the value p = 0.5 is chosen to maximize n.

Substituting p = 0.5 in Equation 6.3 yields

n =
0.5(1− 0.5)
(0.1)2

= 25

Therefore, the sample size chosen is 25, which will allow 95% confidence intervals with an error

of estimation less than 0.05 for p, regardless of what value p actually takes on.
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The upper and lower confidence intervals (UCI and LCI, respectively) are calculated by the

following formula from Wackerly, Mendenhall, and Scheaffer:

UCI = p+ zα/2σp (6.4)

LCI = p− zα/2σp (6.5)

Using α = 0.05 to find zα/2 in a normal probability table and substituting Equation 6.2 into

the UCI and LCI in Equations 6.4 and 6.5, respectively, the confidence limits become

UCI = p+ 1.96
p(1− p)
n

LCI = p− 1.96 p(1− p)
n

6.3 Analysis

This section reports on the 20 runs of 25 samples for each of the four methods described in

section 5.1, starting on page 135. For each of the methods, the percent of missing information

increases iteratively by 2.5% until p, the proportion of networks producing the appropriate subgroups,

is 0. Once normality has been assessed for p, then 95% and 90% confidence intervals are placed on

each of runs of 500 samples.

6.3.1 Random Arc Removal (RAR)

The first arc removal method examined is one in which every arc in the network is equally

likely to be unknown. Table 13 shows the data, as well as some summary statistics for random arc

removal. The number of networks with appropriate subgroups is first shown for each of the twenty

samples. A p, and 95% normal and binomial confidence intervals are then given.

Recall that if the data for p falls along a straight line on a normal probability plot, then the

distribution of p can be assumed to be approximately normal. This allows confidence intervals of p

to be calculated using standard normal values.

The normal probability plots in Figures 39 and 40 show the counts of networks with appropriate

subgroups is approximately normal. Therefore, the distribution of p is approximately normal, and
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Figure 39. Normal Probability Plot for 0.025 fraction of arcs missing for RAR
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Figure 40. Normal Probability Plot for 0.050 fraction of arcs missing for RAR
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Table 13. RAR: Data and statistics for arcs missing at random

fraction missing 0.025 0.05 0.075 0.10
1 4 3 0 0
2 11 1 0 0
3 7 1 0 0
4 3 0 1 0
5 6 0 1 0
6 2 1 0 0
7 7 4 0 0
8 3 1 0 0
9 5 0 0 0
10 6 1 0 0
11 3 5 1 0
12 4 2 0 0
13 2 3 0 0
14 5 2 0 0
15 5 0 1 0
16 5 3 1 0
17 3 2 0 0
18 9 1 1 0
19 9 1 0 0
20 7 3 0 0

p 0.212 0.068 0.012 0

95% Normal LCI 0.174 0.045 0.002 0
95% Normal UCI 0.250 0.091 0.022 0

95% Binomial LCI 0.177 0.048 0.004 0
95% Binomial UCI 0.251 0.094 0.026 0

the normal distribution can be used to derive the confidence intervals. Although the use of normal

confidence intervals are common in practice in the application of the central limit theorem, the true

confidence intervals in this example are calculated from the binomial distributions. Both confidence

intervals are found in Table 13. The normal 95% confidence intervals are symmetric about p, while

the binomial confidence intervals are not.

Figure 41 shows the point estimate, p with its 95% binomial confidence intervals. Figure 42

shows the shows the same trend 95% normal confidence intervals. The trend line, showing the

decrease in p is the same in both plots; the only difference is the confidence interval lines on the

points at 0.025, 0.05 and 0.075. The plots are presented separately, because if the two confidence

intervals were located on the same plot, they would be nearly indistinguishable. This plot shows

how quickly p goes to 0, underscoring the extent to which randomly missing information impedes
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subgroup detection. Recall that p = 0 when none of the 500 runs produces the correct 2-plexes.

Thus when p = 0, statistically, the correct subgroups will not be determined.
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Figure 41. p and 95% Binomial CI by fraction of missing arcs for RAR

6.3.2 Random arc removal between nodes of low degree (RARLD)

The second arc removal method examined is one in which only those arcs which connect nodes

of less than average degree. Table 14 shows the data as well as some summary statistics for random

arc removal. First the number of networks with appropriate subgroups is shown for each of the

twenty samples. A p, and 95% normal and binomial confidence intervals are given for each level of

fraction of arcs missing.

