

DARPA contract N66001-00-C-8602 1

Self-Protecting Mobile Agents Obfuscation Report
Final report

Larry D'Anna
Brian Matt

Andrew Reisse
Tom Van Vleck
Steve Schwab

Patrick LeBlanc

Network Associates Laboratories

Report #03-015

June 30, 2003

Abstract

This document describes our investigation into software obfuscation for building Self-
Protecting Mobile Agents (SPMA).

The original goal of the SPMA project was to develop automated tools to protect mobile
agents from attacks by malicious hosts. In development of those tools, we realized
obfuscation could not be relied upon to give a reasonable amount of security. Because of
this, we redirected the SPMA project to studying obfuscation.

Our conclusions include theoretical results about obfuscation and evidence that supports
those results. Our most important conclusion is that there is no general obfuscation
problem (i.e. a definition and theory of obfuscation that will always apply). We believe
that all automated obfuscation is merely emulation; this will certainly be an area of future
research.

We conclude that if software obfuscation is to be useful, it must be employed for a
specific purpose (not “obfuscate any program protecting all information”), and use
fundamentally new ideas. Future theoretical work on obfuscation will have to define it
clearly, and use a restricted set of programs, so that the result of Barak et al. [BGI+01]
does not apply.

In the course of developing obfuscation tools, we evaluated the properties of
programming languages under several obfuscating transforms, concluding that strict type-
safe programming languages were the best for obfuscation. In addition, programs
specifically designed to be obfuscated will give better results, as the programmers will
avoid implementing unobfuscatable constructs.

1 Introduction
Mobile agent technology has the potential to revolutionize network software, but mobile
agent technology is fundamentally security-limited. Mobile agents could provide key
information capabilities, such as autonomous global searching, information filtering,
distributed sensing, price shopping, active networks, micro-transactions, manufacturing,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 2

and large-scale system configuration. As currently conceived, however, many mobile
agent solutions cannot be adopted because of security threats: hosts and networks must be
protected from malicious agents; agents must be protected from other agents; and agents
must be protected from malicious hosts. Of particular concern is that many agent
applications require agents to execute on untrusted hosts that have an economic interest
in modifying agent behavior or stealing secrets (like credit card numbers) carried by
agents. While substantial progress has been made in protecting hosts from agents (e.g.,
sandboxing [GMP+97], software fault isolation [WLA+93], proof-carrying code [Nec97],
operating system access controls), and in protecting agents from other agents (agent
separation implemented on hosts, defensive agent KQML interfaces), protection of agents
from malicious hosts remains a major problem for agent technology. The key question
is: How well can an agent be protected when it is running on a malicious host? If mobile
agents cannot be protected, of what value are they?

Computer security studies methods to ensure that a computer system will behave the way
the operator wants it to, instead of the way somebody else wants it to. Mobile agent
systems (and obfuscation in general) want to achieve the opposite: ensuring a computer
system will behave the way the programmer wants it to, instead of the way the user wants
it to. In order to derive security results, we make assumptions about the computers,
networks, and software involved. Traditionally the most basic of these assumptions is
that software of our choice is running on our computer, and that we trust the hardware
and all the lower-level layers of software, such as operating systems. Mobile agents
cannot trust any of those.

Our research initially aimed to provide a technical basis for building trustworthy agents
that perform their missions with confidence even though they sometimes execute on
untrusted hosts. Several key requirements must be satisfied for agent systems to realize
their potential:

High Mobility. Agents must be free to migrate to, and execute on, a wide variety
of hosts that are unknown to the users who launched the agents. Without such
mobility, agents will be unable to perform the searching and commercial
operations often envisioned for agent technology.

Detached Operation. Agents must operate autonomously, without the need for
constant communication with users, and, preferably, without constant
communication with trusted infrastructure elements which may or may not
exist.

Extended Deployment Periods. Agents must function for extended periods of
time, thus allowing users to launch long-term “watcher” agents, that take action
only if specified criteria have been met, and other long-term service agents.

Safe Execution. Agents must be free from integrity attacks conducted by
malicious hosts or other agents, and must be protected from faulty execution or
non-execution by malicious hosts. Agents will also be much more useful if they
can carry secrets (such as cryptographic keys or user decision information, such
as how much a user would be willing to pay for merchandise).

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 3

Realistic Infrastructure Requirements. Agent properties must not rely on
unrealistic infrastructure assumptions, such as the assumption that all hosts are
trustworthy, that implementation algorithms will remain secret, or that every
agent execution environment is implemented by a tamper-resistant hardware
peripheral.

These goals cannot be simultaneously met using current technology.

1.1 Technical Approach

We set out to develop tools that translate an individual software agent into a distributed
set of tamper-resistant agentlets that is never entirely vulnerable to a single host, and that
can detect and recover from compromise of a subset of its elements, providing strong
protection by combining three core techniques:

Distributed Agent State. Each agent would be partitioned into a set of
communicating programs (agentlets) executing on independent hosts. Critical
information would be spread across the agentlets, thus limiting exposure to any
proper subset of the hosts.

Obfuscation with Periodic Regeneration. Each agentlet’s code and data were to
be obfuscated using a variety of techniques (e.g., randomly selected, but
equivalent, algorithms and data representations). We initially believed that
obfuscation could delay, but not prevent, subversion of agents via reverse
engineering. Consequently, we planned to have agentlets periodically expire
and be replaced by differently obfuscated versions so that a successful attack on
an agentlet was impossible before it expired. Regeneration was going to use
information from multiple agentlets (hosts), and hence not be vulnerable to
reverse engineering by any single host.

