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FOREWORD 
 
Any high level of skill depends on both conceptual (explicit) and subconceptual (experiential or 
implicit) knowledge. However, experts are often only aware of their explicit conceptual 
knowledge.   Experientially acquired implicit knowledge is more akin to pattern recognition.   
For example, when you recognize a friend’s face, you instantly know who the person is, but you 
may not be aware of what cues or features are being used to recognize him/her.  This lack of 
awareness of essential implicit experiential knowledge creates serious challenges for training and 
learning in the military as well as civilian context.  The purpose of this document is to describe 
the work on one U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) 
research project that seeks to understand how implicitly acquired knowledge from experience 
interacts with explicitly acquired knowledge (mental models) leading to better computational 
theory/models of human learning.  This research incorporated both experimental and theoretical 
work, culminating in the refinement of the CLARION computational model of implicit and 
explicit learning. 
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EXPLORING THE INTERACTION OF IMPLICIT AND EXPLICIT PROCESSES TO 
FACILITATE INDIVIDUAL SKILL LEARNING  

 
 

EXECUTIVE SUMMARY 
 
Research Requirement: 
 

Improving the speed and quality of training in complex skills continues to be a major 
need in the military.  A basic problem for the Army is how to ensure that novices in a Military 
Occupational Specialty (MOS) move quickly to more advanced performance (and perhaps to 
expertise) as a result of their training.  In addition, most training focuses on teaching conceptual 
(explicit) knowledge rather than setting up the opportunity for substantial experiential (implicit) 
knowledge.  While this may be appropriate for some specialties, some other specialties involve 
working with complex systems that are better learned initially through extensive experience 
(implicit learning) than with lectures or textbook lessons (explicit learning). In many situations it 
is not clear what is the optimal mix of implicit (hands-on) training methods and explicit 
instructions.  The particular mix of training not only affects acquired level of expertise, but also 
the relative speed and accuracy of decisions involved in performing a complex skill. 
 
Procedure: 
 
 Two series of experiments were conducted in two different task domains:  process control 
and artificial grammar learning.  Both tasks involve learning a system that operates according to 
complex, difficult-to-learn rules.   Laboratory experiments using college students as subjects 
were conducted.    
 The process control task involved learning to control the temperature of a simulated 
nuclear reactor by controlling the number of fuel pellets.  The appropriate number of pellets to 
use depended on the current temperature of the reactor, sometimes creating counterintuitive 
situations where increasing the number of fuel pellets decreases temperature.  Also, a noise 
element was included in the formula making the results somewhat uncertain over trials.  This 
task is known to be difficult to learn and difficult to explain how one accomplishes the task when 
it is learned. 
 In the artificial grammar experiments, participants learned to generate poison can labels 
on a computer simulation of a starship that had been invaded by enemy agents.  Identification of 
poison food labels requires learning to identify sequences of letters generated by a finite state 
grammar.  Training for this task in different experiments included memorizing a diagram of the 
grammar (explicit training), memorizing cases (implicit training), or an integrated (implicit and 
explicit) training that involves tracing cases through the grammar diagram.   

A computational cognitive architecture, CLARION, markedly different from other 
existing cognitive architectures, is developed in this work to capture a range of quantitative data 
related to the interaction of implicit and explicit learning. We carry out simulation experiments 
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in the domains of process control tasks, artificial grammar learning tasks, as well as many other 
tasks, further explicating the interaction between implicit and explicit processes.  
 
Findings: 
 

• With only one type of training we found slow but accurate responding when explicitly 
trained, and fast but less accurate responding when implicitly trained. 

• Integrating or mixing types of training generally produced more accurate performance 
than implicit training and faster performance than strict explicit training. 

• When exposed to both types of training, participants showed a tendency to prefer using 
the implicit mode to perform the task. 

• In the case of strict explicit followed by implicit training (a pattern that is common in 
many training situations, e.g., explicit schooling followed by field training) we noticed a 
loss of accuracy as learners shifted toward the implicit mode after training. 

• We were able to obtain the best of both worlds—fast and accurate responding—by 
incorporating an animated version of the task constraints (a diagram of the grammar) that 
indicated how current exemplars fit into the model during practice. 

• In the process control domain, reflection during task performance interferes with 
learning. 

• However, reflection following short periods of practice can be beneficial early in 
learning. 

• Implicitly acquired knowledge can be much more flexible than existing research 
suspected. 

• There are large individual differences in the ability to learn the process control task.  
Potentially, we can facilitate learning in these “failing” participants by instructing them 
on what to focus on when they reflect.  

• A simple hint consisting of providing three correct responses to particular task situations 
greatly increased learning.  

• We think training can be accelerated and this post-training drop eliminated by using the 
explicit conceptual knowledge to prime rather than compete with implicit learning. 

 
 
Utilization of Findings: 
 

These findings can be used to develop training principles that enhance training and lead 
to fast accurate decisions. 
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Exploring the Interaction of Implicit and Explicit Processes to  
Facilitate Individual Skill Learning 

 
In the skill acquisition literature, the role of implicit learning in skill acquisition and the 

distinction between implicit and explicit learning have been recognized. However, although 
implicit learning has been actively investigated, the interaction between the implicit and the 
explicit has not been sufficiently explored.  Research has been focused on showing the lack of 
explicit learning in various learning settings.  Similar oversight is also evident in most 
computational simulation models of implicit learning. Despite the lack of studies of interaction, 
there is mounting evidence that it is difficult to find a situation in which only one type of 
learning is engaged.  Our review of existing data (Sun 2002) indicated that in most situations, 
both types of learning are involved, with varying amounts of contributions from each.  
Therefore, in this research, we focus on studying the interaction between implicit and explicit 
processes in skill acquisition and how this interaction may be used to enhance training. 

In this report, we first present a simulation examination of process control data, which led 
to some interesting initial hypotheses concerning implicit vs. explicit processes, which 
necessitated validation with human experiments. Specifically, the simulation explicates the 
interaction between the implicit and explicit learning processes in skill acquisition and highlights 
the interaction between the two types of processes and its various effects on learning (including 
the synergy effect).  This simulation utilizes an integrated model (named CLARION) of skill 
learning that takes into account both implicit and explicit processes; moreover, it embodies a 
bottom-up approach (first learning implicit knowledge and then explicit knowledge on its basis) 
towards skill learning.  The simulation shows that this approach accounts for various effects in 
the process control task data that have previously reported in the literature. Now the question is 
how we verify the chief hypothesis of this simulation:  The interaction between implicit and 
explicit knowledge is the key to understanding and enhancing human skill learning.  In the 
sections that follow this simulation section, we address this question, chiefly through human 
experiments. 
               To explore the above hypothesis, two series of human experiments were conducted in 
two different task domains:  process control and artificial grammar learning.  Both tasks involve 
learning to control a system that operates according to complex, difficult-to-learn rules. 

  The process control task involved learning to control the temperature of a simulated 
nuclear reactor by controlling the number of fuel pellets.  The appropriate number of pellets to 
use depended on the current temperature of the reactor, sometimes creating counterintuitive 
situations where increasing the number of fuel pellets decreases temperature. A noise element 
was included in the formula making the results somewhat uncertain over trials.  This task is 
known to be difficult to learn and difficult to explain how one accomplishes the task when it is 
learned. In the process control experiments, we found that concurrent explicit reflection during 
practice either hindered learning the task or had no effect, even when solid hints were provided 
about what to look for while reflecting.  The data seemed to suggest “just doing it” during 
practice was best, with some facilitation in learning through reflection after sessions of practice. 
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Then, to further validate our hypotheses from the process control domain concerning skill 
learning involving both implicit and explicit processes and their interaction, we extend our 
studies to another domain---artificial grammar learning. In the artificial grammar experiments, 
participants learned to generate poison can labels on a computer simulation of a starship that had 
been invaded by enemy agents.  Identification of poison food labels requires learning to identify 
sequences of letters generated by a finite state grammar. The findings in this domain confirmed 
our earlier hypotheses. 

A computational cognitive architecture, CLARION, has been developed in this work to 
capture a range of data related to the interaction of implicit and explicit learning in the process 
control and artificial grammar domains. Simulation experiments have been carried out to further 
explore the interaction between implicit and explicit processes.  
          The work described in this report advances basic research in the areas of learning and 
cognition.  One product of this effort is a conceptual framework, which addresses the ways these 
two types of knowledge interact to produce expertise.  This framework (the CLARION cognitive 
architecture) suggests that human performance may be controlled by either a subconceptual 
knowledge base (the implicit mode) or application of a symbolic conceptual mental model (the 
explicit mode).  Implicit control is fast but prone to error, particularly in early levels of skill 
acquisition.  Explicit control is more accurate but slow to apply, and prone to loss by forgetting 
over a retention interval.  We have found that reflection about how one is performing the task 
can be beneficial following periods of practice.  However, it is often even more effective when 
learners are provided hints that direct their reflection in productive directions. These are 
important findings that advance our understanding of the interaction of the two types of 
knowledge. The computational cognitive architecture, CLARION, helps us to capture and 
explain (and eventually to predict) training and learning processes. 

In the remainder of this report, the first section describes the initial simulation of process 
control data mentioned above. The next three sections report on the three human experiments on 
the process control task (as mentioned above). The five sections that follow report on the five 
human experiments on the artificial grammar task, as well as simulations. A general discussion 
section follows. Finally, a summary and conclusion section highlights a few important points and 
completes this report.
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Modeling the Interaction of Explicit and Implicit Learning 
 

In this section, a simulation examination of process control data is presented, which leads 
to some interesting hypotheses.  

Specifically, the work reported in this section explicates the interaction between implicit 
and explicit learning processes in skill acquisition, contrary to the common tendency in the 
literature of studying each type of learning in isolation.  It highlights the interaction between the 
two types of processes and its various effects on learning, including the synergy effect.  This 
work advocates an integrated model of skill learning that takes into account both implicit and 
explicit processes; moreover, it embodies a bottom-up approach (first learning implicit 
knowledge and then explicit knowledge on its basis) towards skill learning.  The simulation that 
follows shows that this approach accounts for various effects in the process control task data that 
have previously been reported in the literature (in addition to accounting for other human data, as 
described elsewhere). Notably, the simulation led to further human experimental work to be 
reported in the next eight sections, for testing and validating our ideas and hypotheses. The 
computational simulation generates these hypotheses concerning implicit vs. explicit processes, 
which necessitate validation with human experiments (to be described later in this report). 
 
Introduction 
 

The role of implicit learning in skill acquisition and the distinction between implicit and 
explicit learning have been widely recognized in recent years (see, e.g., Reber 1989, Stanley et al 
1989, Willingham et al 1989, Proctor and Dutta 1995, Anderson 1993).  Although implicit 
learning has been actively investigated, complex and multifaceted interaction between the 
implicit and the explicit and the  importance  of  this  interaction  have  not  been  universally  
recognized;  to  a large extent, such interactions have been downplayed or ignored, with only a 
few notable exceptions.   Research has been focused on showing the lack of explicit learning in 
various learning settings (see especially Lewicki et al 1987) and on the controversies stemming 
from such claims.  Similar oversight is also evident in computational simulation models of 
implicit learning  (with few exceptions such as Cleeremans 1994). 
     Despite the lack of studies of interaction, there is increasing recognition that it is 
difficult, if not impossible, to find a situation in which only one type of learning is engaged 
(Reber 1989, Seger 1994, but see Lewicki et al 1987).  Our review  of  existing  data  (see  Sun  
et  al  2001)  has  indicated  that,  while  one  can manipulate conditions to emphasize one or the 
other type,  in most situations, both types of learning are involved, with varying amounts of 
contributions from each  (see,  e.g.,  Sun  et  al  2001;  Stanley  et  al  1989,  Willingham  et  al 
1989). 
  Likewise, in the development of cognitive architectures (e.g., Rosenbloom et al 1993, 
Anderson 1993), the distinction between procedural and declarative knowledge has been 
proposed for a long time, and advocated or adopted by many in the field (see especially 
Anderson 1993).  The distinction maps roughly onto the distinction between the explicit and 
implicit knowledge, because  procedural knowledge is generally inaccessible while declarative 
knowledge is generally accessible and thus explicit.  However, in work on cognitive 
architectures, focus has  been  almost  exclusively  on  "top-down"  models  (that  is,  learning  
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first  explicit  knowledge  and  then  implicit  knowledge  on  the  basis  of  the  former),  the 
bottom-up direction (that is, learning first implicit knowledge and then explicit knowledge, or 
learning both in parallel) has been largely ignored, paralleling and reflecting the related neglect 
of the interaction of explicit and implicit processes in the skill learning literature.  However, 
there are a few scattered pieces of work that did demonstrate the parallel development of the two 
types of knowledge or the extraction of  explicit  knowledge  from  implicit  knowledge  (e.g.,  
Rabinowitz and  Goldberg  1995,  Willingham  et  al  1989,  Stanley  et  al  1989),  contrary  to 
usual top-down approaches in developing cognitive architectures. 

Many issues arise with regard to the interaction between implicit and explicit processes: 
(1) How  can  we  best  capture  implicit  and  explicit  processes computationally?   (2) How do 
the two types of knowledge develop along side each other and influence each other's 
development?  (3) How is bottom-up learning possible and how can it be realized 
computationally?  (4) How do the two types of knowledge interact during skilled performance 
and what is the impact of that interaction on performance?  For example, the synergy of the two 
may be produced, as in Sun et al (2001).  In the work described below, we will focus on the 
interaction and the synergy resulting from the interaction.  The chief hypothesis of this work is 
the interaction between implicit and explicit knowledge is the key to understanding human skill 
learning. 

 
An Integrative Model 
 
 Let us look into a model that incorporates both implicit and explicit processes.   

 
Representation.  The inaccessible nature of implicit knowledge may be captured by 

subsymbolic distributed representations provided by a backpropagation network (Rumelhart et al 
1986).  This is because representational units in a distributed representation are capable of 
accomplishing tasks but are subsymbolic and generally not individually meaningful (see 
Rumelhart et al 1986, Sun 1995); that is,  they  generally  do  not  have  an  associated  semantic  
label.  This characteristic of distributed representation accords well with the inaccessibility of 
implicit knowledge.   (However, it is generally not the case that distributed representations are 
not accessible at all but they are definitely less accessible, not as direct and immediate as localist 
representations.  Distributed representations may be accessed through indirect, transformational 
processes.)  In  contrast, explicit  knowledge  may  be  captured  in computational  modeling  by  
a  symbolic  or  localist  representations  (Clark  and Karmiloff-Smith 1993), in which each unit 
is easily interpretable and has a clear conceptual  meaning,  i.e.,  a  semantic  label.   This 
characteristic captures the property of explicit knowledge being accessible and manipulable  
(Smolensky, 1988, Sun 1995).   This radical difference in the representations of the two types of 
knowledge leads to a two-level model CLARION (which stands for Connectionist Learning with 
Adaptive Rule Induction ON-line; proposed in Sun 1997), whereby each level using one kind of 
representation captures one corresponding type of process (either implicit or explicit).  Sun  
(1995,  1997, 2002),  and  Smolensky  (1988)  contain  more  theoretical  arguments  for  such 
two-level models (which we will not get into here). 
  Learning.  The learning of implicit action-centered knowledge at the bottom level can be 
done in a variety of ways consistent with the nature of distributed representations.  In the 
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learning settings where correct input/output mappings are available, straight backpropagation  (a  
supervised  learning  algorithm)  can be used for the network (Rumelhart et al 1986).  Such 
supervised learning procedures require the a priori determination of a uniquely correct output for 
each input.   In the  learning  settings  where  there  is  no  input/output  mapping  externally  
provided,  reinforcement  learning  can  be  used  (Watkins  1989),  especially Q-learning 
(Watkins 1989) implemented using backpropagation networks. Such learning methods are 
cognitively justified:  e.g., Shanks (1993) showed that human instrumental conditioning (a 
simple type of skill learning) was best captured by associative models (i.e.,  neural networks),  
when compared with a variety of rule-based models.  Cleeremans (1997) argued that implicit 
learning could not be captured by symbolic models. 
  Specifically, Q(x; a) is the "quality value" of action a in state x, output from a  
backpropagation  network.   Actions can be selected based on Q values, for example, using the 
Boltzmann distribution (Watkins 1989).  We learn the Q value function through Q-learning, 
commonly used reinforcement learning algorithm (Watkins 1989).  Q(x; a)  provides  the  error  
signal  needed  by  the  backpropagation  algorithm  and  then  backpropagation  takes  place 
(Rumelhart et al 1986).   
 The action-centered explicit knowledge at the top level can also be learned in a variety of 
ways in accordance with the localist representations used.  Because of  the  representational  
characteristics,  one-shot  learning  based  on  hypothesis testing  (Nosofsky  et  al  1994,  Sun  
1997)  is  needed.   With such learning, individuals explore the world, and dynamically acquire 
representations and modify them as needed, reflecting the dynamic (on-going) nature of skill 
learning (Sun, 1997; Sun et al 2001).  The implicit knowledge already acquired in the bottom 
level can be utilized in learning explicit knowledge (through bottom-up learning; Sun et al 2001). 
 Initially,  we  hypothesize  rules  of  a  certain  form  to  be  tested  (Dienes  and Fahey 
1995, Nosofsky et al 1994).  When a measure of a rule (the IG measure) falls below the deletion 
threshold, we delete the rule.  Whenever all the rules of a  certain  form  are  deleted,  a  new  set  
of  rules  of  a  different  form  are  hypothesized, and the cycle repeats itself.  In hypothesizing 
rules, we progress from the simplest rule form to the most complex,  in the order as shown in 
Figure 1,  in accordance  with  those  numerical  relations  used  in  human  experiments  (Berry 
and Broadbent 1988, Stanley et al 1989).  (Other rule forms can be easily added to the hypothesis 
testing process.  Since rules are tested in a parallel fashion, adding more rules will not drastically 
change the working of the model.) 
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P  = aW + b 
P  = aW1 + b 
P  = aW + cP1 
P  = aW1 + bP2 
 
Figure 1   
The order of rules to be tested. a  =  1; 2,  b  =  -1; -2; 0; 1; 2,  c  = -1; -2; 1; 2,  P  is  the  
desired  system  output  level  (the  goal),  W  is  the  current input to the system (to be 
determined), W1  is the previous input to the system, P1  is the previous system output level 
(under W1), and P2  is the system output level at the time step before P1 .   
 