Figure 43 shows the point estimate, p with its 95% binomial confidence intervals. Since the

confidence intervals calculated using the normal and binomial distributions are nearly identical, it

is not necessary to show a plot of both. Removing arcs between individuals of low degree breaks

the subgroups apart very quickly. Removal of just 7.5% of the arcs already yields p = 0. Since the

arcs are removed only between individuals of low degree, these individuals quickly become either

completely disconnected from the network or adjacent to a very small number of individuals. The
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Figure 42. p and 95% Normal CI by fraction of missing arcs for RAR
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Table 14. RARLD: Data and statistics for arcs missing at random between nodes of low
degree

fraction missing 0.025 0.05 0.075
1 5 1 0
2 0 1 0
3 5 0 0
4 4 1 0
5 3 1 0
6 2 2 0
7 3 1 0
8 2 0 0
9 4 1 0
10 5 1 0
11 1 0 0
12 5 0 0
13 3 0 0
14 4 3 0
15 4 0 0
16 2 1 0
17 4 1 0
18 2 1 0
19 0 2 0
20 2 2 0

p 0.120 0.038 0

95% Normal LCI 0.090 0.020 0
95% Normal UCI 0.150 0.056 0

95% Binomial LCI 0.093 0.023 0
95% Binomial UCI 0.152 0.059 0

2-plex subgroups require each individual to be adjacent to at least n − 2 other members of the n

individuals in the subgroup. When the degree of individuals of low degree starts decreasing even

further, these individuals fall out of the subgroups. Although the 2-plexes may still contain many

of the same members, the requirement of this experiment is that the subgroups be exactly the same

in the reduced adjacency matrix.

6.3.3 Random arc removal incident to nodes of high degree (RARHD)

The third arc removal method examined is one in which only those arcs incident to nodes of

higher than average degree are targeted for removal. Even if these individuals are being searched

for, they may be able to keep some of their communications hidden through good OPSEC. Table

15 shows the data as well as some summary statistics for random arc removal. First the number
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Figure 43. p and 95% Binomial CI by fraction of missing arcs for RARLD
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of networks with appropriate subgroups is shown for each of the twenty samples. A p, and 95%

normal and binomial confidence intervals are then given for each level of fraction of arcs missing.

Table 15. RARHD: Data and statistics for arcs missing at random incident to nodes of
high degree

fraction missing 0.025 0.05 0.075 0.10 0.125
1 6 2 1 0 0
2 6 5 1 0 0
3 12 2 0 0 0
4 13 2 1 0 0
5 9 4 0 0 0
6 6 3 3 0 0
7 9 6 1 0 0
8 7 5 0 0 0
9 6 5 0 0 0
10 6 1 0 0 0
11 6 3 0 0 0
12 9 0 1 0 0
13 6 5 0 1 0
14 5 3 1 0 0
15 6 4 1 1 0
16 11 1 2 1 0
17 4 3 0 2 0
18 9 3 0 0 0
19 7 2 0 0 0
20 7 0 0 0 0

p 0.300 0.118 0.024 0.008 0

95% Normal LCI 0.258 0.088 0.010 -0.000 0
95% Normal UCI 0.342 0.148 0.038 0.016 0

95% Binomial LCI 0.260 0.091 0.013 0.002 0
95% Binomial UCI 0.342 0.150 0.042 0.020 0

Removing arcs in this method is less sensitive than previous methods; p does not fall to 0 until

12.5% of the arcs are deleted. Unlike removing arcs between individuals of low degree, removing

some of the arcs incident to individuals of high degree does not do as much structural damage to

the network. Individuals of higher than average degree often have more relationships with other

individuals in the subgroup than necessary in order to form the 2-plexes. It is worth noting the

lower 95% normal lower confidence limit for 10% missing information is shown as -0.00. The number

is rounded up from -0.0023 and displayed as negative to contrast with the binary lower confidence
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limit which never falls below 0. Although the normal confidence interval is an approximation, the

fact that it includes 0 means at the α = 0.05 level, p is not statistically different from 0.
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Figure 44. p and 95% Binomial CI by fraction of missing arcs for RARHD

Figure 44 shows p and its 95% binomial confidence intervals as a function of the fraction of

missing arcs. Since the confidence limits are calculated using the binomial distribution, they are

not symmetric, though on a plot of this detail, they are not noticeably different from the normal

confidence limits, which are symmetric. p still drops dramatically after just 2.5% of the arcs missing,

though not as far as seen in Figures 41 and 43, the similar plots for Methods 1 and 2, respectively.

6.3.4 Random arc removal incident to liaison individuals (RARLI)

The fourth arc removal method examined is one in which only those arcs incident to nodes in

multiple subgroups are targeted for removal. Recall in the network under consideration (see Figure

38 on page 134), these liaison individuals are represented by nodes 4, 5, 11, and 15. A lack of

information on these arcs may occur when individuals who know they hold two subgroups together
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practice good operational security, for example. Even if these individuals are being targeted, they

may be able to keep some of their communications hidden.