Monitoring and Recovery. Agentlets would be made self-monitoring and able to
monitor other agentlets. Using challenge/response techniques, agentlets could
automatically exclude compromised agentlets, report the identities of tampering
nodes, and replace lost agentlets.

1.1.1 Original Tasks
Our initial plan was to carry out this research in three tasks:

Task 1: Develop source-code translation tools to convert an individual software
agent into a set of replicated communicating agentlets that collectively manage
their navigation to avoid dependence on some hosts that may be colluding, as
specified in an agent security specification describing the agentlet protection
policies.

Task 2: Develop powerful object-code obfuscation tools that can be employed to
protect the code of an agentlet from reverse engineering for some minimum
time, in order to prevent reverse engineering and ensure that the obfuscation
process itself was protected from tampering. Ensure that any progress an

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 4

attacker made in reverse engineering an old version of an agentlet conferred no
useful information about reverse engineering a subsequent version of it.

Task 3: Extend agentlets to employ fine-grained monitoring for tamper detection,
and to use mutually-suspicious agreement protocols to identify and exclude
potentially subverted agentlets, thus providing a basis for a community of
agentlets to cooperatively protect themselves from host-based attack. Perform
periodic re-obfuscation of all agentlets often enough that an attacker would be
unable to ever get enough information to interfere with the agentlets.

1.2 Accomplishments of SPMA Project

We carried out and reported on the first two tasks, as follows:

1.2.1 Agent division
The team built and demonstrated an application of IBM's freely available Aglets agent
system technology (www.aglets.org) that divided a mobile agent into a group of agentlets
that cooperated to produce the result of the original agent. The Self-Protecting Mobile
Agent toolkit takes the binary of an existing mobile agent, and with the help of an input
policy and a library of mobile agent helper functions, transforms it into an equivalent
collection of cooperating agentlets.

The transformation of an existing agent into a collection of cooperating agentlets was
achieved by exploiting the fact that agents in Aglets and other agents system have life
cycles. The life cycles delineate creation, cloning, dispatching, and messaging phases in
the agentlet. By augmenting and controlling the code that initiates and handles these
phases, we created the means to change an agent into a collection of cooperating
agentlets, as described in our Architecture Report [BMK+01].

1.2.2 Obfuscation
The team built a modular framework for manipulating Java bytecode, and wrote several
powerful obfuscation operators for it. We extended the research of Collberg et al.
[CTL97a], [CTL98a], [CTL98b], [CT00] and Wang et al. [W00], [WHK+00],
[WDH+01] to obfuscation of Java programs, and built an extensible tool, JBET (Java
Binary Enhancement Tool), that supports the obfuscation techniques they describe and
additional obfuscation techniques proposed by us. Our tool and its techniques were
described in our Obfuscation Techniques Report, [BDM+01].
JBET is described in Appendix A.

1.3 Weaknesses in the SPMA Approach

To convince an agent creator to trust the system, we would have to provide an argument
that the obfuscation was guaranteed unbreakable for some length of time, and that re-
obfuscation would occur before the agentlets’ protection could be defeated. The argument
should include explicit assumptions about the resources an attacker might employ to

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 5

overcome the protection, and the scalability of the system’s protection with respect to
number and size of agentlets, number and power of execution nodes, and
communications bandwidth. The analysis should be clear about what is assumed to be
secret: a system that depends on keeping the method of obfuscation secret from the
attacker has more vulnerability than one that assumes the attacker may know the
obfuscation method, but not the particular keys or seeds used to select the particular
obfuscation.

As we prepared to implement Task 3 of the original plan, we found several problems.
The most serious problem was that we could not find a way to guarantee that any
obfuscation method could resist deobfuscation for any specified minimum time. We also
realized that there are several attacks against the agent system that give the attacker more
time to deobfuscate and more ability to observe the agentlets than we had originally
thought.

1.3.1 Breaking Obfuscation
We discovered a number of reasons to believe that obfuscation might not be an adequate
protection mechanism for agentlets.

In order for our scheme to be certain to work, we had to be able to ensure that an attacker
could not deobfuscate an agentlet for some safe period given assumptions on the
computing power available to the attacker. Without a proof that the agentlets were safe,
the whole protection methodology reduced to wishful thinking.

In an important paper at Crypto 2001, Barak et al. [BGI+01] discussed the impossibility
of obfuscating programs. Their result showed that obfuscation was mathematically
impossible, for a specific formulation of the problem, and raised the question of whether
the methods we planned to use could work. Some theoretical claims by other researchers
that certain obfuscation methods were NP-hard appeared to be based on incorrect
reasoning [Schwab03].

We investigated the strength of our own obfuscation methods by building tools to
deobfuscate code obfuscated by our most powerful methods, and discovered that it was
disappointingly easy. Section 3 of this report describes these experiments. Further study
of obfuscation methods proposed by others showed that a determined adversary could
probably build similar deobfuscation methods for all such obfuscators.

Most proposed obfuscation, including the methods we proposed, defends against static
analysis of the obfuscated program. When we considered dynamic analysis of programs,
often used in practical reverse engineering, we found that most obfuscation methods
provided little protection.