 The IG measure of a rule is calculated (in this process control task) based on the 
immediate reward at every step when the rule is applied.  The inequality, r > threshold, 
determines the  positivity/negativity  of  a  step  and  of  the  rule matching  this  step.     Then, 
PM  (positive match) and NM (negative match) counts of the matching rules are updated.  IG is 
then calculated based on PM and NM (essentially as the positive match ratio). 

 The full CLARION model is highly comprehensive and therefore complex. The 
development of this cognitive architecture has taken many years of theoretical and experimental 
work.  However, for the sake of maintaining a clear focus, only details most relevant to the 
simulations to be described below (a small subset of mechanisms) have been presented above. 
For further details of CLARION, see Sun (2002, 2003). 
 
Simulation of Human Data 
 
 Simulation Focus.  A number of well known skill learning tasks that involve both implicit 
and explicit processes were chosen to be simulated that span the spectrum  ranging  from  simple  
reactive  skills  to  more  complex  cognitive  skills. The tasks include serial reaction time tasks, 
process control tasks, the Tower of Hanoi task, and the minefield navigation task.  We focus on 
simulating process control tasks in this paper.  We are especially interested  in  capturing  the  
interaction  of  the  two  levels  in  the  human  data, whereby  the  respective  contributions  of  
the  two  levels  are  discernible  through various  experimental  manipulations  of  learning  
settings  that  place  differential emphases  on  the  two  levels.   These data can be captured 
using the two-level interactive perspective. 
 We  aim  to  capture  (1)  the  verbalization  effect,  (2)  the  explicit  (how-to) instruction 
effect, and (3) the explicit search effect.   Through the simulations, it will be shown that the 
division of labor between, and the interaction of, the two levels is important. 
 To capture each individual manipulation, we do the following:  (1) The explicit  (how-to) 
instructions  condition  is  modeled  using  the  explicit  encoding of  the  given  knowledge at the  
top  level  (prior  to  training).   (2) The verbalization condition  (in which subjects are asked to 
explain their thinking  while or  between  performing  the  task)  is  captured  in  simulation  
through  changes  in parameter  values  that  encourage  more  top-level  activities,  consistent  
with  the existing  understanding  of  the  effect  of  verbalization  (that  is,  subjects  become 
more  explicit;  Stanley  et  al  1989,  Sun  et  al  1998).     (3) The explicit search condition (in 
which subjects are told to perform an explicit search for regularities in stimuli) is captured 
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through relying more on the (increased) top-level rule learning, in correspondence with what we 
normally observe in subjects under the kind of instruction.   (4) Many of these afore-enumerated 
manipulations lead to what we called the synergy effect between implicit and explicit processes:  
that is,  the co-existence and interaction of the two types of processes leads to better performance 
than either one alone (Sun et al 2001).  By modeling these manipulations, we at the same time 
capture the synergy effect as well. 
 General Model Setup.  Many parameters in the model were set uniformly as follows:  
Network weights were randomly initialized between -0.01 and 0.01. Percentage combination of 
the two levels (through a weighted sum) is used: that is, if the top level indicates that action a has 
an activation value l(a)  (which should be 0 or 1 as rules are binary) and the bottom level 
indicates that a has an activation value q(a)  (the Q-value), then the final outcome is v(a) = w1 * 
l(a) + w2 * q(a). The combination weights  of  the  two  levels  were  set  at  w1  =  0.2  and  w2  
= 0.8.  Stochastic decision making with the Boltzmann distribution (based on the weighted  
sums)  is  then  performed  to  select  an  action  out  of  all  the  possible actions.  Other  
parameters  include  numbers  of  input,  output,  and  hidden  units, the external reward,  the rule 
deletion threshold,  the backpropagation learning rate, and the momentum.  Most of these 
parameters were not free parameters, because they were set in an a priori manner (based on our 
previous work), and not varied to match the human data. 
 For modeling each of these manipulations, usually only one or a few parameter values are 
changed.  These parameters are changed as follows.  To capture the verbalization effect, we raise 
the rule deletion threshold at the top level.  The hypothesis is that, as explained earlier, 
verbalization tends to increase top-level activities, especially rule learning activities.   To capture 
the explicit search effect, we increase the weighting of the top level in addition to raising the rule 
deletion threshold.  The hypothesis is that explicit search instructions tend to increase the 
reliance on top-level rule learning.   To capture the explicit instruction effect, we simply wire up 
explicit a priori knowledge at the top level. 

Below we will describe only two simulations to illustrate our main points. Many other 
simulations may be found in other publications of ours (e.g., Sun 2002). 
 
Simulating Stanley et al. (1989) 
 

The Task.  Two  versions  of  the  process  control  task  were  used  in  Stanley  et al  
(1989).  In  the  "person"  version,  subjects  were  to  interact  with  a  computer simulated 
"person" whose behavior ranged from "very rude" to "loving" (over a total of 12 levels) and the 
task was to maintain the behavior at "very friendly" by controlling his/her own behavior (which 
could also range over the 12 levels, from "very rude" to "loving").  In the sugar production 
factory version, subjects were  to  interact  with  a  simulated  factory  to  maintain  a  particular  
production level  (out  of  a  total  of  12  possible  production  levels),  through  adjusting  the 
size of the workforce (which has 12 levels).  In either case, the behavior of the simulated system 
was determined by P  = 2 * W  - P1  + N, where P was the current system output, P1  was the 
previous system output, W  was the subjects' input to the system,  and N  was noise.  Noise (N) 
was added to the output of the system, so that there was a chance of being up or down one level 
(a 33% chance respectively). 

There were four groups of subjects.  The control group was not given any explicit how-to 
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instruction and not asked to verbalize.  The "original" group was required  to  verbalize:  
Subjects  were  asked  to  verbalize  after  each  block  of  10 trials.  Other groups of subjects 
were given explicit instructions in various forms, for example,  "memory training", in which a 
series  of  12  correct  input/output pairs  was  presented  to  subjects,  or  "simple  rules",  in  
which  a  simple  heuristic rule ("always select the response level half way between the current 
production level  and  the  target  level")  was  given  to  subjects.   The numbers of subjects 
varied across groups.   12 to 31 subjects were tested in each group. All the subjects were trained 
for 200 trials (20 blocks of 10 trials). 

The Data.  The exact target value plus/minus one level (that is, "friendly", "very 
friendly", or "affectionate") was considered on target.  The mean scores (numbers of on-target 
responses) per trial block for all groups were calculated. Analysis showed the verbalization 
effect:  The score for the original group was significantly higher than the control group (F (1, 73) 
= 5.20; p < 0.05).  Analysis also showed the explicit instruction effect:  The scores for the 
memory training group  and  for  the  simple  rule  group  were  also  significantly  higher  than  
the control group.  See Table 1. 

 
Table 1   
The human data for the process control task from Stanley et al (1989) 
 
 Human Data  
 Sugar Task Person Task 
Control 1.97 2.85 
Original 2.57 3.75 
Memory Training 4.63 5.33 
Simple Rule 5.91 4.00 
 

The Model Setup.  The model was set up as described earlier. We used 168 input units, 
40 hidden units, and 12 output units.  There were 7 groups of input units, each for a particular 
(past) time step, constituting a moving time window.  Each  group  of  input  units  contained  24  
units,  in  which  half  of  them encoded  12  system  output  levels  and  the  other  half  encoded  
12  system  input levels at a particular step.  The 12 output units indicated 12 levels of subjects' 
input to the system.  The learning rate was 0.1.  The momentum was 0.1. 

The rule deletion threshold was set at 0.15 for simulating control subjects.  To capture the 
verbalization condition, the rule deletion threshold was raised to 0.35 (to encourage more rule 
learning activities).  To capture the explicit instruction conditions, in the "memory training" 
condition, each of the  12  examples  was wired  up  at  the  top  level  as  simple  rules  (in  the  
form  of  P1   W);  in  the "simple rule" condition, the simple rule (as described earlier) was 
wired up at the  top  level.   A  reward  of  1  was  given  when  the  system  output  was  within 
the target range.  In simulating the person task (a common, everyday task), we used pre-training 
of 10 blocks before data collection, to capture prior knowledge subjects likely had in this type of 
task. 

The match.  Our simulation captured the verbalization effect in the human data well.  See 
Table1 and 2.    We used a t-test  to  compare  the  "original" group  with  the  control  group  in  
the  model  data,  which  showed  a  significant improvement  of  the  original  group  over  the  
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control  group  (p < :01),  the  same as the human data. 
 
Table 2   
The model data for the process control task from Stanley et al (1989) 
 Model Data  
 Sugar Task Person Task 
Control 2.276 2.610 
Original 2.952 4.187 
Memory Training 4.089 5.425 
Simple Rule 4.073 5.073 

 
Our simulation also captured the explicit instruction effect, as shown in Table 2.     We 

used pair-wise t-tests to compare the "memory training" and "simple rule" groups with the 
control group in the model data, which showed significant improvements of these two groups 
over the control group, respectively (p < :01). 

Both effects point to the positive role of the top level.  When the top level is  enhanced,  
either  through  verbalization  or  through  externally  given  explicit instructions,  performance  
is  improved,  although  such  improvement  is  not  universal (Sun et al 2001).  They both 
showed synergy between the top-level explicit processes and the bottom-level implicit processes. 
 
Simulating Berry and Broadbent (1988) 
 
 The Task.  The task was similar to the computer "person" task in Stanley et al (1989).  
Subjects were to interact with a computer simulated "person" whose behavior ranged from "very 
rude" to "loving" and the task was to maintain the behavior at  "very friendly" by controlling 
his/her own behavior  (which could also range from "very rude" to "loving").  In the salient 
version of the task, the behavior of the computer  "person" was determined by the immediately 
preceding input of the subject: It was usually two levels  lower  than  the  input (P  = W  - 2 + N).  
In the non-salient version, it was determined by the input before that and was again two levels 
lower than that input (P  = W1 - 2 + N). Noise (N) was added to the output of the computer 
"person" so that there was a chance of being up or down one level (a 33% chance respectively). 

 Four groups of subjects were used:  salient experimental, salient control, non-salient 
experimental, and non-salient control.   The experimental groups were given  explicit  search  
instructions  after  the  first  set  of  20  trials,  and  after  the second set of 20 trials were given 
explicit instructions in the form of indicating the  relevant  input  that  determined  the  computer  
responses  (W  or  W1).   12 subjects per group were tested. 
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Figure 2   
The data of Berry and Broadbent (1988) 
 
 The Data.  The exact target value plus/minus one level (that is, "friendly", "very 
friendly", or "affectionate") was considered on target.  The average number  of  trials  on  target  
was  recorded  for  each  subject  for  each  set  of  20  trials. 
 Figure 2 shows the data for the four groups of subjects for the three sets of trials.  
Analysis showed  that  on  the  first  set,  neither  of  the  two  experimental groups differed 
significantly from their respective control groups.  However, on the second set, the salient 
experimental group scored significantly higher than the salient control group (p < 0.01), but the 
non-salient experimental group scored significantly less than the non-salient control group (p < 
0.05).  On the third set, both experimental groups scored significantly higher than their 
respective control groups  (p < 0.01).   The  data  clearly  showed  (1)  the  explicit search  effect:   
improving  performance  in  the  salient  condition  and  worsening performance in the non-
salient condition; (2) the explicit instruction effect:  improving performance in all conditions; as 
well as (3) the salience difference effect (during the 2nd set, under the explicit search condition). 
  The Model Setup.   The  model  was  set  up  similarly  as  described  earlier for  
simulating  Stanley  et  al  (1989),  except  the  following  differences.      The rule deletion 
threshold was set at 0.1 initially.  To capture the explicit search effect  (during  the  second  
training  set),  the  rule  deletion  threshold  was  raised to  0.5  (for  increased  learning  activities  
in  the  top  level),  and  the  weighting of  the  two  levels  was  changed  to  0.5/0.5  (for  more  
reliance  on  the  top  level).  To capture the explicit instructions given in this task (during the 
third training set), only rules that related the given critical variable to the system output were 
hypothesized and tested at the top level thereafter, in correspondence with the instructions  (that  
is,  P  = aW  + b,   where  W  is  the  critical  variable  indicated by the instructions).  The 
learning rate was 0.04.  The momentum was 0. 
 The Match.  We captured in our simulation of this task the following effects exhibited  in  
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the  human  data:  the  salience  difference  effect,  the  explicit  search effect, and the explicit 
instruction effect.  The results of the simulation are shown in Figure 3.    On the first set, neither 
of the two experimental groups differed significantly from their respective control groups; 
however, on the second set, the salient experimental group scored slightly higher than the salient 
control group, but the non-salient experimental group scored slightly less than the non-salient 
control group.  On the third set, both experimental groups scored significantly higher than their 
respective control groups (p < 0.01). 

The data demonstrated clearly the explicit instruction effect (improving performance in 
all conditions), and showed to some extent the explicit search effect (improving performance in 
the salient condition and worsening performance in the non-salient condition), as well as the 
salience difference effect along with the explicit search effect.  The data showed the extent and 
the limit of the synergy effect (in that the non-salient condition discouraged synergy 
 

 
 
Figure 3 
The simulation of Berry and Broadbent (1988) 
 
Discussion 
 

Although implicit learning is a controversial topic, the existence of implicit processes in 
skill learning is not in question.  What is in question is their extent and importance.  We allow 
for the possibility that both types of processes and both types of knowledge coexist and interact 
with each other to shape learning and performance, so we go beyond the controversies and the 
studies that focused mostly on the minute details of implicit learning (Gibson et al 1997). 

The incorporation of both processes allows us to ask the question of how synergy is 
generated between the two separate, interacting components of the mind (the two types of 
processes). The model may shed some light on this issue.  Sun and Peterson (1998) did a 
thorough computational analysis of the source of the synergy between the two levels of 
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CLARION in learning and in performance.  The conclusion, based on the systematic analysis, 
was that the explanation of the synergy between the two levels rests on the following factors:  (1) 
the complementary representations of the two levels:  discrete vs. continuous; (2)  the  
complementary  learning  processes:  one-shot  rule  learning  vs.  gradual Q-value  
approximation;  and  (3)  the  bottom-up  rule  learning  criterion  used  in CLARION.   Due to 
space constraints, we will not repeat the analysis here.  See Sun and Peterson (1998) for details.  
It  is  very  likely,  in  view  of  the  match  between  the  model  and human data as detailed in 
this paper, that the corresponding synergy in human performance results also from these same 
factors (in the main). 
 As a result of its distinct emphasis, CLARION is clearly distinguishable from existing 
unified theories/architectures of cognition, such as SOAR, ACT, and EPIC. For example, SOAR 
(Rosenbloom et al 1993) is different from CLARION, because SOAR makes no distinction 
between explicit and implicit learning, and is based on specialization, using only symbolic forms 
of knowledge. EPIC does not make the distinction either although it includes sensory-motor 
processes. Although ACT (Anderson 1993) makes the distinction, it is different from CLARION 
because traditionally it focuses mainly on top-down learning (from declarative to procedural 
knowledge).  
 The work reported thus far highlights the importance of the interaction of implicit and 
explicit processes in skill learning. It captures the interaction through a model that includes both 
types of processes.   This modeling work reveals something new in the existing data (cf. Gibson 
et al 1997, Lebiere et al 1998).  The contribution of this model lies in capturing human data in 
skill learning through the interaction of the two types of processes, and also in demonstrating the 
computational feasibility and psychological plausibility of bottom-up learning (Sun et al 2001).  
Note that many other simulations have been carried out that likewise show that the interaction 
between implicit and explicit knowledge during skill learning (see, e.g., Sun 2002 for details).  

Now the question is how we verify the chief hypothesis of this model:  The interaction 
between implicit and explicit knowledge is the key to understanding human skill learning.  In the 
remainder of this report, we will address this question.  
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Process Control Experiment 1 
 

A great deal of research has been conducted over the last two decades to differentiate 
between implicit and explicit learning. Explicit learning is effortful (Norman, 1993) and results 
in a consciously available knowledge that can be readily verbalized. Implicit learning is like 
pattern recognition. For example, when we recognize a person’s face, we are consciously aware 
of whom it is, but we have little conscious insight into what features were used to recognize the 
person. Implicitly acquired knowledge only tells us what to do; it does not provide a readily 
verbalizable set of rules to explain our behavior (e.g., Reber, 1967). 