Table 16 shows the data as well as some summary statistics for random arc removal. First the

number of networks with appropriate subgroups is shown for each of the twenty samples. A p, and

95% normal and binomial confidence intervals are then given for each level of fraction of arcs missing.

It can be seen that determination of the 2-plexes is more robust under this method of removing

arcs than any of the previous three methods. Even removal of 50% of the arcs produces a p > 0,

though barely. This is due to the fact that these liaison individuals have high degree in the network.

Removal of their incident arcs still leaves them well connected with the subgroups of which they are

members.

In Table 16, the fraction of missing arcs is shown only in increases of 0.05, not 0.025, as in the

previous three methods. This change in fraction missing is due to the number of level of fraction

missing required to test using this arc removal method.

The plot with the 95% binomial confidence intervals in Figure 45 shows the 0.025 fraction

iterative increase up to 0.50. It is interesting to note first that the value for p is not monotonically

decreasing after 0.35. The value of p0.375 > p0.350 and p0.425 > p0.40. However, the confidence

interval for p0.375 includes p0.350 (and vice versa); similarly, the confidence interval for p0.425 includes

p0.40(and vice versa). Therefore, this slight increase in the point estimator is not a concern. Also

of interest is the sharp decrease in p between 0.125 and 0.150.

6.4 Summary

This chapter has provided an introduction for understanding the impact of missing arcs on

the ability to determine appropriate subgroups in the network. Four arc removal methods were

shown to target specific random arcs: 1. any arc, 2. any arc connecting nodes of lower than average

degree, 3. any arc incident to a node of higher than average degree, and 4. any arc incident to nodes

in multiple subgroups (in the complete network). Then each of the four methods were analyzed

individually as a percentage of the arcs were removed. The percentage of arcs removed increased
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Figure 45. p and 95% Binomial CI by fraction of missing arcs for RARLI
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Table 16. RARLI: Data and statistics for arcs missing at random incident to nodes of
high degree

fraction missing 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
1 12 9 3 2 0 1 0 0 0 0
2 12 10 7 3 2 2 1 1 0 0
3 13 8 1 3 3 0 0 0 0 0
4 15 10 3 2 2 1 0 1 0 1
5 17 7 6 2 2 1 1 0 0 0
6 14 11 4 4 0 1 2 0 0 0
7 11 5 5 0 0 0 0 0 0 0
8 7 10 6 3 1 3 0 0 0 0
9 12 9 5 2 0 1 0 0 0 0
10 16 10 3 3 3 1 0 0 1 0
11 12 11 5 0 1 1 0 1 0 0
12 12 5 5 2 3 1 0 0 1 0
13 14 7 8 1 1 1 1 0 0 0
14 10 8 2 2 2 0 0 0 0 0
15 12 3 2 3 1 0 2 0 0 0
16 15 13 2 5 4 0 1 0 0 0
17 13 6 4 2 2 0 1 0 1 0
18 15 10 3 1 2 1 1 0 0 0
19 13 11 4 2 0 1 0 0 0 0
20 13 12 2 2 0 0 0 0 0 0

p 0.516 0.350 0.160 0.088 0.058 0.032 0.020 0.006 0.006 0.002

95% Nml LCI 0.470 0.306 0.126 0.062 0.036 0.016 0.007 -0.001 -0.001 -0.002
95% Nml UCI 0.562 0.394 0.194 0.114 0.080 0.048 0.033 0.013 0.013 0.006

95% Bin LCI 0.471 0.308 0.128 0.065 0.039 0.018 0.010 0.001 0.001 0.001
95% Bin UCI 0.561 0.394 0.195 0.116 0.082 0.052 0.036 0.017 0.017 0.011

incrementally by 2.5% until the point estimate for proportion of networks producing the appropriate

2-plexes was reduced to 0. Each of the runs of 500 networks determines a point estimate, p, as well

as 95% binomial and normal confidence intervals.

It was found that detection of the appropriate 2-plexes in the network examined in Section 5.2

was most robust under the fourth method of arc removal. p goes to 0 very quickly for the first

three methods (0.10, 0.075, and 0.125, respectively), but is still greater than 0 at 0.50 for the fourth

method. This is because the liaison individuals in the network examined have fairly high degree,

and removal of their incident arcs still leaves them well connected with their subgroups.

This chapter provides only an indication of what an analyst must consider when faced with a

network of imperfect information. The methods detailed in Chapter 3 and demonstrated in Chapters

4 and 5 of this thesis rely on being able to find appropriate subgroups for aggregation. While the work
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in missing information in this chapter provides insight about how quickly the subgroup detection

methods break down, it does not provide the analyst with information on how the outcome of the

aggregation techniques are affected. The actual amount of impact missing arcs has on subgroup

detection is scenario dependent.