1.3.2 Rerun Attacks
Our initial agent-obfuscation scheme assumed that periodic re-obfuscation of the
agentlets would prevent attackers from learning anything about the obfuscated program.
Further consideration found some attacks on this scheme that we would have to provide
defenses for.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 6

Since a program is ultimately controlled by the hardware it runs on, and COTS virtual
machines and simulators are readily available which can do things like save machine
state to disk, it is possible to isolate a program and replay execution scenarios as many
times as is necessary to understand the program or find its weaknesses. Obfuscation
cannot prevent the program from being reverse engineered this way, however, it can
prevent a malicious host from observing or predictably tampering with code and data in
the running system.

Depending on the obfuscation used, the locations of the code and data the attacker is
interested in could be different between versions. Assuming an attack could not happen
within a specific time of obtaining an agentlet, the attacker would always have to study a
version that is obfuscated differently than what they would eventually attack. If the
attacker’s goal is to subvert a running system, reverse engineering through rerun attacks
would allow them to discover whatever vulnerabilities the system had. If their goal is to
discover important algorithms, constants, or data that do not vary much, they could do
that as well.

Although such rerun attacks were not judged fatal to our scheme, they represented an
additional issue that the agentlet coordination protocol would have to cope with.

1.4 Revised Research Program

We discussed the problems with our initial plan with our Program Manager, and decided
to redirect the SPMA project to focus primarily on obfuscation issues for the last year,
rather than mobile agent issues, without changing the project name. This redirection was
motivated by our realization that the mobile agent issues are tractable whereas the
obfuscation issues have the potential to be show stoppers, and that not much work has
been done to settle the big questions regarding obfuscation. Much of the community's
wisdom on obfuscation is ad hoc. We believe that the most direct path to validating the
Self-Protecting Mobile Agents architecture is therefore to focus on solid results regarding
obfuscation strength when it is used as a defense against both static and dynamic
analysis.

We chose to orient this project toward answering the question, “when should programs be
obfuscated?” If a program creator asks whether to obfuscate a program for the purpose of
protecting some specific secrets or behavior, we should be able to advise him or her,
based on the type of attackers expected and the kind and length of protection desired. We
and the program manager felt that answering this question would be a very valuable
research contribution.

We identified three large unknowns with respect to obfuscation:

• How to measure and understand the strength of an obfuscation method.

• How much work can be imposed on the attacker, per unit of work by the
defender.

• The possible variation between different applications of a single obfuscation. Put
another way, if an attacker has deobfuscated a particular obfuscation of a
program, how can we measure the advantage, if any, that this conveys to the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 7

attacker when attempting to deobfuscate another obfuscation of the same
program, or an obfuscation of another program by the same obfuscation tool.

We investigated these issues, conducted experiments, and present our results in this
report.

2 New Problem Definition
Obfuscation transforms a program into another program that has equivalent behavior but
which is harder to understand. This report investigates the strength of the protection
provided by obfuscation.

Obfuscation has been proposed as the solution to problems such as protection of transient
secrets in programs, protection of algorithms from use except in controlled ways,
protecting protocols from spoofing, license management for software, temporary
protection of digital watermarks in programs, software-based tamper resistance, and
protection of mobile agents.

Many have said that “security by obscurity” is not a solution to a security problem. The
requirement that an algorithm’s secrecy is not required for the security of the
cryptosystem is known as Kerckhoffs’ Principle1. Commercial obfuscation tools will be
purchased or otherwise obtained by attackers, reverse-engineered, and then all the users
of that tool will be compromised if it required secrecy of the algorithms; a key is required
for obfuscation as well.

Barak et al. [BGI+01] have shown that ideal obfuscation is “impossible.” That is, they
have shown that there is no obfuscation method that always yields an obfuscated program
that reveals nothing about the original. Ideal obfuscation is more than is necessary for
many useful applications: an obfuscation method that raises the cost of reverse
engineering sufficiently would adequately deter attacks on low-to-moderate value
programs, and delay attacks on high-value programs. For some applications, such as
mobile agents, even a modest delay could be instrumental to a system’s survival.

On the other hand, most currently available obfuscation practices provide protection that
can be quickly and automatically broken. What we seek is a framework that allows us to
reason about the strength of various kinds of obfuscation methods and the protection
provided.

The problems of protection of transient secrets, algorithms, and other phenomena within
a program exist because conventional wisdom says that no guarantee can be made about
the execution of a program when nothing can be guaranteed about its environment; it may
be altered, debugged, traced, lied to, or rerun. In short the problem is to restrict how a
program can be used, while still allowing the uses that he creator wants. One proposed
solution to this class of problems is software obfuscation. In general, software
obfuscation refers to any technique for making software hard to understand or
manipulate. The idea is that although attackers are able to change memory, trace

1 Named after Auguste Kerckhoffs, 17th century author of La Cryptographie Militare (Military
Cryptography).

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 8

execution, and otherwise manipulate the environment, they are not able to get any
meaningful result from these techniques because they cannot determine what any
particular byte of memory means, or what the program is doing at any particular point.
The goal is to make the program so difficult to understand that the attacker will not make
the changes needed to misuse the program, or extract the information he wants.