Several findings of this body of research suggest limited usefulness of implicit 
knowledge to support complex skills. Some studies (e.g., Dienes & Berry, 1997) provide 
evidence that implicit knowledge is so tied to specific training stimuli that it does not generalize 
beyond the exact instances experienced during training. Other research suggests that implicit 
knowledge is fragmentary and incomplete (e.g., Dulany, Carlson, & Dewey, 1984; Perruchet & 
Pacteau, 1990). In addition, research suggests that people have little confidence in implicitly 
acquired knowledge. They often think they are just guessing when applying their implicit 
knowledge (Chan, 1992; Dienes & Berry, 1997).   

However, Mathews (1997) argued that these apparent limiting characteristics of implicit 
knowledge might be an artifact of the paradigms used to study it. Natural situations that depend 
heavily on implicit knowledge (natural language processing or pattern recognition) require 
extensive practice. Such tasks demand high levels of speed, accuracy and flexibility. Mathews 
(1997) suggested that experiments on implicit knowledge have focused too much on simple tasks 
because researchers were seeking cases of pure implicit (completely unconscious) knowledge. 
Typical experiments involve practice for less than 30 minutes. This amount of practice may be 
inadequate to develop levels of implicit knowledge that enable accurate and flexible utilization. 
Also, most real world situations do not involve pure implicit or pure explicit knowledge, but 
instead some blend of the two. Thus, it is important to study ways in which these two types of 
knowledge interact to influence performance on complex tasks (Sun, Merrill, & Peterson, 2001).  

The impact of explicit reflection upon one’s knowledge and thinking can vary.  
Facilitative effects of reflection have been found (Ahlum-Heath & DiVesta, 1986; Berry, 1983; 
Chi, Bassock, Lewis, Reimann, & Glaser, 1989; Chi, DeLeeuw, Chiu, & LaVarcher, 1994), 
however, reflection is not universally helpful.   For example, verbalizing one’s thoughts about 
difficult-to-verbalize aspects of one’s knowledge can impair performance (The verbal 
overshadowing effect, Schooler & Engstler-Schooler, 1990).  Indeed verbalization has been 
demonstrated to impair insight problem solving (Schooler, Ohlsson, & Brooks, 1993), analogy 
retrieval (Lane & Schooler, in press), affective decision-making (Wilson & Schooler, 1991), and 
memory for faces (see Meissner & Brigham, 2001 for a meta-analysis).   In addition, when 
learning to perform complex tasks, learners may acquire invalid reflective knowledge in the form 
of mental models or verbalizable rules that lead to less than optimal performance (Reber, 1976; 
Reber, Kassin, Lewis, & Cantor, 1980).   In short, the nature of the task (and we will argue, the 
nature of the reflection), can determine whether reflection has a positive, negative, or negligible 
impact. 

The effect of different types of explicit reflection on process control and related (e.g., 
artificial grammar) tasks has been studied.  One form of reflection involves simply instructing 
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participants to attempt to figure out the rules governing the behavior of the task.  The effect of 
this manipulation has been mixed, sometimes decreasing the level of learning (e.g., Berry & 
Broadbent, 1988; Howard & Ballas, 1980; Reber, 1976; Reber et al., 1980) to having no effect 
(Dienes, Broadbent, & Berry, 1991; Dulany, Carlson, & Dewey, 1984), or improving learning 
(Berry & Broadbent, 1988; Reber et al., 1980).  The primary mediating variable appears to be the 
salience of the rules governing the task.   When the rules governing relations among the stimuli 
are salient or easy to discover, rule-search instructions can have a positive effect on learning 
(Mathews et al., 1989; Lee, 1995; Reber et al., 1980).  However, rule-search instructions do not 
always facilitate performance in implicit learning tasks (Dulany et al., 1984; Lee, 1995; Mathews 
et al., 1989).  In learning tasks involving rules that are extremely difficult to find (such as in the 
process control task), participants are likely to fall back on an implicit or memory-based mode to 
guide their performance (e.g., Mathews, et al., 1989).   

Berry & Broadbent (1984) used the process control task to discover if verbal instruction 
on how to reach the target would affect task performance and verbalizable (explicit) knowledge 
similarly.  They found that verbal instruction improved their participants’ ability to control sugar 
production, except when combined with a requirement to verbally justify each response. Roussel 
(1999) investigated the effects of explicit reflection using the process control task by exposing 
learners to others’ ideas about the task (other participants’ policies or an experimenter-provided 
task hint), and by giving them the opportunity to discuss those ideas with other learners. 
Roussel’s results demonstrated that certain types of explicit reflection can sometimes actually 
harm knowledge acquisition in this type of task.  Assisted reflective practice, which involved a 
computer program designed to assist learners in thinking about their policies for controlling 
sugar production and to help them evaluate their policies by using them to perform the task, was 
found to be quite damaging to learning and performance.  Another method for eliciting within-
task reflection during task performance was to require participants to predict the outcome 
workforce size.  As with assisted reflective practice, the participants had poorer task performance 
than did participants in a (non-prediction) control condition.  Even the simplest method of 
reflection, involving giving learners pencil and paper along with instructions to use them to help 
them learn the task found no effect on learning.  The present research investigated differences in 
interference effects on learning by varying the context of the task (Experiment 1), using 
occasional rather than continuous concurrent reflection (Experiment 2), and using the more 
casual form of concurrent reflection of taking notes during practice (Experiment 3). Post-task 
reflection was also examined.  
 
Introduction 
 
 Experiment 1 replicates the findings of Roussel (1999), showing that  explicit reflective 
practice interferes with learning to control sugar production in a process control task.  Roussel 
proposed two mechanisms for the interference effect of reflection on performance.  One was the 
generation of inaccurate explicit rules based on attempted reflection about the task.  The second 
was interference with the implicit learning process (e.g., reflection acts like a secondary task).   
This experiment examined this interference effect in two different problem contexts:  a sugar 
factory (replicating Roussel 1999) and in the context of controlling temperature in a nuclear 
reactor.  The reactor control version of the task employed the exact same formula to control 
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output.  However, the output variable is labeled reactor temperature (instead of sugar) and the 
input variable is labeled number of fuel pellets (instead of workers).   
 If the major negative impact of explicit reflection occurs because of generating inaccurate 
rules, we would expect a stronger interference effect of reflective practice in the original sugar 
production version.  This is because the sugar factory version of the task offers a richer domain 
for generating overly general or inaccurate rules.   Our participants are familiar with many things 
that could increase or decrease production in a factory (e.g., overcrowding, worker fatigue, firing 
less productive workers).  Thus, when counterintuitive events happen in the sugar production 
version of the task, participants have a richer domain to draw on to generate rules.  On the other 
hand, the reactor control scenario is relatively foreign and it seems mechanical.  It would be 
difficult to think of complex but reasonable rules to account for the counterintuitive behavior of 
the system with this version of the task.  Therefore, it was hypothesized that we would see a 
bigger interference effect from reflective practice in the sugar versus in the reactor control task.  
However, if Roussel’s second factor, interference with the implicit learning process, is more 
important we might expect similar levels of reflective interference in both versions of the task.   
 
Method 
 
 Participants and Design.   Eighty six undergraduate students enrolled in introductory 
psychology courses at Louisiana State University were recruited to voluntarily participate in 
return for extra-credit.  The experiment was arranged as a factorial design comprising three 
factors: task version (reactor control vs. sugar production) practice mode (reflective practice vs. 
experiential practice), and session (one through three).    
 The two primary dependent variables were performance, as indicated by the average 
unsigned deviation from target production during the test phase, and quality of the final policy.  
Policy quality was measured by using the policy to simulate performance of the sugar production 
task.  The average unsigned deviation from target production achieved by the simulated policy 
was taken to be the policy quality.  The procedure for evaluating policy quality will be described 
in detail below. 
 Process Control Task.  One version of the process control task (Berry & Broadbent, 
1984) used in this research has subjects imagine they are controlling a factory that produces 
sugar.  The goal is to obtain a given target level of production (6,000 tons) on each trial.  The 
subjects control a single variable, the number of workers employed at the factory.  Production is 
affected by the number of workers in the following way:  P = (2 x W) – P1 + N.   In this 
equation, P = current sugar production, W = number of workers input by subject, P1 = previous 
level of sugar production, and N = noise (a random element).     
 This research compared two versions of this task, the sugar production version and the 
reactor control version of the control task.  The reactor control task was exactly the same as the 
sugar production task in all aspects except the cover story and labels of the input and output 
variables.  The task was described as a simulated nuclear reactor.  Their task was to maintain the 
reactor temperature as close as possible to the target level (6,000 degrees).  On each trial they 
had to input a new input level for number of fuel pellets. 
 Task trials were grouped into blocks of ten trials and each block began with a randomly 
selected production level.  Figure 4 shows the graphical display seen by participants in the 
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reactor control version of the task.  The graph on the left side of the screen plots input responses 
over trials and the graph on the right plots output levels across trials.  On the left graph, the 
number of fuel pellets entered on each trial is displayed on the horizontal axis.  On the right 
graph, reactor temperature level is represented on the vertical axis of the graph.  The dashed 
horizontal line shows the target temperature level.  The horizontal axis represents the sequence 
of trials.   Each trial output is represented by an ‘X’ on the graph.  At the end of each block, the 
display was cleared and a new graph displayed for the next block of trials.  Temperature (sugar 
production in the sugar factory version) was allowed to vary from 1000 degrees to 12000 
degrees.  Participants were allowed to select an input value (for fuel pellets or workers) ranging 
from 100 to 1200 in multiples of 100.  The target production was fixed at 6000 tons.  The only 
difference in the sugar production version of the task was the labels associated with input and 
output variables.  
 
 

 
 
Figure 4.   
Graphical display seen by a participant performing the reactor control task on the sixth trial in a 
block of 10 trials.   
 
 The relationship between number of workers and sugar production was identical to that 
used by Roussel (1999).  The main dependent measure was the mean unsigned deviation from 
target production, in tons, across a block of ten trials.  Because the target production level was 
always 6000 tons, the dependent measure could vary from a minimum of zero, if on target for 
every trial, to a maximum of 6000 tons away from target level.  Chance performance was defined 
as the mean unsigned deviation that would be achieved by entering a random value for workers 
on every trial.  Chance performance was thus determined to be 4206 tons.  Best performance 
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possible is about 600 tons off target on the average because of the noise element in the task 
control equation. 
 Procedure.  Participants were tested in groups ranging from three to five individuals.  
Each group was randomly assigned to one of the four conditions.  Regardless of condition, all 
participants completed three sessions, one per day.  For all participants, the three sessions were 
completed within seven days.  All participants performed 20 minutes of practice followed by 10 
blocks (100 trials) of test.  Additionally, participants in the reflective practice condition had up to 
15 minutes at the end of each session to write (Session 1) or revise (Session 2-3) their policy on 
how to control the task.   

First Session.  In the first session, all participants were told that they were to take on the 
role of manager of either a simulated sugar production factory or a simulated nuclear reactor.  
They were informed that their job was to learn how to achieve and maintain a target level of 
output by interacting with the simulation.  They were further informed that the only variable they 
could control was the one input variable (either workers or number of fuel pellets).  Thus, their 
task was to learn the relationship between workforce size and production level in the simulated 
sugar factory conditions, and amount of fuel and reactor temperature in the simulated nuclear 
reactor conditions.  Participants in the reflective practice conditions were also told that they 
would be required to write a policy or set of instructions for someone else to perform the task at 
the end of each session. 
 After receiving instructions, all participants were given 20 minutes to practice or interact 
with the simulation program.  In Session 1 all participants simply performed the process control 
task at their own pace during the practice period.   

The test comprised ten blocks of 10 trials of the same task.  The participants were 
allowed up to 30 minutes to complete the test.  The participants were informed that their goal 
was to stay as close as possible to the target production level and that there would be a $50 
reward for the best performance. 
 After completing the test, each participant in the reflective practice condition was given 
15 minutes to write down his or her policy for controlling sugar production or the nuclear 
reactor.  These participants were told that someone else would try to perform the process control 
task using only the instructions they provide.  They were also told there would be an additional 
$50 reward for the best policy, determined by the best performance using a participant’s policy 
to perform the task.  Participants were allowed up to 15 minutes to write their policy.  They were 
asked to write each statement of their policy on a numbered page, giving each statement a new 
number.   
 Second and Third Sessions.  In all reflective practice conditions participants were 
returned their written policies from the previous session.  The same practice-test-write policy 
sequence used in the first session was followed for the second and third sessions.  However, 
before beginning to practice, all reflective practice participants were told that they would have to 
write a new policy at the end of the session and therefore, they should be thinking about how to 
improve their policy as they practiced.   

Participants in the experiential practice conditions simply performed the process control 
task at their own pace during the practice period, as they did in Session 1.  Participants in the 
reflective practice conditions were required to record on a log sheet for every trial which 
particular statement of their written policy they were following, the number of workers to be 



 
 

  18

used according to their rule, and the production level they expected to achieve.  After entering 
this information on their log sheet they could type in their selected input level and the computer 
calculated and displayed the new production level.   
 The test portion of the second and third sessions was the same as in Session 1.  It was a 
10-block sequence of the process control task.  However, this time, reflective practice 
participants were allowed to refer to their written policies from the previous session as they 
performed the test.  Participants in the reflective practice conditions were not required to use the 
log sheet during the test.   
 At the end of the session, participants were instructed to write new policies based on the 
performance of their old policies.  They were informed that they could include any part or all of 
their old policies in the new one.  After the end of the third session, all participants were 
debriefed and given a slip for their extra credit points. 
 Policy Evaluation.  The ratings were determined by using them to perform the sugar 
production task for 10 blocks of trials.  On each trial, a rater selected the most appropriate rule 
from the policy and entered the indicated number of workers.  The most appropriate rule was 
considered to be the one that matched the current situation and was the most specific in its range 
of application.  For example, consider the following two rules:  (1) “If you are above the target 
production of 6000 then you should decrease the size of the workforce”; and (2) “If current 
production level is between 8000 and 10000 tons then you should use 800 workers.”  Both rules 
would be applicable to any trial on which current production level is 9000 tons.  However, the 
second rule is more specific (i.e., applicable in fewer situations) and would be chosen by the 
rater.  On trials where no rule applied, the rater entered the same number of workers used on the 
previous trial, unless it was the first trial.  In this situation, the rater entered a randomly selected 
number of workers.  On trials where the policy indicated only a range of workers (e.g., more 
workers, or a high number of workers) the following actions were taken: (a) “more, or less, 
workers than X” was interpreted as a randomly selected value of workers between X and the 
maximum or minimum number of workers allowed, respectively; (b) “a high, or low, number of 
workers” was taken to mean a randomly selected number of workers above 750 or below 450 
respectively; and (c) “an increasing, or decreasing, number of workers” was interpreted the same 
as in (a).  A random number generator (computer program) assisted the rater in selecting random 
values. 
  
Results  
 
 The mean deviation from target level as a function of session, task, and practice mode is 
presented in Table 3.  Since the reflective practice manipulation was not implemented until 
Sessions 2 and 3, these data were analyzed separately from Session 1.  In Session 1 the practice 
mode conditions only differed in that participants in the reflective practice conditions were told 
that they would write a policy at the end of the session.  This knowledge might have stimulated 
more reflective thinking during practice in Session 1 in the reflective practice groups. 
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Table 3.  
Means and Standard Error (in Parentheses) of Deviation from Target Level on Test as a 
Function of Session, Task, and Type of Practice. 
 

Sugar Production   N Session 1 Session 2 Session 3
 Reflective Practice 19 2919 

(144) 
2612 
(192) 

2424 
(193) 

 Experiential Practice 22 2712 
(134) 

2504 
(141) 

2256 
(164) 

Reactor Control      
 Reflective Practice 23 2837 

(131) 
2730 
(116) 

2476 
(129) 

 Experiential Practice 20 2732 
(141) 

2105 
(163) 

1752 
(129) 

 
 
 Total Research Trials.  As in the original Roussel (1999) research, the reflective and 
experiential practice conditions were equated in terms of practice time.  However, the reflective 
practice groups performed the task at a much slower rate in order to reflect on applying their 
policy and logging their choices and results.  Thus, by the end of Session 3, the experiential 
practice conditions had performed a lot more trials of the task.  The mean number of total 
research trials across the four groups were:  1832 trials in the experiential, reactor control group, 
1949 in the experiential, sugar production group, 734 in the reflective practice, reactor control 
group, and 750 in the reflective practice, sugar production group. 

Session 1 Performance.   There were no significant differences between any of the groups 
in Session 1.  Apparently informing participants in the reflective practice conditions that they 
would be required to write a policy at the end of the session did not affect performance. 