149



Chapter 7 - Contributions, Limitations, and Future Research

7.1 Contributions

The main contribution of this thesis is in using aggregation to gain insight on structure and ac-

tivity in social networks. First, application of the subgroup detection methods provides information

on size, density, and structure of the subgroups. Whether the subgroups are distinct or overlapping

shows how integrated the subgroups are. These subgroups are not required to be pure cliques, which

are probably rare in practice. k-plexes were chosen as an appropriate relaxation of cliques, while

still allowing cohesiveness within a subgroup. Since these techniques allow the network structure

to have ovelapping cliques or distinct cliques, a wide variety of networks can be analyzed.

The node measures chosen to utilize the arc measures are degree and closeness centrality. These

are traditional node measures, used often in physical systems, but also applicable in social network

analysis as well. These two were chosen first for their ease of use and second for the fact that they

consider local and global properties, to provide a wider variety of information about the network.

Unless the available network data discounts the use of one of the measures, it is recommended to

use both in order to gain more information about the social network properties.

The combination of two subgroup types and node measures provides four areas for calculations.

Further, each of those four combinations, two sequences of analysis were detailed, used to examine

more subtle interactions within and between subgroups and individuals.

All of the aggregation in this thesis was performed in two sequences: 1. assign to each indi-

vidual a centrality node measure and then aggregate individuals into subgroups, and 2. aggregate

individuals into subgroups and then assign to each subgroup a centrality node measure. The first

gives an indication of network activity both within and between subgroups. The second, however,

shows only interactions between subgroups, offering more subtle indication of intergroup activity

that can be lost in the first aggregation. Therefore, it is recommended that analysis of aggregation

be performed in both sequences.
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For each of these eight combinations (two subgroup structures, two node measures, and two

orders of aggregation analysis), the calculations for the aggregation step are defined, along with

an interpretation of the measures. Robustness of aggregation order is also proven. All of these

techniques can be used on any additive measure, such as distance, time, speed, cost, length, etc.

This allows for analysis of social networks under many different conditions of structure and data

definition.

The exploration of incomplete information offers an introduction to how missing arc information

inhibits an analysts ability to detect appropriate subgroups. Since the aggregation methodology

rests on identification of these subgroups, the impact of detecting them incorrectly is a start of

imperfect information analysis.

7.2 Limitations

In general, this thesis does not offer a complete method for analysis of social networks; rather

it focuses on using aggregation for gaining insight into the network. Information on network

connectivity, cutsets, and susceptibility to attack, among others, are also necessary when performing

social network analysis.

One of the three properties of social networks was ignored during this research: high local

clustering. Though apparent in many social networks, it is not necessarily appropriate for many

groups of interest to the intelligence community, since these groups practice OPSEC by not allowing

individuals to become too close. Similarly, to keep one or a small number of subgroups unaware

of activities in the rest of the subgroup, the diameter can be larger than that typically found in

social networks. While the techniques in this thesis can be used on any social network, they were

demonstrated only on networks that are assumed to accurately model these groups of interest.

7.3 Future Research

The chapter on incomplete information offers only a place to begin analysis of such networks.

The next step, if following the research in this thesis, is to determine quantitatively how poor

identification of subgroups affects the two node measures and interpretation of network activity.
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The only piece of missing information examined is relationships. Unknown nodes or poor weighting

of arc measures can also be explored for their impact on the node measures.

The subgroup detection methods determine subgroups based solely on network structure. The

strength of relationship between individuals can also be used to determine appropriately cohesive

subgroups. The White and Harary paper examines cohesion and adhesion in social networks. The

two researchers provide a foundation for exploring how to fracture a network, and how the network

will split once a fracture occurs.

The research in this thesis considered only undirected networks of deterministic weight. Yan’s

paper (further detailed in Appendix A) offers methods to address both of these limitations. First, he

defines fuzzy cliques which relaxes the pure clique concept to find an appropriate structure in directed

networks. Then, he introduces the concept of using fuzzy numbers, as intervals or distributions,

as arc weights. This may be appropriate when some strength of relationship is known, but not

definitively. It is beneficial to use whatever information is known about a network, and not be

reduced to using unity weights if possible.

The two node measures were chosen to display one local and one global property of networks.

Many other node measures and network performance measures can be used to gain insight into

network activity. These can be further explored using aggregation to show subgroup interactions

under the measure chosen.

The closeness centrality node measure considers how quickly information and materiel can be

disseminated through the network. Percolation theory offers a rigorous mathematical basis on which

this idea can be expanded.