It should be noted that obfuscation should be seen as a proposed solution to a class of
problems, not as a problem itself. One might propose a “general obfuscation problem”,
i.e. to find an obfuscation transform that is universally applicable. Such a transform
would be able to protect any input given to it. The resulting obfuscated program would
be such that the only useful thing to do with it would be to run it. Such transforms do not
exist, as Barak et al. prove [BGI+01]. This does not necessarily mean that obfuscation is
always useless, but it does mean that we must consider the security of each use case
separately, carefully specifying what we wish to protect.

2.1 Overview of the Problem

We are considering obfuscation techniques that read in a program P, and an obfuscation
policy p, then automatically generates a new, obfuscated program OP.

Program
P Obfuscated Program

OP
Obfuscation
Transform

Policy
p

Understanding

Output

Figure 1
Figure 1 displays the concept: both the original program and the policy are fed into a
transformation procedure that generates the obfuscated program. According to
[BGI+01], after some period of time and expended effort, an attacker can gain some
understanding of OP. It has been postulated that the program can run safely for a limited
time. [Hohl98] In order to rely on obfuscation, we need to reason about how long the
obfuscation can be trusted to protect the program.

The original SPMA design required that OP have two key properties:

1. given identical input data, the behaviors of P and OP are semantically identical
at a specified interface, and

2. the relationship between OP’s state and OP’s behavior is obscure to any
observer who has not seen p.

Property 1 merely asserts that, at some interface of interest (e.g., library APIs, system
calls), OP either behaves exactly like P, or OP’s behavior has exactly the same effects as
P’s behavior.2 If the interface is chosen reasonably, OP can be used wherever P can be
used.

2 For example, if P issues a write() call to output 100 bytes, OP in some cases could issue two write() calls

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 9

Property 2 asserts that knowledge of p is necessary for an observer to understand, without
deobfuscating OP, how OP’s behavior is driven by OP’s state. In this context, we use
the term “state” to designate both data held in variables, and data held in instructions.
Under the assumption that an observer cannot deobfuscate the program, property 2
implies two important limitations on attackers:

1. an attacker cannot observe sensitive information carried in the program, and

2. an attacker cannot modify selected parts of the program to change its behavior in
a predictable way.

If they can be provided with acceptable performance, these properties can be used to
provide software-based protection in a variety of contexts, e.g., software-based tamper
resistance, watermarking, enforcement of licensing, safe mobile agent systems.3

Using property 2, we can characterize the space of possible attacks on an obfuscated
program:

Attacks that expose sensitive information. In this class of attacks, an attacker learns
sensitive information either by static analysis of OP’s code or state, or by
dynamic analysis (i.e., running OP with various inputs and then studying OP’s
behavior, and tracing its state from specific points in its execution). In either
case, the attacker must identify a part of OP’s code or state, and also identify how
to interpret the code or state. For example, if the sensitive value is an integer, the
attacker must both find the place (or places) where the integer is stored in OP, and
be able to convert the integer’s obscure representation into a standard
representation, such as 32 contiguous bits.

Attacks that change behavior. In this class of attacks, an attacker identifies a
controlling part of OP’s code or state, and modifies it so that OP behaves in a
new, but predictable way. For example, a program that compares an input to a
stored constant could be modified to compare the input to a different stored
constant. As with the first class of attacks, the attacker’s objective is to identify
and interpret a part of the program’s code or state, and the attacker may use either
static or dynamic analysis.

The relative ease or difficulty of these classes of attack depends in part on what
assumptions we make about the resources available to the attacker. In all cases, we
assume that the attacker does not have access to the obfuscation policy p. Other
assumptions will affect the work factor for the attacker, for example:

The attacker has complete control of the execution platform. We assume that the
attacker has complete control over the execution platform (e.g., the Java Virtual
Machine, system calls). This implies that the attacker can trace and profile the
execution of OP, and can run a debugger on OP.

of 50 bytes each.
3 See [CTL97a, Hol98, BGI+01,WHK+00, W00, WDH+01] for alternative definitions of program
obfuscation and related terms such as black-box security.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 10

The attacker has source code for P. Of course, if the objective is to obtain an algorithm
or stored constant, there is no possible defense if the attacker has the source code.
However, if the objective is to subvert a running system, the attacker must also
understand OP. Since P has the same behavior as OP at a given interface,
knowledge of P could assist the adversary in analysis of OP. For example the
attacker might compare the basic blocks of P and OP to identify which parts of
OP perform the known functions of P. Furthermore, knowledge of P’s algorithm
could allow the attacker to identify parts of OP as being related to identifiable
functions of P.

The attacker has seen all of the input data to OP. Seeing all the input to OP could
help the attacker understand how OP initializes itself. Note: if the attacker also
has the source code of P, the attacker can predict OP’s behavior since the attacker
can simulate it using P. We generally assume that the attacker does not have both
the source code of P and all of the input read by OP. In the case of mobile agents,
it will usually be the case that a single attacker (at a node) will not have access to
all of the input data to OP. For stand-alone applications, however, the attacker
can probably obtain all of the input data by tracing the application’s system calls.

The attacker has the source code of the obfuscation tool. We assume that the source
code of the obfuscation tool is open and well known. Any obscurity that could be
provided by secret source code to the obfuscation tool would be extremely fragile
if the tool became widely used.