Session 2-3 Performance.   Performance means for Sessions 2 and 3 were analyzed using 
a repeated measures ANCOVA.  The three factors included in the ANCOVA were session, 
practice mode, and task.  Session was the repeated measure factor.  Total research trials was the 
covariate.  There was a significant effect of total research trials, F(1,78) = 6.711, p<.05.  
Performance improved across sessions, F (1, 78) = 6.325, MSE = 90661, p < .05, indicating that 
participants were learning to control task output.  Participants in experiential practice conditions 
consistently outperformed their reflective practice counterparts, F (1,78) = 14.706, MSE = 
831828, p < .01, replicating the Roussel (1999) finding of a negative effect of reflective practice.  
There were no other significant effects or interactions.   It should also be noted that the 
variability across participants tended to be higher in the sugar task with reflective practice (see 
standard error values in Table 1). 
 The Effect of Assisted Reflective Practice on Reflective Knowledge.  The mean simulated 
performance of the final session policies was 3315 in the reactor control version of the task and 
3048 in the sugar production.  These means are not significantly different indicating that policy 
quality did not differ as a function of task version.  The mean correlation between policy quality 
and final test performance was .38 in the sugar version of the task and .57 in the reactor control 
version.  Only the correlation for the reactor control version of the task was significant.  Thus, 
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there is more evidence of explicit knowledge in the reactor control version of the task. 
 
Discussion 
 
 This experiment replicated the negative effect of explicit reflective practice found by 
Roussel (1999) in two versions of the process control task.  However, the prediction that a larger 
interference effect would occur in the more familiar sugar factory version of the task was not 
supported.   This result suggests that richness of potential rules in a domain is not related to size 
of the reflective practice interference effect.  Perhaps the large quantity of overly general or 
inaccurate rules found by Roussel (1999) was more directly linked to the group discussions in 
their experiments rather than assisted reflective practice.  Or, alternatively, perhaps the large set 
of “bad” rules was a by-product of poorer implicit learning rather than a cause of poor 
performance on the task.  However, the negative effect of reflective practice was replicated in 
both versions of the task in our experiment.  Therefore, interference with the implicit learning 
process rather than generating overly general rules while reflecting seems to be the major cause 
of the interference effect of reflection on task performance.  Experiment 2 further tests this 
notion by implementing a partial reflective practice condition. 
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Process Control Experiment 2 

 
Introduction 
 
 Roussel (1999) suggested one interpretation of the negative effect of reflective practice 
was that participants generated and used overly general or incorrect explicit rules about the 
process control task.  However, Experiment 1 showed that richness of domain knowledge 
(factory vs nuclear reactor) did not alter the negative effect.  Experiment 2 uses a partial 
reflective practice condition to see if occasional rather than continuous concurrent reflection 
disrupts learning of the task.  If concurrent reflection leads participants to generate bad rules as 
suggested by Roussel (1999), then having participants reflect on even a small subset of trials 
would still lead to disruption.  Participants would generate bad rules on the reflection trials and 
continue to use these rules on subsequent trials.  On the other hand, if only continuous concurrent 
reflection disrupts implicit learning, then the source of the interference might be interference 
with the implicit learning process.  Participants who have partial reflective practice could still 
learn the task implicitly without interference on the non-reflection trials.   
 
Method 
 
 Only the reactor control version of the task was used in the remaining experiments in this 
research.  Experiment 2 employed the same reflective practice procedure used in Experiment 1.  
However, rather than a fixed amount of practice time, a fixed number of trials was used to equate 
the amount of practice trials between the partial reflection and the experiential conditions.  This 
was done to insure that any disruptive effect of partial reflection could not be attributed to fewer 
practice trials resulting from the slow reflective process (even though the covariate analyses in 
Experiment 1 suggested this was not the case).  In each session all participants practiced for 30 
blocks of trials, then they took a test consisting of 30 blocks.  Reflective practice participants 
wrote a policy at the end of each session.  In Sessions 2-3 partial reflective practice participants 
used their previous session policy to perform reflective practice on the first 10 blocks of practice.  
The second 20 blocks were performed without reflective practice.   Experiential practice 
participants simply practiced 30 blocks of the task each session and they did not write policies at 
the end of each session.  All other aspects of the design were identical to Experiment 1.  There 
were 18 participants in each of the two conditions. 
 
Results  
 
 Means and standard error for test performance in all three sessions are shown in Table 4.  
An ANOVA on Session 1 (before the reflective practice procedure was implemented) showed no 
significant difference between groups on performance.  An ANOVA on Sessions 2-3 revealed 
only a significant effect of Session, F(1,34)=5.927, MSE = 64388, p<.05.  There was no effect of 
reflection.   
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Table 4 
Means and Standard Error (in Parentheses) for Test Performance 
 
 Session 1 Session 2 Session 3 
No reflection 2653    (150) 2509    (174) 2421    (187) 
Partial Reflective 
Practice 

2398    (146) 2435    (174) 2233    (188) 

 
Final policy quality in the partial reflective practice group was 3065.  The correlation 

between policy quality and final test performance was significant (r = .54), indicating there was 
some level of valid knowledge in the policies. 

 
Discussion 
 
 Clearly, just activating explicit thinking during practice was not sufficient to produce the 
negative effect of reflection.  This finding does not support the Roussel (1999) interpretation of 
the effect in terms of generating bad explicit rules.  Rather, the results suggest that the negative 
effect found in Experiment 1 may have resulted from interference of the reflective practice 
procedure with implicit learning processes.  Perhaps this procedure interrupts the process of 
storing information about experiences in the memory used to support implicit knowledge.  If this 
latter interpretation is correct, a less structured form of reflection might not interfere with 
implicit learning and, instead, facilitate task performance. 
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Process Control Experiment 3 

 
Introduction 
  
 Experiment 3 uses a speeded version of the task to block concurrent reflection, varied the 
opportunity for post task reflection, and used a powerful set of hints thought to enhance learning 
of this task (see Roussel 1999).   The hints consisted of three examples of good rules to apply 
when current output was each of three specified levels.  For example, If current temperature is 
4000 tons, then use 500 fuel pellets.  Roussel found that both performance and policy quality 
were enhanced when learners were provided with four such examples combined with a general 
statement that said:  “The number of workers should always follow the level of production.  That 
is, when production is high, you need a lot of workers and when production is low, you need few 
workers.  Similarly, when production is near the middle, you should use a moderate level of 
workers, not high and not low.” 
 Roussel also found that providing the rule exemplars with the general statement or just 
the general statement alone, both enhanced learning.  However, they did not provide example 
rules alone, so we can not be sure the example rules would be effective by themselves.  
Logically, however, they should be.  Good policies are generally lists of just such specific rules.  
The learner would simply have to fill in the rest of the 12 mini rules when she discovers them 
during practice.  However, this filling in of a look up table would seem to require conscious 
effort in the form of reflection either during or after practice. 
 To facilitate this type of reflection during practice, some participants were provided with 
pen and paper and they were encouraged to take notes whenever they wished.  Roussel found 
this type of informal task reflection during practice did not facilitate or impair learning.  
Participants allowed such informal concurrent reflection used the regular self-paced version of 
the reactor control task.  Participants not allowed concurrent reflection used a fast paced (5 sec 
per trial) version of the task designed to minimize concurrent reflection during practice. 
 After each 15 min session of practice all participants performed another task for five 
minutes.  For participants allowed post task reflection, this task consisted of writing a policy 
about how to perform the reactor control task.  For participants not allowed post task reflection, 
this interim task consisted of watching and rating video advertisements. 
 It was expected that some reflection would be necessary to benefit from the hints.  We 
also predicted that post task reflection would be the most effective because it would not interfere 
with the implicit learning processes during training. 
 
Method 
 

Experiment 3 was a 2 X 2 X 2 X2 factorial design with three between participant factors, 
concurrent reflection (or not), post task reflection (or not), and hint (or not) and one within 
participant factor (Session 1 and 2).   As in Experiment 1, timed periods of practice were used 
rather than set numbers of trials (as in Experiment 2).  Each session consisted of two sequences 
of 15 minutes of practice followed by five minutes of policy writing or advertisement rating. 
Participants who did not write a policy were asked to rate five videotaped commercials per five 
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minute period following each sequence. After the second five minutes of policy writing or ad 
evaluation, 10 blocks of test were administered.   

Post task reflection consisted of five minutes of writing a policy for controlling the 
reactor following each set of practice trials.  Participants that were not allowed post task 
reflection performed a distracter task, rating video advertisements, during that five-minute 
interval.  The ads were rated using a five point Likert scale for effectiveness in selling the 
product.  

Concurrent reflective practice participants were encouraged to take notes during practice.  
They were also allowed to refer to their notes and/or policies during the test. 

The hint consisted of providing three examples of good rules for specific output levels. 
The hint was: 

If current temperature is 1000 then use 400 pellets 
If current temperature is 4000 then use 500 pellets 
If current temperature is 7000 then use 700 pellets  
 

Results  
 
 The means for test performance are presented in Table 5.  The only significant effects in 
the ANOVA on test performance were:  hint, F(1,197)=6.86, MSE=950556,  p<.01, post task 
reflection, F(1,197)=3.80, MSE=950556,  p=.05, Test, F(1,197) = 163.32, MSE=243090,   p<.01, 
and the test by post interaction, F(1,197) = 9.91, MSE=243090,   p<.01.  Thus, the exemplar hint 
helped performance even without any opportunity for reflection (compare the top two rows in 
Table 3).  Casual concurrent reflection was neither damaging nor helpful to performance.  Post 
task reflection was beneficial (with or without the hint), but it only enhanced learning in the first 
session.   
 
Table 5. 
Test Performance Means and Standard Error (in Parentheses) as a Function of Reflection and 
Hint 

No Reflection Test 1 Test 2 
      Exemplar Hint 2266    (149) 1463    (137) 
      No Hint 2360    (154) 1572    (143) 
Concurrent Only   
      Exemplar Hint 2474    (144) 1522    (133) 
      No Hint 2662    (180) 2077    (166) 
Post Only   
      Exemplar Hint 1874    (157) 1402    (145) 
     No Hint 2310    (168) 1791    (154) 
Concurrent Plus Post   
      Exemplar Hint 2060    (164) 1561    (151) 
      No Hint 2143    (161) 1741    (148) 
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 Since participants in the no-concurrent reflection group had to respond very fast, they 
would have experienced more practice trials than the concurrent reflection groups.  The mean 
number of practice trials across both sessions in these groups were:  2571 in the no reflection 
group, 2540 in the post only reflection group, 1774 in the concurrent only reflection group, and 
1566 in the concurrent and post reflection group. 
 An analysis using final test performance as the dependent variable and total practice trials 
as a covariate showed a significant effect of practice trials, F(1,195) = 35.664, MSE=465851,  
p<.001, hint, F(1,195) = 4.168, p<.05, and a strong negative effect of concurrent reflection, 
F(1,195) = 23.735, MSE=465851,   p<.001.  The hint by post task reflection by concurrent 
reflection was also significant, F(1,195) = 4.843, MSE=465851,  p<.05.  The adjusted means 
from this analysis are shown in Table 6 
 
Table 6. 
Means for Test in Session 2 Adjusted to Equate Total Practice = 2125 Trials. 
 

 

No Reflection Test 2 
      Exemplar Hint 1356   (128) 
      No Hint 1284    (140) 
Concurrent Only  
      Exemplar Hint 1671  (125) 
      No Hint 2240   (155) 
Post Only  
      Exemplar Hint 1285    (135) 
      No Hint 1541    (148) 
Concurrent Plus Post  
      Exemplar Hint 1891   (151) 
      No Hint 1938    (140) 

 The means for policy quality are presented in Table 7.  The ANOVA on Policy quality 
indicated a significant effect of hint, F(1,94) = 8.74, p<.01 and policy order F(3,282) = 28.89, 
p<.01, MSE = 524765.  Thus policy quality steadily improved across attempts and sessions and 
the exemplar hint increased policy quality.  There were no other significant effects.  
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Table 7.   
Means and Standard Error (in Parentheses) of Deviation from Target Level on Policy Quality as 
a Function of Session, Task, and Type of Practice. 

Hint 
Reflection 

Session 1 
First 
Policy 

Session 1 
Second 
Policy 

Session 2 
First 
Policy 

Session 2 
Second 
Policy 

Exemplar Hint 
Concurrent and Post 

3389 
(153) 

3060 
(197) 

2467 
(203) 

2217 
(224) 

Exemplar Hint 
Post Only 

3258 
(147) 

2660 
(190) 

2437 
(195) 

2540 
(215) 

No Hint 
Concurrent and Post 

3576 
(150) 

3344 
(193) 

2859 
(199) 

2697 
(219) 

No Hint 
Post Only 

3675 
(156) 

3264 
(202) 

3174 
(208) 

2916 
(228) 

 
Discussion 
 
 This experiment used a very innocuous form of concurrent reflection—just encouraging 
participants to take notes when they discover something new.  One would expect that this type of 
reflection, especially when combined with the exemplar hints telling participants what to look 
for, would be very beneficial to learning.   If the effect of reflection on performance resulted 
from hypothesis testing or in some way explicitly figuring out the rules of the game, such as 
finding the correct responses to fill in a look-up table (Dienes & Fahey, 1995), concurrent 
reflection with the hint should have been very helpful.  Whenever a correct response was found it 
could be written down until all 12 possible correct responses were discovered.  However, the 
ANOVA on test performance indicated no positive effect of concurrent reflection.  In fact, while 
the difference in this analysis was not significant, the means are in the direction of an 
interference effect of concurrent reflection rather than a positive effect.  Even more surprising, 
the ANCOVA, with total practice trials as the covariate, showed a very strong negative effect of 
casual concurrent reflection.  That is, when equated for number of practice trials, the negative 
effect of casual reflection during practice gets stronger.  Post task reflection was beneficial, but 
only early in learning.  The strong message of these data is “just do it” is the way to learn this 
task.  Don’t think about it.  Participants that neither reflected during (concurrent) nor after (post) 
practice ended up with the best scores in Session 2.   
 The most surprising result was the finding that even when participants were given 
virtually no time to reflect during practice (because of the speeded task) or after practice (the 
rating advertisement task filled this interval), the hint was just as effective.  The hint was also 
effective in enhancing valid explicit knowledge of the task, as demonstrated by its effect on 
policy quality.  Given that thinking about the task seems to have primarily negative 
consequences, how are we to explain the positive effect of the exemplar hint?  We think the hint 
changes the way participants perceive the task.  Perhaps it causes them to focus more on trial by 
trial changes in the relevant variables.   Such a change in attention or encoding appears to 
enhance implicit learning of the task.  We think the positive effect of hint on explicit knowledge 
(policy quality) results from bottom-up learning processes.  In other words, the rules are 
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discovered implicitly but eventually become conscious and are transformed into the explicit rules 
used in the policies. 
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Artificial Grammar Experiment 1 

 
Below, we extend our studies to another domain---artificial grammar learning, in an 

effort to further validate our hypotheses from the process control domain concerning skill 
learning involving both implicit and explicit processes and their interaction. 

 
Introduction 

 
In the process control experiments we found that concurrent explicit reflection during 

practice either hindered learning the task or had no effect, even when solid hints were provided 
about what to look for while reflecting.  The data seemed to suggest “just doing it” during 
practice was best, with some facilitation in learning through reflection after sessions of practice.  
Our goal in the following experiments was to examine the effects of similar training variables in 
another well studied implicit learning domain, artificial grammar experiments.  We were also 
interested in examining these effects in situations that required both speed and accuracy of 
decisions.  Therefore, we transformed the artificial grammar paradigm to a situations where 
participants had to react dynamically during the test to respond to cues provided by the computer 
(two letters in a valid string) and quickly generate a response (the rest of the string) that was 
close (70% correct) to a valid string.  This task has some ecological validity to natural language 
learning in that a child need not be completely correct grammatically for a parent to understand 
and respond.  Here too, our participants learning this artificial language needed only to 
approximate a valid string to be rewarded by the computer.  Our test also removes potential valid 
responses from the set of possible strings as they are successfully generated, forcing the learner 
to encounter a wide range of possible valid strings.  Thus, good learning of a few valid strings 
will not support good performance on the test. 
 Most theorists accept that some sort of implicit memory of experienced instances (either 
a neural network, a database of instances or sets of instance fragments) is the underlying basis 
for implicit knowledge (Knowlton & Squire, 1996; Manza & Reber, 1997; Mathews, 1991; 
Vokey & Brooks, 1992; Whittlesea & Dorken, 1993). However, there are still many questions 
about what type of training might be optimal for developing such an implicit memory bank of 
experienced instances.   

Some researchers emphasize the storage of intact exemplars with performance based on 
the nearest neighbors in the memory bank (Brooks, 1978; Vokey & Brooks, 1992). Hence, a 
larger database of exemplars should be beneficial when comparing similarities between novel 
and stored exemplars (Whittlesea & Wright, 1997). Other researchers propose that this database 
contains partial memories of exemplars (Mathews, 1991), memories of chunks of exemplars 
(Servan-Scheiber & Anderson, 1990), or acquired knowledge of bigrams and trigrams and their 
frequencies (Perruchet & Pacteau, 1990). This partial memory view might depend more on the 
representativeness of experienced instances rather than having a large set of instances in 
memory. 