7.4 Conclusion

The research in this thesis can be used by an analyst as an aid to understand levels of activity

in a social network. Though it does not require the analyst to have any information other than

the hypothesized structure of the network, any outside information the analyst has on individual or

subgroup relationships can be used to obtain a more robust model of the network.
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APPENDIX A - Clique Detection on Directed Networks

This appendix offers an example for implementation of Yan’s fuzzy clique detection algorithm,

introduced in the Fuzzy Cliques section of Chapter 2. This method is appropriate for directed

networks, since traditional cliques definitions are appropriate only for undirected networks. This

example demonstrates not only how to find fuzzy cliques, but also calculates several measures of

interest on the arcs and nodes of the network.

Recall the definition (Yan, 1988: 378):

“A fuzzy clique is defined as a maximum strongly connected node subgroup in which each
node is connected to all the others directly or indirectly, regardless of the number of inter-
mediate nodes. The core members are those nodes whose distances to and from all clique
members are less than or equal to a given fuzzy or non-fuzzy number D.”
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Figure 46. Disaggregated notional directed network
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The notional network in Figure 46 will be used to demonstrate the process of finding fuzzy

cliques as well as assigning several measures Yan has also defined. The adjacency matrix and matrix

of arc weights for Figure 46 are as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 5 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
0 2 0 3 0 0 0 0 0 0
0 0 0 0 5 1 3 0 0 0
0 0 0 0 0 2 7 0 0 0
0 0 0 3 2 0 4 0 0 0
0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 3 0 0 1
0 0 0 4 0 0 0 6 0 0
0 0 0 0 0 0 0 2 5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Following Yan’s clique detection algorithm, the network can be partitioned into maximal con-

nected subgraphs who union is the entire network. For this network, the following three sets of

nodes are each maximal connected subgraphs, and together they make up the entire network.

C1 = {1, 2, 3}

C2 = {4, 5, 6, 7}

C3 = {8, 9, 10}

Several measures can now be defined on the network:

1. membership value of each node: a measure of a node’s value within its own clique

2. node-clique coefficient: a measure of a node’s relationship to a clique of which it is not a
member

3. clique-clique coefficient: a measure of relationship between two (possibly aggregated) cliques

A.1 Membership Value of Each Node

Yan defines the membership value to be P P where P is the number of nodes in the clique

whose distance from the member is less than D and P is the number of members in the clique (Yan,

1988: 378). To accomplish this, some threshold number D must be chosen. For each clique, this

example chooses D to be the average of the edge weights wholly within the clique.

Let DCi =
(i,j)∈ACi

ai,j |ACi | be the threshold for clique Ci i = 1, 2, 3 ACi is the set

of edges wholly contained within Ci
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DC1 = (3 + 2 + 5) 3 =
10

3

DC2 = (5 + 3 + 7 + 1 + 3 + 5 + 4 + 2 + 2) 9 =
32

9

DC3 = (5 + 6 + 2 + 1) 4 =
14

4

Let Mi be the membership value for node i

i Mi

1 0
2 1

3

3 1
3

4 3
4

5 1
4

6 1
2

7 1
2

8 1
3

9 0
10 1

3

A.2 Node-Clique Coefficient

This number provides a measure of how closely related a node is to a clique of which it is not

a member.

Yan’s measure for this relationship for a clique C and a node N is:

K(C,N) =
i∈C
Qi=0

1

Qi
|C|

where Qi is the directed distance from node N (not in C) to every node i ∈ C (or vice versa)

Below are a sample of some node-clique connections:
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K(C1, 4) =
1
8
+ 1

11
+ 1

3

3
=
145

792
≈ 0.183

K(C3, 4) =
1
4
+ 1

10
+ 1

9

3
=
83

540
≈ 0.154

K(C3, 6) =
1
5
+ 1

7
+ 1

9

3
=
143

945
≈ 0.151

K(C3, 7) =
1
7
+ 1

3
+ 1

5

3
=
71

315
≈ 0.225

This implies that the relationship of node 7 with fuzzy clique C3 is the strongest of the four

node-clique pairs chosen. In fact, node 6’s relationship with the fuzzy clique C3 is much weaker than

7s (as evidenced by K(C3, 6) ≈ 0.151). Note that this measure shows a directed relationship from

the fuzzy clique to the individual node. Thus, the implication is that C3 is in some way “closer” to

node 7 than node 6. This seems clear when looking at the network.

A.3 Clique-Clique Coefficient

Perhaps most critical when aggregation is important, since this measure offers a relationship

between cliques. This can be used in an aggregated network as an edge weight between cliques.