The attacker is able to conduct dynamic analysis. We generally assume that the
attacker can perform repeated tests on OP using different input data to analyze
OP’s behavior. This gives the attacker considerable leverage in discovering
sensitive information held in OP. For example, if OP holds a sensitive constant
(e.g., the maximum price a customer is willing to pay), the attacker can run OP
repeatedly using different inputs and observe the threshold value where OP
changes its behavior (e.g., by refusing to purchase). The application of
obfuscation to mobile agent systems is a special case where dynamic analysis can
be prevented if mobile agents only run properly when in communication with
their peers on benign systems.

The attacker has limited time to compromise OP. Given enough time, we believe that
a determined attacker will always be able to deobfuscate OP.

While attack classes and attacker assumptions can provide some insight about the
feasibility of obfuscating transforms, they are too high-level to support conclusions about
the relative costs and benefits of obfuscating transformations. As with attacks on existing
computer systems, attacks on obfuscation are often based on exploiting fairly low-level
details. In conventional attacks, low-level details of system interfaces and
implementations are misused to gain unauthorized access. In attacking obfuscation, low-
level details of execution formats and instruction sequences are used to gain information
that can then be used to identify and interpret program states.

The interplays between attackers and conventional computer defenses are often
characterized as “arms races” since systems are imperfect and attackers are continually
seeking to discover vulnerabilities that have been overlooked by the defenders. Usually,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 11

if the defender is willing to expend more effort, the defenses can be improved. We view
the interplay between attackers and defenders with respect to obfuscating transforms in
similar terms. In the case of obfuscation, however, the role of automated tools is perhaps
even more central. Automatic obfuscation tools can generate data structures that severely
stress manual analysis and require many hours (or days) of analysis to unravel. The
attackers must therefore rely on automated tools to attempt to analyze obfuscated
programs. The arms race is between the writers of defending (obfuscating) tools and the
writers of attacking (deobfuscating) tools.

We investigated available freeware and commercial Java obfuscators and decompilers.
The obfuscation methods described in our Obfuscation Techniques Report [BDM+01] are
substantially more complex than most currently available. This comes with a cost: the
output of most existing obfuscators are smaller than their input, and most produce output
programs that execute at more or less the same speed as the original. JBET-based
obfuscation attained substantially more obfuscation by abandoning this constraint.

2.1.1 Components of the Obfuscation Relationship
A defender Alice has a program P that she wants to distribute to one or more untrusted
parties. She wants these parties to be able to run the program, but she has a set of
security constraints as well, i.e. actions that she does not want attackers to be able to
perform given OP. Obfuscation is the class of techniques wherein Alice applies a
behavior-preserving transformation to P prior to distribution, in order to enforce her
constraints.

This definition is extremely general, and we believe it accurately describes all the
techniques that could reasonably be considered obfuscation. Alice's constraints may or
may not be formal. For example, if P has a secret input, and the constraint is that the
recipients of OP must not be able to determine that secret input, then the constraint is
formal. If P has a secret algorithm that the recipients must not be able to “understand,”
then the constraint may depend on an informal definition of understanding. Our
definition also allows for the domain of allowable programs P (for a given obfuscation
technique) to be limited. For instance, Alice may only be interested in obfuscating
circuits, or programs including some sort of annotation, or programs without while loops
(i.e. primitive recursive programs). The definition also does not specify what other
knowledge the attackers are given, i.e. whether or not they know some or all of the
original program P, whether they know what obfuscation technique Alice is using, etc.

Because of the generality of this definition, it is useful to consider more restrictive
frameworks for analyzing obfuscation. For instance Barak et al. only consider the
situation where Alice's constraint is the confidentiality of certain data determined by the
function P computes. This framework has the advantage that the criteria for success can
be described very precisely in terms of complexity theory, and so it is possible to prove
theorems about it.
The attacker can run the program and examine it, with the intent to extract a secret or
modify the program’s behavior.

Often we speak of obfuscated data: for instance, a shopping agent might know its
originator’s credit card number, and use it under certain circumstances, while making it

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 12

hard for an attacker to extract that number; we say the credit card number is obfuscated.
In general “obfuscated data” is just another way of saying that an obfuscated program has
an input that is given to it before it got to whoever is running it now, and the originator
wants that input to remain confidential (except for whatever can be learned about it given
black box access to the obfuscated program, of course).

The secret is what the defender is trying to hide: it may be a data value in the program, or
what the program will do in given situations. Crypto keys, license status, credit card
numbers, and bidding limits are examples of the first type. The second type includes
algorithms used to calculate output, or behaviors of the program: for example, one might
wish to discover what an obfuscated virus might do when triggered.

Some use-cases do not seek to protect a secret per se, but to enforce a more general
constraint. For instance the copy protection of a game might want to prevent the game
from being run without the CD it was distributed on being in the computer. It could try
to enforce this by checking sub-channel data on the CD. An attacker could emulate the
machine the game runs on, so the game might run a series of tests to determine if it is
running under emulation. The goal of obfuscation in this case would be to prevent the
attacker from running the game without the CD, given that the attacker does not have a
perfect emulator or enough time to write one, not to protect any specific data. Of course
this situation is very informal, but it is no less valid for that. The success of obfuscation
in such a situation could possibly make a real difference to the game company’s bottom
line.

The defender creates the unobfuscated, or original form of the program. This is the
representation that the program to be obfuscated is in before obfuscation techniques are
applied. It should include all information that is needed to run the obfuscator; for
instance, if annotations are required then they are part of the unobfuscated form of the
program. In other words, we subsume any hand-done parts of the obfuscation into the act
of writing the program. Note that some obfuscators may have special requirements on
the unobfuscated from (if it's in Java, the use of reflection may be disallowed, etc).