Very little research has examined the effects of mixing implicit and explicit training. 
Reber, Kassin, Lewis, & Cantor (1980), in an experiment using a finite-state grammar, found 
that briefly exposing participants to the actual diagram of the grammar (explicit training) prior to 
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training with instances (implicit training) resulted in better performance on a string 
discrimination test. In contrast, Mathews et. al. (1989) found no advantage of mixed training 
with a finite-state grammar, but did find a beneficial effect of mixed training with a biconditional 
grammar. The explicit training task used in the latter research consisted of learning to correct 
invalid strings (the edit task). The implicit training task consisted of recognizing an exact copy of 
a valid string presented before each trial (match task). For participants learning the biconditional 
grammar, Mathews et. al. found that the group that had implicit training followed by explicit 
training performed better than all other groups.   

The present series of experiments examines mixing training across sessions as well as an 
integrated type of training designed to provide simultaneous experience with exemplars (implicit 
training) and knowledge of the structure of the grammar (explicit training). This new training 
method is called exemplar diagramming (ED). In this training task, participants traced each 
training exemplar through a diagram of the artificial grammar. Thus, they processed exemplars 
(implicit learning) within the context of the grammar (explicit learning). 

 
Method 
 

Two training tasks were contrasted in Experiment 1. One training task, the exemplar 
processing or EP task, required participants to hold instances in memory long enough to copy 
them on a response sheet (see Panel A of Figure 5). The other task, exemplar diagramming or the 
ED task, required participants to trace the exemplars through a diagram of the grammar (see 
Panel B of Figure 5). This experiment also explored the effect of training set size. All groups had 
a set of 88 instances to process.  However, the small training set consisted of 22 different 
exemplars repeated randomly four times while the large training set consisted of 88 different 
exemplars.   

Performance was tested using the cued-generate test (Mathews & Cochran, 1998).  This 
test requires generation of a large variety of exemplars based on minimal retrieval cues (two 
randomly selected letters). We expected that the explicit knowledge of the grammar obtained 
during the ED task would enhance performance. An explicit representation of the grammar could 
provide retrieval cues to help access relevant stored exemplars in the implicit memory bank. It 
could also enhance efficiency and accuracy of string generation by providing a means for 
correcting errors or omissions in memory traces of exemplars. Also, some researchers suggest 
that (purely) implicit knowledge is inflexible (Stadler, Justin, & Shana, 2000; Dienes & Altman, 
1997). Thus, the purely implicit database created by exemplar processing in the EP task might 
function poorly in enabling generation of diverse sets of exemplars. Therefore, we expected the 
exemplar diagramming participants to outperform the exemplar processing participants on the 
cued-generate test in terms of efficiency (proportion of acceptable strings generated per attempt), 
and accuracy (number of perfect strings generated). However, using explicit knowledge is known 
to be a comparatively slow process (Reber et. al., 1980; Norman, 1993). Thus, the purely implicit 
(EP) group might respond faster. Overall achievement on the test (number of strings generated 
during a test session) might depend on the optimal balance of speed and accuracy given the task 
constraints (e.g., 20 minute time limit and 70% correct letter match required in generated 
strings). 
 Participants. Ninety-two undergraduate students taking a variety of psychology courses 
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at Louisiana State University participated in the experiment. All participants were volunteers and 
received extra credit for their participation. 

Materials. The finite-state grammar used by Mathews et. al. (1989) was used in this 
experiment (see Panel B of Figure 5). This grammar generates 177 exemplars ranging in length 
from 5 to 11 letters. Two representative subsets of exemplars from this grammar were used as 
training stimuli. One subset consisted of 88 exemplars and was termed the “large set”. The other 
subset consisted of 22 exemplars and was termed the “small set”. The exemplars in the small set 
were selected to illustrate all of the grammar paths and the effects of the two loops in the 
grammar (see Panel B of Figure 5). The small set was randomly repeated four times to make the 
number of instances equivalent in the two training sets. Thus, participants receiving either the 
large or small training set had a total of 88 instances available for their training task. Each 
exemplar from both training sets was typed onto labels and affixed to the center of a rolodex 
card. Both exemplar sets were presented randomly on cards bound to a rolodex base. 
 Two response sheets were used for the different training tasks. The response sheet used 
by the exemplar processing (EP) groups consisted of six rows and twelve columns of circles. The 
six letters from the artificial grammar were printed vertically along the left side of the sheet. 
Along the top, the numbers one through twelve were printed horizontally, representing the serial 
order of the letters in an exemplar (see Panel A of Figure 5). The second response sheet was a 
transition diagram of the Mathews et al.’s (1989) artificial grammar used by the exemplar 
diagramming (ED) groups. It contained spaces to write the letters of the exemplars at the 
appropriate transition points within the grammar (see Panel B of Figure 5). 
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Figure 5. Training tasks. A. Bubble Sheet Diagram. The bubble sheet used by the participants to 
perform the exemplar processing (EP) training task. In the diagram the valid letter string 
CVCPVPXTVPS is inserted to illustrate the proper method used.  B. Transition Map of the 
Grammar. The diagram used by participants to perform the exemplar diagramming (ED) 
training task. The same exemplar is traced through the map to illustrate proper insertion.  
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Design. The design was a 2 x 2 x 3 (training task x research set length x session) 
factorial. The two training tasks (EP versus ED) and the length of the exemplar sets (large versus 
small) served as between-subjects factors. The three 1-hour weekly sessions served as the within-
subjects factor. Twenty-three participants were randomly assigned to each of the four conditions. 

Procedure.  Participants were tested in groups of up to four. There were three 1-hour 
sessions scheduled one week apart. Each session began with a 20-minute training phase requiring 
participants to perform either the EP or ED training task. Each training phase was followed by a 
20-minute cued-generate test.   
 As in Mathews, Roussel, Cochran, Cook, and Dunaway (2000), a starship cover story 
was used to make the task more interesting and provide meaning to the letter strings. Before 
beginning the first session, the participants read the following cover story that takes place in a 
starship: 
 

 We are on a military transport vessel attempting to bring remnants of a space 
colony back home. Unfortunately, we are short of food for the long trip home. Making 
matters worse, much of the food that we took on board from the colony has been 
contaminated by a radioactive poison. Your job is to learn to distinguish poison from 
non-poisoned food by recognizing poison food labels. 
 The food taken on board our vessel came originally from another vessel on which 
all of the passengers died from the poisoned food. Before they all perished, in a last effort 
to save themselves, members of that ship had installed decontamination devices 
throughout the ship. These decontamination devices were placed at several control points 
on the ship where food moved from one location to the next. However, many of the 
decontamination devices were inoperative. Every can of food that passed through at least 
one working decontamination device in its travels about the ship, was and still is safe to 
eat. Cans that passed through only non-working decontamination devices are still 
poisonous and must not be eaten. 
 The poisoned food is highly radioactive. Although all of the food supply was 
initially contaminated, each time it passed through a working decontamination device the 
amount of radioactivity was reduced. Thus, when tested with a special Geiger counter on 
the ship, radioactivity levels in individual cans of food may range from 0 to 10. Each can 
label generated during testing will be located by the computer and tested for radioactivity. 
Only cans that test at level 10 are poison. Any can with a radioactivity reading lower than 
10 is safe to eat.  Also, since cans that have readings above 7 are similar to a poison can 
label (a 10), the computer is capable of tracking down the related poison can and giving 
the exact label (p. 164-165). 
 

 Participants were told that they would see a subset of poison food labels (exemplars) that 
were saved from destruction. Moreover, they would perform a training task with them that would 
be useful in discovering more poison food labels during the test. Each participant received a 
rolodex with a set of exemplars printed on cards and a packet of response sheets for their 
assigned training task. They were then given a demonstration on how to perform their respective 
tasks.  
 Participants in the EP groups were instructed to copy as many of the 88 instances 
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(exemplars) as possible into the response sheets in 20 minutes. Each letter of each exemplar was 
to be copied into the appropriate circle on the sheet. Beginning from left to right, participants 
copied each letter of the exemplar into the circle that intersected the row labeled with that letter 
and the corresponding column reflecting the ordinal position of that letter within the exemplar 
(see Panel A Figure 5).   
 Participants in the ED groups were instructed to trace as many of the 88 poison food 
labels (exemplars) through the diagrams on their response sheets as possible in 20 minutes. They 
were instructed to copy each letter of each exemplar into the corresponding transition box until 
the exemplar was completed (see Panel B of Figure 5). Due to the nature of the grammar, more 
than one letter can occur at the same transition point. For example, the loops of the grammar 
allow for certain letters to be repeated, or the switch back toward the end of the grammar that 
returns to an earlier transition point. When this occurred, participants were instructed to write the 
letter to the right of the letter(s) already in that box. Participants were shown the proper 
procedure for tracing an exemplar through the grammar. The exemplar SCTSSXXVV was used 
to demonstrate this task. This exemplar was used because it illustrates the difference between the 
looping “S” and the recurring “X” and “V”. The rationale for this task was to have participants 
process exemplars within the context of the grammar’s structure. 

Testing Phase. Participants were told that the ship’s computer would display two 
randomly selected letters and a series of dashes from a not-yet-generated poison food label. Their 
job was to fill in the dashes with letters that would uncover a poison food label. They worked 
from left to right in filling in the dashes. When a participant got to a letter that was already 
revealed, the same letter was retyped. After all the dashes were filled, they pressed the “enter” 
key. If the letter string generated by the participant did not match at least 70% of the letters of the 
closest not-yet-generated exemplar, all non-matching letters were erased from the screen and the 
participant would try again. This process was continued until at least 70% of the letters typed by 
the participant matched an exemplar. When the 70% criterion was achieved, the computer 
retrieved the closest not-yet-generated exemplar and displayed it for the participant to observe. 
Participants then pressed the space bar to begin the next trial with a new test cue. 

Because different exemplars may have pairs of letters in common, it was not necessary 
for the participant to generate the exact exemplar used by the computer to create the two-letter 
test cue. Thus, participants had some flexibility about which exemplar could be generated on a 
particular trial. However, once an exemplar was generated, it was removed from the database 
and could not be generated again during that session. Participants were instructed to find as many 
poison can labels (exemplars) as possible during the test and encouraged to generate as many 
perfect exemplars (100% letter match) as possible. 

 
Results 
 

One Way ANOVAs were used to analyze all the data. The results for all four dependent 
measures are presented in Figure 6. The results on each measure will be discussed in turn.   
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Figure 6.  Results of Artificial Grammar Experiment 1 
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Achievement.  Achievement is measured in terms of the number of acceptable strings 
(matching at least 70% of the letters in a not-yet-generated exemplar) successfully generated per 
minute during the 20-minute test phase. There was a significant effect of sessions on 
achievement, F (2, 176) = 262.82, MSE = .19, p < .001. Although the achievement levels of all 
four groups were quite similar (See Figure 6), there was a marginally significant effect of list 
length, F (1, 88) = 3.41, MSE = 1.58, p = .068, and task, F (1, 88) = 3.56, MSE = 1.58, p = .063. 
Thus, groups with the large training set achieved slightly more than those with the small training 
set, and groups with the EP task achieved slightly more than groups having the ED training task. 
The interaction between list length and task was not significant.  
 Accuracy.   Accuracy is a measure of the proportion of attempts that matched 100% of 
the letters in a not-yet-generated exemplar (i.e., the proportion of perfect, 100%, letter strings 
generated per minute). There were significant effects of sessions,  F (2, 176) = 27.82, MSE = .17, 
p < .001 and task, F (1, 88) = 17.30, MSE = 1.07, p < .001.  There was also a significant 
interaction between sessions and task, F (2, 176) = 13.23, MSE = .17, p < .001. Accuracy of the 
ED groups increased more across sessions than did accuracy of the EP groups (see Figure 6). 

Efficiency.  Efficiency is a measure of the proportion of a participant’s attempts that 
generate acceptable strings. There were significant effects of session, F (2, 176) = 85.50, MSE = 
77.67, p < .001 and task, F (1, 88) = 19.48, MSE = 666.54, p < .001.  As can be seen in Figure 6, 
the ED conditions tended to be more efficient than the EP groups.  Also, all groups became more 
efficient in generating strings across the three sessions.   
 Speed.  Speed of responding was measured in terms of number of attempts per minute 
during the test phase. An attempt is counted every time the participant pressed the enter key. As 
expected participants who received explicit training with the grammar (ED task) were slower to 
respond in the cued-generate test than participants who received implicit (EP task) training. 
There were significant effects of speed on sessions, F (2, 176) = 79.09, MSE = .72, p < .001, 
task, F (1, 88) = 27.91, MSE = 8.92, p < .001, and an interaction between sessions and task, F (2, 
176) = 3.68, MSE = .72, p = .027. As can be seen in Figure 2, the EP groups performed 
significantly faster than the ED groups.  There was also a three way interaction between sessions, 
task, and length,  F (2, 176) = 5.32, MSE = .72, p = .006. Whereas the EP large group increased 
in speed over sessions more than the EP small group, the opposite pattern was observed for the 
ED groups (see Figure 6). 
 
Discussion 
 
 The results of the first experiment of this series demonstrate that there are both 
advantages and disadvantages of exposing participants to an explicit representation of the 
grammar during training. Explicit knowledge of the grammar acquired in the ED groups led to 
better accuracy in terms of generating more perfect strings. It also led to greater efficiency in 
terms of the proportion of strings generated that were acceptable in the cued-generate test 
(matching at least 70% of the letters in a not-yet-generated exemplar).  However, the EP groups, 
who did not have this explicit knowledge, responded faster, allowing them to generate more 
valid strings during the 20 minute test. These results support the view that purely implicit 
knowledge acquired from processing exemplar strings is sufficient to support generation of 
acceptable (70% correct) strings.   
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 There was also a marginal effect of training set size on achievement (number of strings 
generated). Groups that received the large training set (88 different exemplars) generated slightly 
more strings than groups that received the small training set (22 exemplars randomly repeated 
four times). However, this effect was very small. Thus, an extensive memory bank of exemplars 
does not appear to be necessary for learning an artificial grammar.  
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Artificial Grammar Experiment 2 

 
Introduction  
 
 In some past experiments researchers have found that mixing different training tasks 
across sessions could enhance learning. Experiment 2 examines inter-session mixing of the two 
training tasks (EP and ED). 

In Experiment 1 we found that implicit training (EP task) led to the fastest responding on 
the cued-generate test. However, explicit training, processing exemplars within the context of the 
grammar diagram (ED task), led to greater accuracy and efficiency in generating strings. A few 
previous experiments (Reber et. el., 1980; Mathews et. al., 1989) have examined mixtures of 
implicit and explicit training across sessions, and found mixtures to be more effective than 
receiving a single training task.  However, these studies differed in terms of which combination 
was best, and neither of the studies examined performance in a task that involves both speed and 
accuracy.   
 This experiment examined the effects of mixing EP training with ED training across two 
weekly sessions. Perhaps groups with mixed training (EP,ED or ED,EP) would acquire the best 
qualities of both types of training, faster than ED and more accurate than EP. Experiment 2 also 
included a one-week retention test without a training phase during the third session. This 
retention test was included because it has often been found that conditions which lead to the 
fastest initial learning do not usually result in the best retention (e.g., Pollock & Lee, 1997; 
Shewokis, Del Rey, & Simpson, 1998). It was predicted that the group receiving ED training 
during the first two weekly sessions would perform best in retention since these participants 
should have retained a visual representation of the grammar in addition to their implicit memory 
bank of instances. 
 
Method 
  
            Participants. One hundred eight undergraduate students taking a variety of psychology 
courses at Louisiana State University participated in the experiment. All participants were 
volunteers and received extra credit for their participation. None of the participants from 
Experiment 1 participated. 

Materials.  The same materials from Experiment 1 were used in this experiment with the 
exception of the elimination of the large set of training exemplars. 
 Design.  The design was a one-factor between-subjects design with four levels: EP during 
the first two sessions, ED during the first two sessions, EP during the first session and ED during 
the second session, and ED during the first session and EP during the second session. Twenty-
seven participants were randomly assigned to each of the four conditions. 
 Procedure. The procedure was exactly like the first experiment in all aspects except two.  
The first was that two groups received a different training task during their second session than 
they did during the first session (i.e., mixed groups). The second was that participants did not 
perform any training task during their third session. Instead, during the third session, they 
performed the cued-generate test for 40 minutes. The test time was increased in the retention 
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session to obtain a more thorough assessment of participants’ ability to generate a wide range of 
valid strings after the one-week retention interval. 
 
Results 
 
 The data from all three sessions (including retention) are shown in Figure 7.  
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Figure 7. Illustrates the performance during Experiment 2 of various training tasks on the four 
dependent measures. Also, the exemplar processing (EP) training and the exemplar 
diagramming (ED) training were mixed from week one to week two (EP followed by ED and ED 
followed by EP). The third session contained no training phase and extended the cued-generate 
test from 20 minutes to 40 minutes (testing over a retention interval). 

 
 
The data from the second session and the retention session are of primary interest because 

the mixed groups have not experienced both types of training until the end of session 2. Also, 
recall that the test phase during the retention session was twice as long (40 minutes) as the test 
during acquisition (20 minutes). This additional time was provided to determine if performance 
levels could be maintained when participants were required to generate a greater number of valid 
strings. Doubling the length of the retention test (40 minutes instead of 20) would permit 
participants to generate twice as many strings if they maintained their levels of speed and 
accuracy during the extra 20 minutes of the retention test. Given the different amount of time 
allowed for the test, the acquisition data (Session 2) and retention data (Session 3) were analyzed 
separately and will be discussed in turn.  