Yan’s clique-clique measure is

J(C1, C2) =
i∈C1 j∈C2

Qi,j=0

1

Qi,j
|C1||C2|

where Qi,j is the directed distance from node i ∈ C1 to j ∈ C2 (or vice versa)

The clique-clique measures for this example network are as follows:

J(C1, C2) =
1

8
+
1

11
+
1

9
+
1

11
+
1

11
+
1

14
+
1

12
+
1

14
+
1

3
+
1

6
+
1

4
+
1

6
12 =

9157

66528
≈ 0.138

J(C1, C3) = 0

J(C2, C3) =
1

7
+
1

4
+
1

5
+
1

7
+
1

5
+
1

9
+
1

10
+
1

7
+
1

3
+
1

8
+
1

10
+
1

10
12 =

4909

30240
≈ 0.162
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Again, this measure shows the directed membership from one fuzzy clique to another, since the

relationship can only go one way between fuzzy cliques. J(C1, C3) = 0, since it is impossible for

anything to flow from either C1 to C3 or C3 to C1. In this notional example, the relationships flow

from C1 and C3 to C2. C3 has the stronger relationship with C2 than C1 does. If, for example,

the arc weights represent influence, then the clique-clique measures as defined indicate that C3 has

a greater ability to influence C2 than C1 does.

The aggregated network based on these measures is shown in Figure 47.

Figure 47. Aggregated directed network with clique-clique measures
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APPENDIX B - Building Social Networks

None of the techniques described in this thesis can be used without a social network for analysis.

Chapter 4 demonstrates the techniques on notional social networks of complete information using a

method developed in this section, which provides a method for building social networks appropriate

for modelling terrorist social networks. In general, the three properties required for social networks

are:

1. small average diameter

2. high local clustering

3. the node degree distribution follows the power law

As previously discussed, the second property is not necessarily appropriate for hostile networks,

since operational security measures often keep individuals apart who would otherwise exhibit local

clustering behavior.

The method for building these networks begins by determining a node degree distribution for

the network. The power law distribution is an inverse log-linear relationship between the degree

and number of nodes of that degree. The total number of nodes, |V |, the slope of that linear

relationship, m, and the degree of the node with the highest degree (the y intercept), b, are user

inputs. The nodes are numbered 1 through |V |, and each node, i, is assigned a degree equal to

e−m ln(i)+b . This produces a monotonically decreasing degree distribution, where node 1 has the

highest degree, b, and node |V | has the lowest degree e−m ln(|V |)+b .

B.1 Method for generating social networks

Let |V | be the number of nodes, m be the slope of the linear relationship (this determines the

network density), b be the greatest node degree in the network (degree of node 1)

for i = 1 : |V |

degree(i) = e−m ln(i)+b

for j = i+ 1 : |V |

if i and j do not yet have their full degree, then A(i, j) = A(j, i) = 1
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end

end

B.2 How to vary m and b and what they represent:

It is first necessary to understand the function which determines the degree distribution. As

previously described, the power law used here states that the natural log of the number of nodes

of a given degree is inversely linearly proportional to the natural log of the degree of the network.

This linear relationship has a negative slope, since more people in the network have lower degree,

while a small number of people have a high degree. The function is ln(deg(i)) = −m ln(i)+ b where

deg(i) is the degree of node i, and (i) is the index of the node in the network.

The multiplier, m, is the slope of the function. Keeping b constant, as m increases the slope of

the function becomes steeper. This means that a relatively large m defines a degree distribution in

which an increasingly small number of nodes have higher degree, and most nodes have small degree.

Even when b is quite large, m = 3 yields only two nodes of degree greater than 1. When the degree

distribution shows many nodes of degree 1, this tends to produce pairs of nodes connected to each

other, but disconnected from the rest of the network. As m gets smaller, the slope of the function

becomes shallower. Thus very few nodes have small degree, and there is not much gradation in the

degree. Again, even when b is large, m = 0.8 has no nodes of degree 1.

The intercept, b, determines the degree of the node of highest degree. This affects the degree

of all other nodes, since they must follow the power law function described in Section 3.5. b is

chosen to be the natural log of the degree of the node having highest degree. Holding m constant,

a large b provides a wider range of degrees for the vertices. Since b controls the highest degree in

the network, a small b produces a network in which there is not much variance in the degrees.

B.3 Properties of Social Networks:

Before using these networks as examples of social networks, it is necessary to show that this

method does actually produce networks that possess the properties necessary for modeling terrorist
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networks. Small average diameter, high local clustering, and power law degree distribution on the

nodes are examined in this section.

B.3.1 Small Diameter

Let dij be the shortest path between vertices i and j. The small diameter property requires

max
i,j∈A

dij be small. This will be shown for m = 1 and m > 1. It is not necessarily true for m < 1.