The Obfuscated form is the representation of the program that is actually distributed to
possible attackers. It is produced by running the unobfuscated form through an
obfuscator.

The execution environment for a program can be described as an abstract machine. This
may be a virtual machine environment such as the Java Virtual Machine, or a particular
combination of hardware and operating system that supports the execution of the
obfuscated form of a program, or a language interpreter such as Perl. Typically Alice
will expect the non-attacking recipients of her program to use a specific execution
environment (such as the Perl interpreter), or an environment that meets a specific
specification (such as a Java Virtual Machine), but the attacker is of course free to use
whatever environment he wants. He may even choose not to run the program at all, but
to do some sort of inspection or static analysis on it instead.

The behavior of a program on a given input is a transcript of its interaction with the
execution environment when it is run on that input. For example, if the program is
represented as a Turing machine, the behavior is the output produced, along with the run
time. If it is a Turing machine relative to an oracle, then the behavior also includes all the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 13

oracle queries that were made. If the program is represented as a Java class, the behavior
is all of the library calls made. The behavior of the program, then, is just the collection of
all of its behaviors on specific inputs. When we say two programs have the same
behavior, we allow for polynomially bounded change in runtimes. Note that an attacker
can query the behavior for any given input, but in general cannot “know” the total
behavior of the program; in fact, the secret to be protected is often determined by the total
behavior.

2.1.2 Deobfuscation
Informally, deobfuscation is whatever the attacker is trying to do, i.e. if the attacker
succeeds at deobfuscating the obfuscated form, then obfuscation has failed. Thus the task
of deobfuscation is to discover the secret given the obfuscated form, or more generally, to
violate the security constraints.

This definition may seem somewhat strange at first: if obfuscation is some sort of
compilation, or translation process, then the natural inverse of obfuscation should be
some sort of decompilation that should produce the original source code that was fed into
the obfuscator. We will call the act of producing the unobfuscated form given the
obfuscated one source-recovery. Using source-recovery as a definition for
deobfuscation has several problems, however. First of all, it is never possible to fully
recover the source code, because things like variable names are irrevocably lost. Thus in
order to say anything formally you would have to specify exactly what data about the
unobfuscated form should be recovered. It is difficult to make precise statements about
source-recovery that correspond correctly with our intuitive ideas on the subject. The
other problem with source-recovery as a standard for deobfuscation is that it addresses
attacks against a particular obfuscator in general, not against that obfuscator being used to
protect a specific type of secret. In other words source-recovery is too coarse: it cannot
look at each use case separately, which is what we want to do.

All this is not to say that source-recovery is not a useful concept, only that we will not
use it as our standard for attacker success. Intuitively, source-recovery does totally undo
obfuscation, in the sense that if you can do source-recovery, then deobfuscation is just as
easy as if the program were never obfuscated in the first place. Therefore if you have a
use-case, and source-recovery does not imply deobfuscation in that use case, then there is
something else going on other than just pure obfuscation. Perhaps the attacker’s problem
was impossible to begin with. For instance, a virus scanner that can determine if a
program ever writes to the boot sector is impossible, whether the viruses are obfuscated
or not.

2.1.3 Success
An attacker succeeds in deobfuscating a program by discovering the secret that the
defender wishes to protect. In the case of a data value hidden in the program, this is
straightforward to determine. If obfuscation is used to ensure that the attacker cannot find
where to patch a program in order to change its behavior, as is often done to support
licensing schemes, then the attacker can succeed without full understanding of the
program. On the other hand, if obfuscation is used to hide what a program might do, then
deobfuscation succeeds only if it can produce a complete account of the behavior of the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 14

program. For example, an obfuscated virus might contain hidden time triggers or the
ability to execute arbitrary commands sent from outside, and deobfuscation is only
successful if it describes all such features.

Some writers on obfuscation define success at deobfuscation as producing exactly the
original program. This is an unnecessarily strong requirement: many programs are
trivially equivalent, say by substituting one equivalent opcode for another, and any
member of this set of equivalent programs should be accepted. Another approach
[CW00] defines deobfuscation success as determining which basic blocks in an
obfuscated program are never reached.

2.1.4 Work factor
By analogy with cryptography, we would like to compare different methods of
obfuscation by estimating the amount of work to deobfuscate an obfuscated program.
The usual assumptions are that the attacker knows what algorithm was used to obfuscate
a program (since otherwise one is relying on security through obscurity) and that the only
unknowns are the parameters to obfuscation, which we have lumped into the policy.

We speak of a work factor to emphasize that the cost of deobfuscation is a relative
measure that does not depend on CPU speed or implementation efficiency, but rather on
the intrinsic properties of the obfuscation algorithm and the deobfuscation process.

If deobfuscation has a high enough work factor, i.e. can be made costly enough, it can be
a useful method of information protection.

For SPMA, we desired to protect obfuscated agents for some “time,” however measured.
As we shall see in section 6.1.7, the Barak et al. paper [BGI+00] shows that this cannot
be done in the general case.

2.2 Use cases

This section describes cases where systems may wish to make use of obfuscation and
describes the problem to be solved from the point of view of the system implementer.