  
Acquisition Phase Analyses  
 Achievement. There was no significant effect of training tasks on achievement during 
acquisition.   
 Accuracy. There was a significant effect of training tasks on accuracy during acquisition, 
F (3, 104) = 7.65, MSE = .45, p < .001. A Tukey HSD post hoc test of comparisons showed that 
the ED, ED group (M = .90) was significantly more accurate than all other groups, which did not 
differ from each other.  
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Efficiency.  There was a significant effect of training task on efficiency during 
acquisition, F (3, 104) = 5.67, MSE = 326.88, p < .001. A Tukey HSD post hoc test of 
comparisons showed that the ED, ED group (M =65.88) was significantly more efficient than all 
other groups, which did not differ significantly from each other. 

Speed.  There was a significant effect of training task on speed during acquisition, F (3, 
104) = 3.69, MSE = 4.06, p = .014. A Tukey HSD post hoc tests of comparisons showed that the 
EP, EP group (M = 5.71) and the EP, ED group (M = 5.57) performed significantly faster than 
the ED, ED group (M = 4.11). The ED, EP group did not differ significantly from any other 
group. 
 
Retention Phase Analyses 
 Achievement. There was no significant effect of the training tasks on achievement during 
retention. All groups were able to maintain their level of achievement on the extended (40 
minute) retention test. Note that all groups generated approximately the same number of strings 
per minute in the longer retention session as compared to the 20 minute acquisition test (see 
figure 3). Thus, the rate of generating valid strings did not diminish in the extended retention 
test.   
 Accuracy.  There was a significant effect of training task on accuracy during retention, F 
(3, 104) = 9.73, MSE = .07, p < .001. A Tukey HSD post hoc test of comparisons showed that the 
ED, ED group (M = .39) was significantly more accurate at string generation after a one-week 
retention period than all other groups, which did not differ from each other. However, it should 
be noted that the ED, ED group showed the largest drop in accuracy from Session 2 to Session 3 
(See Figure 3). This result was surprising because we expected that having both implicit and 
explicit knowledge of the grammar would enhance retention.  
 Efficiency.  There was a significant effect of training task on efficiency during retention, 
F (3, 104) = 9.73, MSE = 234.56, p < .001. A Tukey HSD post hoc test of comparisons showed 
that the ED, ED group (M = 64.01) was significantly more efficient after a one-week retention 
period than all other groups, which did not differ from each other. 

Speed. There was an effect approaching significance of training task during retention, F 
(3, 104) = 2.31, MSE = 4.48, p = .08.  The ED, ED group performed slower than all other groups. 

 
Discussion 
 
 As in Experiment 1, all types of training led to similar levels of achievement on the cued-
generate test during both acquisition and retention. Interestingly, the mixed groups performed 
more like the implicitly (EP) trained groups, responding quicker, but with less accuracy and 
efficiency as compared to the ED groups. This pattern of results suggests that exposure to 
implicit training either before or after explicit training led our participants to prefer their implicit 
(fast but less accurate) mode of responding to the task.  Perhaps this is because using the explicit 
knowledge of the grammar is effortful and slow.  Participants seem to be naturally drawn to the 
implicit mode in this task because perfect accuracy was not required (computer motherese was 
available). Moreover, these patterns were maintained during the one-week retention interval.   
 In a sense the ED training task is a mixed (implicit and explicit) form of training.  
Participants having this training task process exemplars (implicit training) in the context of a 
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diagram of the grammar (explicit training). The final experiment of this series adds another 
training task that is closer to being purely explicit. This new type of training task, called 
grammar reproduction or GR, requires participants to commit to memory the diagram of the 
grammar without processing exemplars during training. Experiment 3 also examined mixes of 
this new more explicit (GR) training task with the purely implicit (EP) training task. 
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Artificial Grammar Experiment 3 
 
Introduction 
 

In Experiment 3, the EP training task continued to serve as the implicit training task, 
while a new training task was created to provide explicit training without opportunities to 
process many exemplars (controlling implicit contamination). The new task was termed 
“grammar reproduction” (GR). Very few experiments have provided participants with the 
grammar diagram during training. In the few studies that have provided such explicit knowledge 
of the grammar, it was provided for a very minimal amount of time (e.g., Reber et. al., 1980).  In 
this experiment GR trained participants committed the entire diagram to memory before 
attempting to generate strings.   
 It was predicted that participants having only the purely implicit (EP) training would 
generate strings the fastest, using only fast implicit processes. It was expected that the purely 
explicitly (GR) trained group would be the most accurate, but the slowest, using only explicit 
knowledge. The integrated (ED) training was expected to fall in between the two pure groups, 
employing some fast implicit processes combined with slower explicit knowledge. We also 
examined mixed GR and EP training across sessions to see which type of training produced 
optimal results for combining implicit and explicit processes. A control group was also added to 
explore performance in the absence of any type of training task. Although this group had no 
training, they were expected to perform above chance on the cued-generate test because they 
could rapidly type each of the six possible letters in succession until a 70% match was obtained. 
Miller (1969) termed this a cyclic strategy. Thus, the control group might do well in 
achievement, but their efficiency and accuracy measures were expected to be very low.  
 
Method 
  
            Participants. One hundred twenty undergraduate students taking a variety of psychology 
courses at Louisiana State University participated in the experiment. All participants were 
volunteers and received extra credit for their participation. No participant from the two previous 
experiments participated in Experiment 3. 
 Materials.  The same materials used in Experiment 2 were used in this experiment. 
 Design. The design was a one-factor between-subjects design with six levels: EP during 
both weeks, ED during both weeks, grammar reproduction (GR) during both weeks, EP followed 
by GR, GR followed by EP, and a no training control (C) during both weeks. Twenty 
participants were randomly assigned to each of the six conditions.  
 Procedure. There were two 1-hour sessions conducted one week apart with a 20 minute 
training phase and a 20 minute testing phase. Participants followed the same instructions from 
the prior experiment for performing the EP and ED tasks. The GR training task required 
participants to observe a copy of the artificial grammar for 2 ½ minutes then turn the diagram 
over. For another 2 ½ minutes participants reproduced the artificial grammar diagram from 
memory by drawing it on a blank sheet of paper. This was repeated four times for a total of 20 
minutes training time, consistent with the other training tasks.  
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 The goal of the GR task was to teach an explicit representation of the grammar without 
showing many valid letter strings that could stimulate implicit learning.  However, it was 
essential that participants understood how to use the diagram to generate strings. Therefore, prior 
to the first session, three test cues were used to demonstrate how to generate strings using the 
diagram. One test cue used for this purpose was - - T X -.  Participants were shown how to 
generate two different valid strings, SCTXS and CXTXS, using this cue.  The second string 
demonstrated was - - P - - P -. The strings SCPTVPS and CXPTVPS were generated from these 
cues. The third string demonstrated was - - - T - - - X - -.  In this case, only one the exemplar, 
CVCTSSXXVV can be generated. These cues, increasing in complexity, demonstrated some of 
the properties of the grammar such as the fact that a letter can occur twice (e.g. both the “X” and 
the “V”) without being in a loop.   

The control (C) condition did not receive any training. They were given a sheet of paper 
with the six letters of the grammar, typed in 36 point Courier font, randomly placed horizontally 
across the middle of the page. The only instructions given to these participants were to try and 
generate letter strings by filling in the blanks by typing combinations of the six letters of the 
grammar and press enter. Correct letters would remain on the screen and should be used in 
combination with other choices for another attempt until an acceptable string is generated. They 
were also informed about the 70% minimum criterion and the ability of the computer to provide 
the corrected exemplar.  
 The 20 minute testing phase was identical to the prior experiments. 
 
Results 
 
 Only the results from the second session were analyzed statistically because the mixed 
groups  (EP,GR and GR,EP) did not experience both training tasks until the end of the second 
session. However, performance measures for both sessions are provided in Figure 8.  Figure 8. 
Illustrates the performance during Experiment 3 of various training tasks on the four dependent 
measures. The grammar replication (GR) training task was implemented and also mixed with the 
EP training task. A control (C) condition, which received no training, was also added.  
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Figure 8.  Results of Artificial Grammar Experiment 3 
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Achievement. There was a significant effect of training tasks on achievement, F (5, 114) 
= 6.81, MSE = .58, p < .001. A Tukey HSD post hoc test of comparisons showed that the GR, EP 
group (M = 1.34) and the GR, GR group (M = 1.34) performed significantly less well than all 
other groups except for the C, C group (M = 1.92) which did not differ significantly from any 
other group. 
 Accuracy. There was a significant effect of training tasks on accuracy, F (5, 114) = 8.82, 
MSE = .95, p < .001. A Tukey HSD post hoc test of comparisons showed that the GR,GR group 
(M = 1.73) was significantly more accurate than the C, C group (M = .02), the EP,EP group (M = 
.10), and the EP, GR group (M = .60) which did not differ significantly from each other. The EP, 
GR group only differed significantly from the GR, GR group. 

Efficiency. There was a significant effect of training tasks on efficiency, F (5, 114) = 
10.03, MSE = 466.50, p < .001. A Tukey HSD post hoc test of comparisons showed that the C, C 
group (M = 27.54) performed significantly worse than all other groups while the GR, GR group 
(M = 69.04) was significantly more efficient than the C, C group and the EP, EP group (M = 
47.41). The EP, EP group only differed significantly from the C, C group and the GR, GR group. 

Speed. There was a significant effect of training tasks on speed, F (5, 114) = 14.11, MSE 
= 4.02, p < .001. A Tukey HSD post hoc test of comparisons showed that the C, C group (M = 
6.86) was significantly faster than all other groups. The GR, GR group (M = 2.26) and the GR, 
EP group (M = 2.61) were significantly slower than all other groups except for the ED, ED group 
(M = 3.83) which only differed from the C, C group.  
 
Discussion    
 
 Experiment 3 compared purely explicit training (GR) to purely implicit training (EP) and 
integrated training (ED). It also examined various mixtures of training type across two sessions. 
The results followed the pattern of the earlier experiments in that exposing people to a diagram 
of the grammar (GR or ED) generally led to slower but more accurate responding on the cued-
generate test. Memorizing the grammar without encoding exemplars during training (GR) led to 
the highest level of accuracy and the slowest responding. Purely implicit training led to fast 
responding with low accuracy.  The integrated training was in between, having higher accuracy 
and lower speed than EP, and lower accuracy but higher speed compared to GR. 
 Whereas, in the earlier experiments, achievement (number of strings generated) was 
nearly equivalent across groups, in this experiment large differences occurred. The pure explicit 
(GR, GR) group had lower achievement, even compared to the control group who had no 
training. However, the implicitly trained (EP, EP) group and the integrated training (ED, ED) 
group were able to generate more strings than the explicitly trained (GR, GR) group or the 
control (C, C) group in Session 2. 
 Interestingly, the groups exposed to mixed training across sessions tended to perform like 
the pure groups who had similar training in Session 1. Consequently, the GR, EP group did 
poorly on the achievement measure (as did GR, GR); and the EP, GR group successfully 
generated as many strings as the EP, EP group. Thus, it appears that the type of training received 
initially tends to dominate when training type is changed. 
 



 
 

  49

Simulation of Experiment 3 with CLARION 
 
 In this section we simulated our human data from Experiment 3 with CLARION, an 
integrative model with a dual representational structure (Sun et al., 2001; Sun, 2002). As 
mentioned before, the model consists of two levels: the top level encodes explicit knowledge and 
the bottom level encodes implicit knowledge. The purpose of the simulation was to see if a 
model using dual representational structures could capture the key features of our data.  No 
attempt was made to fine tune the fit of the model by varying parameters, because at this stage 
we are only interested in the overall features of the data. 
 As mentioned before, the inaccessible nature of implicit knowledge is captured by the 
subsymbolic distributed representations provided by a backpropagation network (Rumelhart et 
al., 1986). This is because representational units in a distributed representation are capable of 
accomplishing tasks but are subsymbolic and generally not individually meaningful (see 
Rumelhart et al., 1986; Sun, 1994); that is, they generally do not have an associated semantic 
label. This characteristic of distributed representation accords well with the inaccessibility of 
implicit knowledge. 

In contrast, explicit knowledge may be captured in computational modeling by a 
symbolic or localist representation (Clark & Karmiloff-Smith, 1993), in which each unit is easily 
interpretable and has a clear conceptual meaning (i.e., a semantic label). This characteristic 
captures the property of explicit knowledge being accessible and manipulable (Smolensky, 1988; 
Sun, 1994). 

This radical difference in the representations of the two types of knowledge leads to a 
two-level model whereby each level using one kind of representation captures one corresponding 
type of process (either implicit or explicit). The model may select to use one level or the other, 
based on current circumstances (e.g., experimental conditions; see Sun, 2002 for details). When 
both levels are used, the outcome from the two levels may be combined through some stochastic 
selective processes that may be partially domain specific (Sun, 2002).  

At each level of the model, there may be multiple modules, both action-centered modules 
and non-action-centered modules (Schacter, 1990; Moscovitch & Umilta, 1991). The reason for 
having both action-centered and non-action-centered modules at each level is because action-
centered knowledge (roughly, procedural knowledge) is not necessarily inaccessible directly, and 
non-action-centered knowledge (roughly, declarative knowledge) is not necessarily accessible 
directly. Although it was argued by some that all procedural knowledge is inaccessible directly 
and all declarative knowledge is directly accessible, such a clean mapping of the two 
dichotomies is untenable in our view. 

 At the bottom level of the non-action-centered subsystem, experienced strings (as 
presented to subjects or sampled from presented grammar diagrams) are used to train an 
associative memory made up of a backpropagation network. The network maps input to output; 
in this particular case, it maps some partial strings (each of which is a part of an experienced 
string) to the full experienced string. This associative mapping allows implicit grammatical 
knowledge to develop. This method of training can be justified based on the fact that such 
associative learning can be easily performed from observing a given string and it can provide the 
needed implicit grammatical knowledge (as embedded in the network weights). 
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At the top level, experienced strings are encoded as associative rules. For example, if a 
string ``S C P V" is experienced, the following three rules may be encoded there: S->C, C->P, P-
>V.   

The outcome from the model can be either from the bottom level or from the top level. 
However, the bottom-level implicit processes are significantly faster than the top-level explicit 
processes (see Schneider & Oliver, 1991; Hunt & Lansman, 1986; Sun & Zhang, 2001). In 
CLARION, response time is determined by parameters that specify the time lag of each step of 
associative memory retrieval at the bottom level, and the time lag of each step of rule application 
at the top level. 

For the explicit/explicit (GR,GR) group, the top level is mainly responsible for generating 
the outcome during test. This is because, given the initial experimental setting during training, 
the system was configured in such a way that mainly the top level is used, due to the fact that this 
experimental setting encourages an explicit mode because of the presentation of grammar 
diagrams (and thus grammatical structures) to subjects during training. The cross-level 
combination parameters were automatically set during training in a way that supports this 
configuration. During test, the top level uses learned rules to attempt to complete each given 
partial string. That is, given the test cue, it searches for a possible completion guided by the rules 
at the top level, using depth-first search with backtracking. For example, given a partial string ``S 
_ _ V", the search has to go through all the rules in the form of S->x, or in the form of x->V, 
where x can be any letter, and many other similar rules (e.g., concerning the relation between the 
second and third letters). This search process is slow, but the outcome from the top level is rather 
accurate. When a completion of a partial string is found, and it is completely consistent with the 
rules available, the completed string is used as output. However, if a completion is impossible 
using given rules at the top level (due to the lack of applicable rules), the model attempts to 
complete as many positions as possible (it compares different partial completions and chooses 
the most complete one). Then, the bottom level is used. The partially completed string generated 
thus far by the top level is used as input to the bottom level to come up with a full string. Then, 
this (guessed) completion is used as output.   

For the implicit/implicit (EP, EP) group, during test, the bottom level is responsible for 
generating the outcome. This is because, given the experimental setting during training, the 
system is configured in such a way that mainly the bottom level is used, due to the fact that this 
experimental setting during training encourages an implicit mode, through repeatedly presenting 
training instances. The cross-level combination parameters were automatically set during 
training in a way that supports this configuration. During training, the bottom level uses an 
associative memory (in the form of a backpropagation network) to map a given partial string 
(test cue) to a full string that is a likely completion of the partial string. This way of capturing 
implicit learning during training is especially appropriate, considering the fact that subjects in 
this task marked experienced strings on a bubble sheet, which naturally led to multiple partial 
strings. The bottom level is, generally speaking, less accurate but much faster.  

For the integrated training (ED,ED) group, a combination of the two levels was used, 
because the experimental settings involve both implicit training and explicit training, due to the 
use of both repeated presentation of strings and the presentation (and tracing) of grammar 
diagram. During test, the combination process of the two levels proceeds this way: The bottom 
level generates candidate completions of partial test strings; then the top level checks each of 
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these strings using the rules already learned at the top level. The check by top-level rules is 
carried out through straightforward application of relevant rules, without any backtracking. For 
example, if ``S C P V" was suggested by the bottom level, at most three rules may be applied: S-
>C, C->P, P->V, if these rules do exist at the top level. Thus, in this case, the top level works 
faster than that of the explicit/explicit (GR,GR) group because in the latter case, there is no 
suggested string from the bottom level that is available.   