B.3.1.1 Suppose m = 1 Recall the degree of a node, i, is equal to e−m ln(i)+b . A node

has degree 1 if

e−m ln(i)+b < 1

−m ln(i) + b < ln(1)

The first indexed node with degree < 1 is:

min
i
{−m ln(i) + b < 0}

−m ln(i) + b < 0

−m ln(i) < −b

ln(i) >
b

m

i > e
b
m

The minimum indexed node, i, which satisfies this equation is i = e
b
m . Now consider the node of

highest degree. Its degree is

e−m ln(1)+b = eb

The first node of degree 1 is eb , and the degree of node 1 is also eb . Since the method makes

node j adjacent with the smallest indexed node possible, node 1 is adjacent to nodes 2, 3, · · · , i,

i + 1, where i is the first node of degree 1. This means every vertex j such that degree(j) > 1 is

adjacent to node 1, making every pair of nodes with degree greater than 1 only a path of length 2
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apart. Nodes of degree 1 are either adjacent to another vertex of degree 1 or a vertex with degree

greater than 1.

First consider two nodes of degree 1 adjacent. Then they form a disconnected arc from the

remainder of the network. The analysis of the subgroup detection and aggregation techniques

developed in this chapter uses only the large component from this network. These disconnected

components will be removed from the network. There are, however, situations when this method

can be used to build social networks where the disconnected components are appropriate in the

network structure. Disconnected components can be an indication of missing information, pointing

intelligence analysts to a place to allocate more resources. These smaller components can represent

sleeper cells that are unconnected at one point in the analysis. If further analysis shows disconnected

components forming relationships with the larger component, or among themselves, then this could

omen increased communication and future actions.

Consider now two nodes of degree 1 that are not adjacent, where neither is part of a disconnected

component on two nodes. They must be connected to each other through the large component,

through nodes of degree greater than 1. Since it has been shown that any pair of nodes of degree

greater than 1 are at most a path of length 2 apart, then the nodes of degree 1 must be at most a

path of length 4 apart.

B.3.1.2 Suppose m > 1 Then the first node of degree 1 is e
b
m < eb , since e is a

monotonically increasing function. As described in the previous case, every vertex of degree >1 is

adjacent to node 1, thus making them at most a path of length 2 apart. Then vertices of degree

one adjacent to a vertex of degree >1 is of distance at most 4 away from every other vertex in the

large component. When b is small, however, there are many vertices of degree 1 adjacent to each

other. This makes for a sparse, disconnected network.

B.3.1.3 Suppose m < 1 There is no guarantee that a network built withm < 1 as an input

parameter will have a small diameter. The choice of b determines the size of the largest component;
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a large b ensures the cliques and near cliques produced are connected through a small number of

arcs. However, the diameter can become increasingly large, as the clique or near clique containing

node 1 can be arbitrarily far from the near clique containing |V |. If a small m is desired to obtain

a sufficiently dense social network, then it may be necessary to make multiple small networks and

connect them together into a united whole.

B.3.2 High local clustering

High local clustering is evident when two nodes, j and k, adjacent to a node i are also adjacent

themselves. A network built with small m will exhibit this property, since the variation in degree

of the nodes is not large, especially as b decreases. However, in terrorist networks, many members

are kept purposefully ignorant of one another for security reasons. Thus, high local clustering is

not necessary or even appropriate for terrorist networks.

B.3.3 Power law vertex degree distribution

It has been shown in social networks having perfect information that the degree distribution

must follow the power law, as described in the section explaining the impact of varying m and b,

Section 3.5.2. This method, by design, gives the networks a vertex degree distribution that follows

the power law.

B.4 Demonstration of Method

The two examples shown in this appendix demonstrate different structures the method can

generate. The first is denser, connected, and shows two, possibly three interconnected subgroups.

The second is not connected and less dense, as many of the nodes have degree 1. This can represent

a subgroup where node 1 is a recruiter and nodes 2-7 are people who have recently been brought

into the network. Furthermore, the disconnected component, nodes 8 and 9, may indicate missing

information or erroneous data.

B.4.1 Example 1

n = 10; b = 7; m = 0.35
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This produces a network on 10 nodes, where the node of greatest degree has degree 7, and is

fairly dense (indicated by a low m value)

Figure 48. Example Social Network 1

B.4.2 Example 2

n = 10; b = 6; m = 1

This produces a network on 10 nodes, in which the node of highest degree has degree 6, and

is considerably less dense than the one in Example 1. Note that there is an edge connecting two

vertices of degree 1 that are disconnected from the large component. In such an example, it may

be appropriate to discard the smaller component, if the analysis is concerned only with connected

networks. However, this may be used to represent two subgroups that are unaware of each other,

or simulate missing information.
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Figure 49. Example Social Network 2
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APPENDIX C - Jema’ah Islamiyah Names and Sources