2.2.1 Mobile Agents
As previously stated, the original goal of the SPMA project was to produce tools for
protecting mobile agents running on untrusted computers. Our proposal for a secure
mobile agent system involved several components: obfuscation, running on multiple non-
colluding hosts, and periodic movement among available hosts. Only the use of
obfuscation is discussed here.

2.2.1.1 Problem
A developer wants to distribute a program that will run on an unstructured network of
mobile agent hosts. The hosts are untrusted by the developer, but he still wants to ensure
that the program operates correctly. The program may also have secret data to conceal.
Interaction with the host system in a way other than as a processing resource and data

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 15

storage device (for example, accessing public data on the host) is unspecified. Protection
against well-trained attackers possessing major resources is desired.

2.2.1.2 Attack
The attacker wants to either obtain secret data from a part of a mobile agent that is
running on his host, or to modify the behavior of the mobile agent.

2.2.1.3 Use of Obfuscation
Obfuscation can make programs harder to understand, and make special-looking data,
such as encryption keys or credit card numbers, more ordinary. This is particularly true
when no user (or “plaintext”) communication is involved. In addition, if the valuable
duration of the data in the mobile agents is short (max bid for an auction that ends in 2
days), obfuscation increases the likelihood that its usefulness would expire before the
attacker could learn it.

2.2.2 Standalone Software Copy Prevention

2.2.2.1 Problem
A developer distributes a software program with the intent of allowing only particular
uses of the software. One desirable constraint might be the software should not function
if installed on additional computers without intervention from the distributor. The
software cannot require special hardware or “call home” except at installation. A variant
is a time-limited version that refuses to run after a certain date.

2.2.2.2 Attack
The attacker wants to make a new program distribution that can run on any compatible
computer and function unhindered. We will assume that the attacker cannot simply
redistribute the installer; e.g. perhaps the installer sends system specific information to a
network server and it supplies the program's license file. We will also assume that the
attacker has one functional copy of the program.

2.2.2.3 Problems With Obfuscation
If the attacker has a working copy, obfuscation cannot completely prevent him from
distributing it. As with the rerun attack described earlier, he could install the software in
an emulated environment (e.g. Connectix Virtual PC or VMware) and distribute that
without having to understand or even look at the obfuscated code.

A more elegant solution would be to trace the system configuration calls the program
makes, and prepare a front-end to the program that reports the same system configuration
data (hence making the system-dependent license usable on every machine), no matter
what computer the program is subsequently executed on. The executable could also be
modified such that the system calls that get the configuration data are replaced with static
data.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 16

2.2.2.4 Use of Obfuscation
Although obfuscation cannot absolutely prevent distributing copy protected software, a
practical goal of copy protection is simply to raise the cost of copying it to the point that
more people would rather buy it.

Emulation attacks make it impossible to achieve software-only copy protection in
general, but emulation is often significantly slower than running a program directly. This
means that in order to fool a program into thinking it is running in its original
environment, one must either make many complex changes to the OS to systematically
lie to programs it runs (which would be a rather large development project) or accept the
cost of emulation (which can be significant).

An approach hackers often use is to try to find the right instruction to modify in a
program to disable or bypass its protection scheme. Obfuscation may be used to make
that task more difficult by concealing conceal one or more pieces of tamper checking
code as described in Horne et al. [HMST01]. Delaying the defeat of a protection scheme
in this way may generate enough sales to compensate for the cost of developing the
obfuscator.

Smart cards used in e-commerce applications compute a crypto function of their inputs
and a secret personalization on the card, which can be used to verify that the card was
present. The software on the card and the card reading software could be obfuscated to
raise the cost of attacks on the system, although memory constraints on smart cards may
limit the usage to obfuscation methods that do not drastically increase the size of the
code.

2.2.3 Viruses

2.2.3.1 Problem
A developer prepares a virus with some spreading mechanism and payload (search for
financial data, delete data, etc.). He wants to conceal the spreading mechanism and more
importantly, the payload, from analysis. Viruses will invariably be analyzed at some
point, so general “analysis resistance” is useful to them.

2.2.3.2 Attack
A network security engineer discovers a host misbehaving, and guesses that a malicious
program was installed. He wants to detect the presence of the virus on other hosts,
remove the virus, and/or discover what the virus payload will do and when.

2.2.3.3 Use of Obfuscation
Obfuscation attempts to remove structural information from a program, making analysis
of the program more difficult. This is especially true when the information being
concealed is only valuable for a short time, as is usually the case with viruses. Even poor
obfuscation will slow the attacker down and allow the virus to spread further before virus
scanners are updated to deal with it.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 17

2.2.4 Algorithm Hiding

2.2.4.1 Problem
A developer wants to distribute a program that implements some algorithm. He does not
want others to discover that algorithm. Commercial software is usually distributed in
executable form only, so that competitors cannot easily determine how it functions in
order to make a compatible product. However, good automated reverse engineering tools
exist that produce more readable results with executables from common compilers.

The attacker can do two things to obtain the technology. We could assume that a
competitor would know a good deal about what it does and probably some of its
input/output characteristics. One option is to use slicers and profilers to isolate the
algorithm, then extract it, and use it in their own program without having to know how it
works.

The other option is to learn how it works in order to replicate the technology. An
important feature of this use case is that human understanding is the goal.. The task of
“understanding” an algorithm cannot be defined mathematically and cannot be done by a
computer. Therefore this use case cannot be fully analyzed mathematically, and lower
bounds cannot be put on the difficulty of deobfuscation.