If all the relevant rules are available and consistent with the candidate completion of the 
given partial string as generated by the bottom level, then that completion is used as output. If 
any of these rules are absent, an alternative rule will be used, which corrects the position that 
failed validation. In this case, although the bottom level works at a fast pace, the top level is 
slower. But because there is no full-blown depth-first search with backtracking, the top level is 
not as slow as in the case of the explicit/explicit (GR,GR) group. But due to multiple applications 
of rules, it is definitely slower than the bottom-level implicit processes alone. So, the final 
outcome is, on average, at a speed somewhere between the implicit/implicit (EP,EP) group and 
the explicit/explicit group. 

We made the simplifying assumption that the implicit/explicit (EP,GR) group is 
essentially the same as the implicit/implicit group in terms of using mainly the bottom level in 
generating responses during test. This is because the initial implicit experimental setting during 
the first training session may have locked that group into using mainly the bottom level the same 
way as the implicit/implicit group. The cross-level combination parameters were set during the 
first training session, which are unlikely to change. 

Likewise, we made the simplifying assumption that the explicit/implicit (GR,EP) group is 
essentially the same as the explicit/explicit group in terms of using mainly the top level in 
generating responses. This is because the initial explicit experimental setting during the first 
training session may have locked that group into using mainly the top level in ways similar to the 
explicit/explicit group. 

To model the control/control (C,C) group, no training was done. The bottom level is used 
to generate responses. The associative memory produces essentially random guesses (due to the 
lack of training).  

The training of the bottom level, the encoding of rules at the top level, and the selection 
of outcomes from either level, the search at the top level to generate a completion or to validate a 
candidate completion are all under the control of the actions by the action-centered subsystem 
(ACS).  It makes action decisions each step of the way, in sequential order. Thus, the ACS 
directs the operation of the non-action-centered subsystem. Details regarding the ACS and its 
parameters, and the details of how it directs the NACS, are omitted here due to their complexity 
(see Sun, et al., 2001; and Sun, 2002 for more detailed descriptions). The dependent variables are 
essentially parallel to those obtained from the human data.   

The key features we were trying to capture in the simulation were that exposure to a 
diagram of the grammar either through grammar replication (GR) or exemplar diagramming 
(ED) would enhance accuracy and efficiency but such exposure would reduce speed. Plus, a high 
level of achievement could be accomplished through implicit processing (EP,EP) alone, without 
exposure to a diagram of the grammar. The results are shown in Figure 9.    

Note that simulation outcomes of different groups vary because of a number of 
independent factors: cross-level combination differences in generating responses (e.g., relying on 
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the bottom level vs. relying on the top level in generating responses), training differences (e.g., 
due to different training data used in EP vs. GR), random variations (e.g., due to random 
initializations of weights in backpropagation networks). The results in Figure 9 should be viewed 
in this light. 
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Figure 9. Experiment 3 simulation illustrates the performance of the CLARION model capturing 
the human data from Experiment 3. 

 
The simulation results for the accuracy and efficiency data are quite similar to the human 

data. In Week 2, the three highest groups in both the simulation and human data were those 
exposed to a diagram of the grammar. However, in the human data, the grammar replication 
(GR,GR) group was superior to all other groups, while in the simulation it was only slightly 
better. As expected, the groups exposed to the diagram were more efficient in both the human 
and simulation data. 

However, exposure to the diagram also reduced the speed of string generation. In both the 
human and simulation data, the control group (C,C) and the group only exposed to implicit 
training (EP,EP) were fast. However, in the human data, but not in the simulation, the control 
group was faster than the implicitly trained group. Finally, the implicit only group (EP,EP) had a 
high level of achievement in both the simulation and the human data. 
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Thus, the simulation results support the notion that a dual representational model can 
account for these data. Further studies and simulations are planned using reaction time data to 
study different ways knowledge in the two levels can be strategically applied to a task. 

Our simulation using CLARION has produced some interesting interpretations of the 
human data. These interpretations are embodied in our simulation setups as described earlier. 
They described a plausible mechanistic underpinning of human performance in this task. In 
particular, they provide an explanation of why the integrated training group performed better in 
Experiment 3. 
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Artificial Grammar Experiment 4 

 
Introduction 
   

The integrated training conditions in the preceding experiments used a form of practice in 
which learners mapped exemplars into a diagram of the grammar.  This task can be characterized 
as parsing whole exemplars into parts and placing them within the structure of the grammar 
diagram.  While this type of training provides insight into how exemplars are constructed, it 
might reduce attention to whole exemplars.  If storage of intact whole exemplars is important to 
the implicit learning process (Brooks, 1978; Whittlesea & Wright, 1997), this might not be the 
optimal form of training for integrating implicit and explicit learning.  The remaining two 
experiments changed the practice task so that the emphasis is on processing whole, intact 
exemplars.  However in the integrated training condition, an animated form of the explicit 
grammar diagram is used to prime encoding of the exemplar.   

Experiment 4 compared performance in a transfer task involving string generation 
following training.  Training was conducted through the use of three different computer games in 
which participants performed a string edit task.  The goal of all three training games was the 
same:  participants were shown a letter string and told to identify the incorrect letters in that 
string.  Their “score” was presented in terms of misses (incorrect letters that they did not identify 
as such) and false alarms (correct letters identified as incorrect).  Participants were encouraged to 
make few errors and a monetary prize was offered to the participant in each condition who made 
the fewest errors.  While the goal of the games was the same, they differed in the type of 
assistance given to the participant. 
 Participants in the letter appearance (LA) condition attempted to identify the incorrect 
letters in the string without any assistance.  They were shown a letter string at the bottom of the 
computer screen and told to select the incorrect letters in that string and click on them with the 
mouse.  As the trial progresses, the computer presents the correct string at the top of the screen, 
with each letter appearing one-by-one from left to right, until the entire string is revealed.  
Approximately 3 seconds after the trial begins, letters begin appearing at the top of the screen, 
and 500 ms before a letter appears in its position at the top of the screen, participants can no 
longer edit the letter in that position.  Thus, participants are required to make fairly quick 
decisions.   
 In the primed assist (PA) condition, participants were given the same string-edit task as 
the LA condition, but were provided an aid to prime correct choices.  Instead of the correct 
letters appearing one-by-one at the end of the trial as in the LA condition, the letters emerged 
from an unrecognizable bunch in the bottom of the screen and became recognizable as they 
slowly floated from the bottom of the screen to their correct position at the top of the screen (see 
Figure 10).  A line was drawn across the middle of the screen.  After the letters passed this 
visible line in the middle of the screen, participants could no longer select and click on letters 
they thought to be incorrect.  Like in the LA condition, participants were forced to make quick 
decisions. 
 Participants assigned to the diagram assist (DA) condition were charged with the same 
string-edit task as the other conditions, but were provided with a diagram of the finite-state 
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grammar (see figure 10) for assistance.  Instead of the letters floating to the top of the screen as 
in the PA condition, the letters appeared, one by one, in the correct order and position in the state 
diagram from left to right. Also like the other two conditions, quick decisions were required; 
after a letter appeared in the diagram participants could no longer click on the corresponding 
letter in the string. 
 
 

 
Figure 10.  Screen shots from the middle of a trial in the three practice conditions, LA, PA, and 
DA, respectively 
 



 
 

  57

 
 Following training, a transfer test using the same cued-generate task used in the previous 
experiments was used to compare performance across conditions.  Participants were required to 
generate exemplars based on two randomly selected cues.   
 
Method 
 
 Participants.  One-hundred and thirteen undergraduate psychology students taking a 
number of different courses at Louisiana State University participated in this experiment.  All 
participants were volunteers and were compensated for their participation with extra credit. 
 Materials.  This experiment used the same finite-state grammar from Mathews et al. 
(1989).  177 letter strings, or exemplars, ranging from 5 to 11 letters in length are generated by 
this grammar.  A subset of 22 exemplars was randomly selected by the computer at the 
beginning of each training phase, for each participant.  Each exemplar was seen approximately 4 
times in the training phase. 
 Design.  The design was a one-factor between subjects design with four levels:  letter 
appearance, primed assist, diagram assist, and the no-training control.  Subjects were randomly 
assigned to each of the four groups.  Attrition among subjects caused the groups to be of unequal 
size; LA (27 participants), PA (28 participants), DA (24 participants), and control (34 
participants). 
 Procedure.  Participants were tested in groups up to 5.  Each participant attended three 
sessions over the course of one week.  Data from subjects who did not attend all three sessions 
were not included in the analysis.  Sessions one and two began with a 20-min training phase 
requiring participants to perform their assigned training task.  The training phase was followed 
by a 20 min cued-generate test phase.  A retention test was given without a training phase on 
session three. 
 Testing Phase.  During the cued-generate task, the computer displayed a set of dashes, 
corresponding to the number of letters in the target letter string.  Two randomly selected letters 
from a no-yet-generated exemplar were displayed on two of the dashes.  Participants filled in 
each blank dash with a letter and pressed enter.  If the letter string generated by the participant 
did not match at least 70% of the letters in the closest not-yet-generated string, the participant 
was required to make another attempt.  If any letters matched a not-yet-generated string, they 
were displayed on this new attempt, along with the two cues from the first attempt.  The 
participant repeated this process until they had matched at least 70% of the letters.  When the 
participant reached the 70% criterion, the letter string that they created was displayed along with 
the target string and the percent of letters matched.  Each exemplar could only be generated once 
per session.   
 Participants in the test-only control were given the six letters randomly typed across the 
middle of a page.  The control participants were given the same codeword cover story and 
instructions as the other groups. 
 Participants were instructed to work as quickly as possible while still being accurate.    A 
monetary prize was offered to the participant in each condition who generated the most 
exemplars across all three sessions. 
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Results 
 
 With the exception of the training task error data, only data from session three were 
analyzed as this was the only session in which a training phase did not immediately precede the 
test phase.  The results for all five dependent measures are presented in Table 8.  The results for 
each measure are discussed. 
 
 

 
 
 

Errors 
(session 2) 

Achievement Efficiency Perfects Speed 

Control --- 0.1044 
(.0182) 

0.0388 
(.0073) 

0.0053 
(.0006) 

10.478 
(.4641) 

LA 2.0118 
(.1782) 

1.3389 
(.1881) 

0.3884 
(.0438) 

0.0413 
(.0091) 

7.3315 
(.4553) 

DA 1.1769 
(.2405) 

0.9479 
(.2474) 

0.2973 
(.0677) 

0.0936 
(.0448) 

7.618   
(.6694) 

PA 0.249   
(.0210) 

0.9268 
(.1904) 

0.2511 
(.0454) 

0.0147 
(.0036) 

9.07     
(.5727) 

 
 
 
 
 
 
 
 
 
 

 
Table 8.  Means and Standard Error (in parentheses) of Artificial Grammar Experiment 4 for 
Final Test  
 
 
 Training Errors.  Training errors were measured in terms of the number of hits and false 
alarms per trial in the string-edit task of the training phase.  A repeated-measures analysis of 
variance (ANOVA) was used to analyze these data.  There was a significant effect of sessions, 
F(1, 78) = 45.067, p < .001.  There was also a significant effect of group in session one, F(2, 76) 
=38.346, p < .001.  A Tukey Honestly Significantly Different (HSD) post hoc test of 
comparisons showed that the PA group (M=.439) made significantly fewer errors than the DA 
(M=1.944) and the LA (M=2.461).   
 Session two showed similar results.  Again, there was a significant effect of group, F(2, 
76) = 29.80, p < .001.  A Tukey HSD post hoc test of comparisons showed that the PA group 
(M=.249) made significantly fewer errors than the DA group (M=1.18), which made 
significantly few errors than the LA group (M=2.01).  
 Achievement.  We measured achievement as the number of acceptable strings (those 
matching at least 70% of the letters from the target exemplar) generated on the first attempt at 
each target exemplar per minute of the 20-min test phase.  Note that this measure of achievement 
is different from the way achievement was measured in Experiments 1-3.  We changed this 
measure because the control group simply pressed keys rapidly without knowing anything about 
the correct strings.  With this measure such random key pressing will not result in high 
achievement.  An attempt was recorded each time a participant filled in the blanks and pressed 
the enter key.     A one-way analysis of variance (ANOVA) was used to analyzed the data.  There 
was a significant effect of group F(3, 109) = 10.609, p < .001.  A Tukey HSD post hoc test of 
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comparisons showed that the test-only control group (M=.014) showed significantly lower 
achievement than the LA (M=.1.34), DA (M=.948) and PA (M=.927) groups, which did not 
differ significantly.  
 Efficiency.  Efficiency was measured as the proportion of first attempts on a target 
exemplar that generated acceptable strings.  A one-way analysis of variance (ANOVA) was used 
to analyze the data.  There was a significant effect of group, F(3, 109) = 13.51, p< .001.  A 
Tukey HSD post hoc test of comparisons showed that that the LA (M=.388), DA (M=.297), and 
PA (M=.25) groups were significantly more efficient than the control (M=0.039). 
 Perfects.  Perfects were a measure of the proportion of letter strings generated on the first 
attempt that matched 100% of the letters in the target exemplar.  A one-way analysis of variance 
(ANOVA) was used to analyze the data and showed a significant effect of group, F(3, 109) = 
3.87, p< .05.  A Tukey HSD post hoc test of comparisons showed that that the DA (M=.094) 
produced more perfect strings than the PA (M=.0147) and the control (M=.0053) groups.  The 
LA group (M=.041) did not differ significantly from any group. 
 Speed.  Speed was a measure of the number of attempts made per minute.  A one-way 
analysis of variance (ANOVA) was used to analyzed the data.  There was a significant effect of 
group, F(3, 109) = 7.796, p < .001.  A Tukey HSD post hoc test of comparisons showed that that 
the test-only control (M=10.48) responded at a significantly higher speed than the DA (M=7.62) 
and LA (M=.7.33) groups.  The PA group (M=9.07 did not differ significantly from any group. 
 
Discussion 
 
 During the training phase, each group performed the same string edit task, but with a 
different type of assistance.   Participants in the LA condition just attempted to identify wrong 
letters in the strings.  The AD condition did the same editing task, but was provided with a state 
diagram of the grammar for assistance.  Finally, the PA condition was aided by the letters rising 
to the top of the screen to prime the correct choices of letters in the string to edit.  The PA group 
far outperformed the other groups in the editing task, but did not transfer that superior 
performance to the sting generation task. 
 All three groups receiving training had higher achievement and were more efficient than 
the test-only control.  The number of perfect strings generated on the first attempt did differ 
among the trained groups.  The DA condition generated more perfects than the PA and control 
conditions.  While the DA condition generated nominally more perfect strings than the LA 
condition, the difference was not significant.  This is likely due to the large degree of within 
group variability.  It is possible that this within group variability may be decreased with more 
training.  This is explored in experiment 5. 
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Artificial Grammar Experiment 5 

  
Introduction 
 
 One typical criticism, going back to Miller (1968), of the using an artificial grammar 
paradigm to study generativity is that participants are exposed to the grammar for a very short 
period of time.  In the current experiment, participants completed four 20-min training phases 
across two weeks, compared with two 20-min session in experiment 4.  Also, participants saw 
four randomly generated 20-exemplar sets from the finite-state grammar, compared with two sets 
from experiment 4.     

Additionally, participants took two types of tests in the current experiment. The tests 
were divided into two parts, a speed portion and an accuracy portion.  During the speed test, 
participants were given 10-mins to make as many attempts as they wished.  In the accuracy test, 
participants were allowed 60 attempts and were encouraged to contemplate their responses as 
there was no time limit.  Both tests were administered on the same day (during sessions three and 
six), with the speed test followed by the accuracy test.   
 We expected that all participants would change their strategies in relation to the type of 
test given (i.e. respond slowing but accurately in the accuracy test and respond quickly in the 
speed test).  Additionally, we expected that the DA group would perform better under the slow 
pace encouraged by the accuracy test.  Conversely, it was thought that the PA group would 
perform better in the speed test, where a fast pace was encouraged. 
 
Method 
 
 Participants.  Eighty undergraduate psychology students taking a number of different 
courses at Louisiana State University participated in Experiment 4.  All participants were 
volunteers and were compensated for their participation with extra credit 
 Materials.  The same materials from Experiment 4 were used in the current experiment. 
 Design.  The design was a one-factor between-within-subjects design with four levels 
between subjects:  LA condition, PA condition, DA condition, and the no-training control 
condition.  The two within-subject factors were test type: speed test and accuracy test.  Subjects 
were randomly assigned to each of the four groups.  Attrition among subjects caused the groups 
to be of unequal size; LA (20 participants), PA (21 participants), DA (20 participants), and 
control (19 participants). 
 Procedure.  Participants were tested in groups up to 5.  Each participant attended six 
sessions over the course of two week.  Data from subjects who did not attend all six sessions 
were not included in the analysis.  Sessions one, two, four, and five began with a 20-min training 
phase requiring participants to perform their assigned training task.  The training phase was 
followed by a 20 min cued-generate test phase.  The speed and accuracy tests were given without 
a training phase on sessions three and six. 
 The same code-word cover story used in Experiment 1 was used in the current research 
and participants were told that a monetary prize would be given to whomever made the fewest 
errors in the training phase and found the most code-words in the test phase.  
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Results 
 
 With the exception of the training task error data, only the data from six were analyzed, 
as that is where the treatment effect was strongest.  The results for all five dependent measures 
are presented in Table 9.   
 