C.1 JI names by numbered index

1 Abdullah Sungkar (see Abu Bakar Baasyir)

3 Abdul Wahid Kadungga

4 Abu Bakar Baasyir (or Bashir or Ba’asyir) (see Abdullah Sungkar)

9 Agus

10 Ali Gufron (alias Muchlas) (alias Huda bin Abdul Haq)

11 Ali Imron

12 Amin

13 Amrozi

16 (Dr) Azahari

18 Ending Isomudin

19 Eni Maryani

20 Faiz bin Abu Bakar Bafana

24 Fuad Amsyari

27 Hambali (also called Riduan Isamuddin or Ensep Nurjaman)

36 Khalid Almihdhar

37 Mike

42 Mohammed Iqbal A Rahman (or Abdurrahman) (also called Abu Jibril) (also called Fikirud-

din Muqti)

46 Nasir Abbas

47 Nawaf Alhazmi

48 Noordin Mohammed Top (or Thob)

49 Nur Fitrotullah

53 Rauf

54 Samudra (Imam) — Abdul Aziz, Kudama, Abu Omar, Faiz Yunshar
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55 Sammy

57 Sumarno

61 Wan Min bin Wan Mat

63 Yazid Sufaat

64 Yudi

65 Zacarias Moussaoui

66 Zulkarnaen al Arif Sunarso al Daud

67 Zulkifli Marzuki

C.2 Sources of Information on JI relationships

• Source: ABC News Online
http://abc.net.au/news/indepth/featureitems/s737774.htm

• Source: The Age
http://www.theage.com.au/articles/2003/02/10/1044725712936.html
http://www.theage.com.au/articles/2003/02/04/1044122333063.html

• Source: Asia Times
http://www.atimes.com/se-asia/DB06Ae01.html

• Source: Associated Press
http://abcnews.go.com/wire/World/ap20021013_556.html

• Source: BBC
http://news.bbc.co.uk/2/hi/asia-pacific/1844871.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2284645.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2339693.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2346225.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2385323.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2542863.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2602747.stm

• Source: Brunei Direct
http://www.brudirect.com/DailyInfo/News/Archive/Dec02/211202/wn06.htm

• Source: Christian Science Monitor
http://www.csmonitor.com/2002/0212/p06s02-wosc.html

• Source: Crisis web
http://www.crisisweb.org/projects/showreport.cfm?reportid=845

• Source: FAS
http://www.fas.org/irp/world/para/ji.htm

• Source: Feral News
http://www.feralnews.com/issues/bali/pastika_case_summary_0301.html

• Source: Gulf News
http://www.gulf-news.com/Articles/news.asp?ArticleID=80591
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• Source: Herald Sun Australia
http://heraldsun.news.com.au/common/story_page/0,5478,5627306%255E401,00.html

• Source: HindustanTimes.com
http://www.hindustantimes.com/news/181_239371,00050004.htm

• Source: HM Treasury, 24 October 2002
http://www.britain-
info.org/asia/xq/asp/SarticleType.1/Article_ID.2771/qx/articles_show.htm

• Source: ICG
http://www.crisisweb.org/projects/asia/indonesia/reports/A400845_11122002.pdf
http://www.asia-pacific-
action.org/southeastasia/indonesia/resources/reports/igc%20report%20on%20ji.htmv
http://www.intl-crisis-
group.org/projects/asia/indonesia/reports/A400845_11122002.pdf

• Source: intellnet
http://www.intellnet.org/news/2003/01/28/15915-1.html

• Source: LA Times
http://www.latimes.com/news/nationworld/world/la-fg-
bali30jan30,0,3649555.story?coll=la%2Dheadlines%2Dworld

• Source: MSNBC
http://www.msnbc.com/modules/wtc/wtc_globaldragnet/custody_malaysia.htm

• Source: Nanyang Tech University, Singapore
http://www.ntu.edu.sg/idss/Perspective/research_050221.htm

• Source: NEWS.com.au
http://news.com.au/common/story_page/0,4057,6287121%255E2,00.html

• Source: Reuters
http://www.singapore-window.org/sw02/021108re.htm
http://news.lycosasia.com/SGEN/290,697,4.asp
http://www.alertnet.org/thenews/newsdesk/JAK314622.htm

• Source: Sydney Morning Herald
http://www.smh.com.au/articles/2003/01/26/1043533953389.html
http://www.smh.com.au/articles/2003/02/03/1044122322016.html

• Source: TEMPO Interactive
http://www.tempo.co.id/news/2003/1/2/1,1,5,uk.html

• Source: U.S. Embassy, Jakarta
http://www.usembassyjakarta.org/terrorism/2-JIterrorist.html

• http://www.buckyogi.addr.com/footnotes/natgj.htm#indoisl
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