Table 9. 
Results from Final Test Performance in Artificial Grammar Experiment 5 
 
 Errors 

(session 5)
Achievement Efficiency Perfects Speed 

Control speed test --- 1.04 0.227 0.0189 4.0579 
Control accuracy test  1.299 0.2854 0.0245 3.8118 
LA speed test 1.8077 2.07 0.4194 0.0654 4.46 
LA accuracy test  2.16 0.4752 0.0791 3.9267 
DA speed test 0.8263 3.14 0.5488 0.238 5.095 
DA accuracy test  3.0 0.5845 0.2633 4.6358 
PA speed test 0.2579 2.96 0.5332 0.051 5.12 
PA accuracy test  3.244 0.5845 0.0762 5.177 
 
 
 Training Errors.  A repeated-measures analysis of variance (ANOVA) was used to 
analyze these data.  There was a significant effect of sessions, with errors decreasing from 
session one to session four, F(3, 159) = 24.605, p < .001.  This factor did not interact with group, 
F(6, 159) = 1.012, ns.  There was also a significant of group at each session.  The pattern of 
results was similar across all four sessions, so we will present only the mean error score for each 
group across all four sessions. F(2, 55) = 12.151, p<.001.  A Tukey HSD post hoc comparison 
showed that the PA group (M=.26) and DA group (M=.83) made significantly fewer errors than 
the LA group (M=1.8). 
 Achievement.  A one-way analysis of variance (ANOVA) was used to analyze the speed 
test data.  There was a significant effect of group F(3, 74) = 5.106, p < .01.  A Tukey HSD post 
hoc test of comparisons showed that the DA (M= 3.14) and PA (M=2.94) groups had higher 
achievement than the test-only control (M=1.29).  The LA group (M=2.16) did not differ 
significantly from any other group. 

The accuracy test data were analyzed in the same manner, and showed a significant effect 
of group, F(3, 74) = 4.199, p < .05.  A Tukey HSD post hoc test of comparisons showed the 
same pattern as in the speed test.  The DA (M=3.0) and PA (M=3.24) groups had higher 
achievement than the test-only control (M=1.29).  Again, the LA group (M=2.16) did not differ 
significantly from any other group. 

A repeated measures ANOVA with test type as the repeated factor and group as the 
between factor showed no significant difference between achievement on the speed (M=2.34) 
and accuracy (M=2.45) tests, F(1, 76) = 1.69, ns.  No significant interaction between group and 
test type was found either, F(3, 76) = 1.856, ns.   
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 Efficiency.  A one-way analysis of variance (ANOVA) was used to analyze efficiency 
during the speed test.  There was a significant effect of group F(3, 74) = 5.032, p < .01.  A Tukey 
HSD post hoc test of comparisons showed that the DA (M= 0.55) and PA (M= 0.53) groups had 
higher achievement than the test-only control (M= 0.23).  The LA group (M= 0.43) did not differ 
significantly from any other group. 

Efficiency data from the accuracy were analyzed in the same manner as the speed test.  
Again, there was a significant effect of group, F(3, 74) = 3.967, p < .05.  Tukey HSD post hoc 
comparison showed that the DA (M = 0.59) and PA (M = 0.57) groups had higher efficiency 
than the test-only control (M=0.29).  The LA group (M= 0.48) did not differ significantly from 
any other group. 

A repeated measures ANOVA with test type as the repeated factor and group as the 
between factor showed significant difference between achievement on the speed (M= 0.44) and 
accuracy (M=0.49) tests, F(1, 76) = 9.173, p < .01.  No significant interaction between group and 
test type was found, F(3, 76) = 0.178, ns. 
 Perfects.  There was a significant effect of group on the speed test data, F(2, 74) = 6.252, 
p<.01.  Tukey HSD post hoc procedures showed that the DA group (M=0.24) had a significantly 
higher number of perfect entries on their first attempt than the PA (M=0.063), LA (M=0.056), 
and test-only control (M=0.019) groups.  No other pairwise comparisons were significant. 

There was also a significant effect of group in the accuracy test, F(3, 74) = 7.318, p < 
.001.  Tukey HSD post hoc procedures revealed the same pattern as in the speed test.  The DA 
group (M=0.26) had a significantly higher number of perfect entries on their first attempt than 
the PA (M=0.085), LA (M=0.08), and test-only control (M=0.025) groups.  No other pairwise 
comparisons were significant. 

A repeated measures ANOVA with test type as the repeated factor and group as the 
between factor showed significant difference between number of perfects on the speed (M= 
0.096) and accuracy (M=0.116) tests, F(1, 76) = 8.339, p < .01.  No significant interaction 
between group and test type was found, F(3, 76) = 0.480, ns. 

Speed.  A one-way ANOVA found a significant effect of group on the speed test, F(3, 74) 
= 3.137, p < .05.  Tukey HSD post hoc procedures revealed that the test-only control group 
(M=10.93) made more attempts than the PA group (M=8.45).  Pairwise comparisons involving 
the DA (M=8.86) and LA (M=9.22) groups were not significant. 
 There was also a significant effect of group on the accuracy test. F(3, 74) = 3.14, p < .05.   
Pairwise comparisons using Tukey post hoc procedures showed that the test-only control 
(M=9.59) made more attempts than the LA group (M=7.4).    Pairwise comparisons involving 
the DA (M=7.9) and PA (M=8.13) groups were not significant. 

A repeated measures ANOVA with test type as the repeated factor and group as the 
between factor showed significant difference between number of attempts made on the speed 
(M=9.3) and accuracy (M=8.2) tests, F(1, 76) = 33.391, p < .001.  No significant interaction 
between group and test type was found, F(3, 76) = 2.526, ns. 

 
Discussion 
 
 The results of Experiment 5 follow those from Experiment 4 with one important 
exception.  The DA group, which combined experience with exemplars and knowledge of the 



 
 

  63

grammar’s structure had a greater number of perfect responses than all other conditions.  This 
shows that with a lengthy training phase, model-based processing can result in performance that 
is as fast as memory-based processing while at the same time being more accurate.   
 No differences were found between on any of the dependent measures between the speed 
and accuracy tests.  It is possible that with the large amount of training our participants received, 
they were so accustomed to using one strategy, that they were unable to switch strategies when 
the demands of the task changed.  Or, they may have felt that their strategy for one test was also 
appropriate for the other and there was no need to switch.    
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General Discussion 

 
 Now it is time to have a general discussion of the studies in both process control and 
artificial grammars domains, including results from both human experiments and computational 
simulations.  Below we will highlight a few points that we consider particularly important or 
prominent from our studies. 

In the process control task, learners appear to acquire correct responses more from 
implicit induction rather than explicit rule generation.  In fact, our college level participants were 
particularly bad at figuring out the relatively simple equation that determined reactor 
temperature, even when they were assisted by giving hints.  Yet a simple cue that includes three 
good examples, such as, “If current temperature is 10,000 then use 800 pellets”, was effective in 
enhancing learning. Any form of concurrent reflection was found to have a negative impact on 
learning in this paradigm.  However, post task reflection was somewhat beneficial early in 
learning.   
 Five experiments contrasted grammar learning following various combinations of purely 
implicit training (EP), purely explicit training (GR) and integrated training (ED). Implicit 
training consisted of copying exemplars into a response sheet that required attention to the serial 
order of letters in each string. Purely explicit training consisted of memorizing a transition 
diagram of the grammar. The integrated training consisted of copying exemplars into the 
transition diagram. The cued-generate test was used to test the ability of participants to generate 
a wide range of grammatical strings under conditions where perfect performance was not 
required (70% match to a valid string was acceptable).   
 The overall pattern of results can be summarized very simply: Implicit training led to fast 
but relatively inaccurate generation of strings and explicit training led to very slow but relatively 
accurate string generation.   
 The notion that implicit learning is very inflexible was not supported. Groups that only 
received implicit training (the EP task) performed very well on the cued-generate test in terms of 
total number of strings generated (the achievement measure). In fact, in Experiment 3, the 
implicit group successfully generated nearly twice as many strings as the purely explicit trained 
group (the GR group).   
 Experiments 2 and 3 on artificial grammars also provide interesting findings concerning 
attempts to mix the two types of training. Two types of mixing were employed. In some cases 
purely implicit training and purely explicit training were switched across two sessions 
(Experiment 3). In other groups implicit and explicit training were integrated into one type of 
training exposing participants to exemplars and mapping their structure onto a diagram of the 
grammar (the ED task). Surprisingly, the integrated training did not lead to greater achievement 
than purely implicit training.   Also, in Experiment 2, both groups that received integrated 
training (ED) in one of the two sessions and implicit training in the other (EP,ED or ED,EP), 
ended up showing the relatively fast but inaccurate performance associated with purely implicit 
learning. This pattern suggests that participants preferred the implicit mode when exposed to 
both implicit and integrated training. 
 The results were a bit different in Experiment 3 where purely implicit (EP) training was 
mixed across sessions with purely explicit (GR) training. Regardless of training order, both of 
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these mixed groups showed the increased accuracy and slower speed associated with explicit 
learning on Session 2. However, the group that got explicit training first (GR,EP) did not reach 
the achievement level associated with purely implicit training or implicit followed by explicit 
training (EP,GR). In some sense this group got the worst of both types of training - they ended 
up being relatively slow and inaccurate.  It is a bit alarming that this pattern of training (explicit 
followed by implicit) might best characterize training outside the laboratory. This would be the 
pattern associated with formal schooling (explicit training) followed by experience with many 
cases (implicit training) when one gets a job. 
 Another question raised by this research concerns the tendency to prefer the implicit 
mode when exposed to a mixture of integrated and implicit training. Perhaps a similar 
phenomenon would occur outside the laboratory when people are explicitly trained in school and 
then practice on their job. That is, there might be a tendency to move toward the implicit mode as 
one gains experience and this shift might lead to decreased accuracy of judgment. One recent 
research of radiologists (Beam, Conant, & Sickles, 2003) supports such a decrease in accuracy in 
performance associated with practice following completion of formal education. This research 
found a small but significant drop in cancer detection for each year beyond a doctor’s residency 
training.  We are currently planning experiments to explore this possibility. 
 Experiment 5 found that the best of both worlds could be achieved by using an animated 
diagram of the grammar to prime learning during practice.  In this case the group that processed 
exemplars while simultaneously seeing the string diagramed in the animation achieved both high 
speed and accuracy.  The use of explicit structure to enhance rather than compete with implicit 
learning appears to be a promising path for more research. 
 The practical messages of this research for training are straightforward: If only accuracy 
matters use explicit training. If only speed counts, use implicit training. If both speed and 
accuracy are important the mixed training may be best. The best results were obtained in using 
an animated diagram of the grammar appearing while learners were concentrating on finding and 
correcting errors quickly in whole grammar strings.  The difference in this form of training from 
the integrated form of training used in the earlier experiments (which produced good but not best 
levels of performance) appears to be related to the emphasis on speed in training and having 
learners’ attention focused on synthesizing whole strings (the implicit mode) rather than 
analyzing strings into the diagram (the explicit mode).  We believe that this emphasis on quickly 
and implicitly processing whole strings and using the explicit structure (diagram) to help 
understand how strings are made facilitates memory-based implicit processing that is essential 
for implicit learning (Domangue, Mathews, Sun, Roussel, & Guidry, 2004).  

The above points are being verified through computational simulations using the 
CLARION cognitive architecture. Moreover, the CLARION simulation of process control has 
led us to formulate and test those hypotheses concerning process control learning in the first 
place. At the same time, discrepancies between theoretical models and experimental data have 
led to new designs of further human experiments. It is particularly important that simulations in 
various domains, ranging from process control and artificial grammars to Tower of Hanoi, all 
indicated the importance of the implicit/explicit interaction in enhancing skill acquisition and 
training. Specifically, the findings that explicit processing should complement but not compete 
with implicit processing have been confirmed by simulations in process control, artificial 
grammar, minefield navigation, Tower of Hanoi, and a variety of other domains (Sun 2002, Sun 
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et al 2001, Sun and Zhang 2003, 2004). It appears that there is a useful lesson that can be drawn 
from all the studies above, including both human experiments and computational modeling and 
simulation.
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Summary and Conclusions 

 
Let us summarize the work in both process control and artificial grammars domains, 

including summarizing the results from both human experiments and computational simulations, 
and draw a few general conclusions. 
              The current work advances basic research in the areas of learning and cognition.  One 
product of this effort is a conceptual framework, which addresses the ways these two types of 
knowledge interact to produce expertise (e.g., in tasks that require both speed and accuracy), 
which is an open, but important, issue.  This framework (the CLARION cognitive architecture) 
suggests that human performance may be controlled by either a subconceptual knowledge base 
(the implicit mode) or application of a symbolic conceptual mental model (the explicit mode).  
Implicit control is fast but prone to error, particularly in early levels of skill acquisition.  Explicit 
control is more accurate but slow to apply, and prone to loss by forgetting over a retention 
interval.  We have found that reflection about how one is performing the task can be beneficial 
following short periods of practice.  However, it is often even more effective when learners are 
provided hints that direct their reflection in productive directions. These are important findings 
that advance our understanding of the interaction of the two types of knowledge. 

A computational cognitive architecture, CLARION, significantly different from other 
existing cognitive architectures, is developed in this work to simulate and capture a range of 
quantitative data that are related to the interaction, based on the above ideas.  This will help us to 
capture and explain (and eventually to predict) training and learning processes.  We carry out 
simulation experiments in the domains of process control tasks, artificial grammar learning tasks, 
as well as many other tasks (Sun 2002), and generate new insight and interpretations that can 
further explicate the interaction between implicit and explicit processes.  These outcomes (data, 
models, and theories) provide a more detailed, clearer and more comprehensive perspective on 
skill learning.  Our models and theories will be useful in better understanding human skill 
learning, as well as in helping to improve learning processes.  Our models and theories may also 
be useful in understanding individual differences in skill learning (based on the implicit/explicit 
interaction).  Since the CLARION cognitive architecture and simulations based on it have been 
published in many journal papers and books (see, e.g., Sun 2002, Sun et al 2001), we did not 
describe most of them, except highlighting two most relevant simulations earlier. 
 The results of our experiments support our theory/model of the interactions of implicit 
and explicit learning processes during skill acquisition.  Strictly implicit training is effective for 
fast responding, but is prone to error.  Strictly explicit training results in slow but accurate 
responding.   A balance of both worlds (fast and accurate responding) can be obtained by using 
structural models in training that emphasize fast but accurate responding.  Under these training 
conditions, learners acquire the ability to rely on implicit knowledge for generating an initial 
sketch of a solution and using explicit knowledge to fill in gaps or check possible errors. 
 Our research also demonstrates that implicitly acquired knowledge can be much more 
flexible than existing research suspected.  It was believed that implicitly acquired knowledge 
would not generalize beyond experienced cases.  However, we found that people could acquire 
knowledge from artificial grammar cases that could be recombined to generate a range of valid 
strings not yet experienced.  This form of learning would be especially valuable if combined with 
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external help that could correct minor errors, such as the computer did for our participants during 
the artificial grammar generation task (e.g., whenever a response reached an acceptable level it 
was corrected by the computer). 
 In the process control task, learners appear to acquire correct responses more from 
implicit induction rather than explicit rule generation.  In fact, our college level participants were 
particularly bad at figuring out the relatively simple equation that determined reactor 
temperature.  Yet a simple cue that includes three good examples, such as, “If current 
temperature is 10,000 then use 800 pellets”, was effective in enhancing learning.  Perhaps these 
hints showed learners how to look at the task in terms of finding good cases.  Reflective thinking 
in between practice sessions did enhance performance early in learning.  Therefore, the type of 
training recommended for this type of complex process control task consists of short periods of 
fast, intense practice followed by short intervals of reflection.  Also providing learners of a few 
examples of good responses to specific situations can be very effective. 
 These results should be further developed, because they may have significant 
implications for Army training and for other applied areas of the Army. The knowledge gained 
from the basic research would apply when developing training programs, with a better 
understanding of the cognitive processes involved in skill acquisition, both implicit and explicit, 
and when addressing how to increase training effectiveness.  In particular, this basic research 
program addresses an important issue when developing training programs, how implicit and 
explicit processes interact and impact skill learning and performance.  Much more work is 
needed in this area.  Similarly, focus of research in decision making has been on cognitive skills 
training methods that facilitate rapid, accurate decision-making.  Although these are different 
foci, this basic research could inform the applied research on important considerations in 
decision-making. 
 Some of the above hypotheses have been verified through computational simulation 
using CLARION. In particular, the CLARION simulation of learning process control has led us 
to formulate and test those hypotheses concerning process control learning. At the same time, 
discrepancies between theoretical models and experimental data have led to new designs of 
further human experiments. It appears that CLARION has the potential to be a comprehensive 
theory of a range of psychological tasks/domains (Sun 2002). Future research should be 
conducted to further develop and validate this approach. 
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