As mentioned above, tools (decompilers in particular) can help a person deobfuscate by
translating the program into a more readable form. A partial analysis of this use case can
be made by analyzing the extent such decompilers can recover data about the source
code. Formally, if O is the obfuscator, d is a function on source code, and D is a
deobfuscator then we want d(p) = d(D(O(p))) for some set of programs p. One could
then investigate for which functions d a corresponding deobfuscator D exists. The
“closer” d is to being the identity, the worse the obfuscator O is. One might hope to
prove that for a particular obfuscator such functions d are limited to a class that would
not be very useful to a deobfuscator, however this would not constitute a proof that it is
hard to understand a secret algorithm given the obfuscated code.

2.2.4.2 Use of Obfuscation
A running joke is that obfuscation is the natural state of programs because analyzing a
program without prior knowledge of its internals is so difficult. Potentially, obfuscation
could make program analysis even more difficult.

2.2.4.3 Problems With Obfuscation
Because a human will perform this analysis, it is impossible to guarantee any kind of time
or complexity bound on the analysis required for a particular obfuscation technique.
Obfuscation for algorithm hiding does not require the attacker to solve a new kind of
problem, as other uses of obfuscation might. The problem the attacker faced if
obfuscation was not used was program understanding. The problem the attacker faces
when obfuscation is used is also program understanding.

However, if the attacker’s goal is to simply use the algorithm and not understand how it
works, obfuscation does present the attacker with a new problem. Good programming

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 18

practices result in highly modular, portable, structured code, which makes it fairly trivial
to extract and reuse. Among other things, obfuscators can create code and data
dependencies to blur the lines between modules. The attacker is now faced with the
genuine problem of extracting the algorithm where before it was trivial.

2.2.5 Summary
These use cases were selected because we know them to be common uses of obfuscation,
not because obfuscation is well suited to those tasks. When determining whether to use
obfuscation in a specific project, it is important to consider several factors specific to the
project, including:

• the valuable lifetime of the data or algorithm to be obscured,

• an attacker’s likely goal,

• the type of analysis the attacker is likely to use, and

• whether obfuscation can be combined with other techniques to increase the total
system security.

Mobile agents (assuming time-assured obfuscation is available) are a good example of
obfuscation used as part of a security system.

3 Our Experiments
Before redirecting SPMA to study obfuscation, we planned to build a useful self-
protecting mobile agent tool. This tool would have consisted of an agent-splitting
component and an obfuscation component. During the development of the obfuscation
tool, we became concerned that the obfuscation techniques would provide little
protection, and developed a deobfuscator to test that hypothesis. This section describes
the obfuscation and deobfuscation software we built.

3.1 Obfuscator

We implemented an obfuscation tool that worked on Java binaries. To discuss the
obfuscation tool, we will divide its processing into several categories: code and data
storage, control flow, and interfacing with the system environment. Because of the
restrictions of the Java environment, we have focused on breaking down semantically
rich Java structures such as method invocation, virtual method dispatch, exception
handling, data representation, garbage collection, and object structures. A program
obfuscated using our JBET-based obfuscator looks entirely different from the original
when viewed in terms of these structures because the high-level, self-describing
structures found in the Java class files are synthesized using lower-level primitives. The
lower-level structures then use flattened control flow (similar to, but independently of,
that proposed by Wang’s group [WHK+00]), and a variety of obscure data representation
approaches. We use lightweight (and weak) techniques (e.g., offsets, value rotation, x*n
mod 1, register splitting, table replacement, XOR with various constants) for obscuring
heavily used but low-level temporary variables such as loop indices that must be quickly

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 19

manipulated. We could use stronger, more computationally intensive techniques (e.g.,
DES, parse tree representations, Chinese Remainder Theorem, permutations,
parameterization) for obscuring longer-lived, semantically more important data structures
of a program. Whenever possible, libraries were obfuscated along with the input
program, in the same way had the libraries been submitted along with the input program.
Most of the development time went into reimplementation of language features (but in an
obfuscated way): method call stacks, virtual tables, object memory layouts, etc. It was
only after the obfuscation tool was implemented that we realized it was easy to reverse.
What follows is a summary of the feature set we implemented.

3.1.1 Java Binary Manipulation
The JBET core performs low-level Java binary manipulations. For complex code
transformations such as obfuscation, a higher-level approach is desirable.

Because manipulating stack-based instructions directly is complicated, we explored two
internal representations of Java binary code to use for implementing the obfuscator. The
Java verifier allows stack slots to be treated as variables, because the stack configuration
must always be the same at any given instruction no matter which control flow path led to
that point. Our first representation was three-register code, which was dropped because it
required manipulation of register indices, and not all Java instructions have sensible
three-register equivalents.

The second representation was a directed acyclic graph (DAG), where the vertices
represent Java instructions in an almost one-to-one fashion. The only instructions not
translated are those that only manipulate stack elements (for example, dup and pop).
Edges in the DAG represent data flow; each edge joins a producer node and a user node
(e.g. an integer add node has two edges pointing to the integers to be added). Nodes may
have shared edges, but cycles are not allowed as that would mean that a node needed to
use its own value in its computation. Some nodes (such as constants and global variable
references) have no producers. The DAG representation of code has many advantages,
particularly making it easy to substitute parts of an expression.

3.1.2 Code Storage
Our obfuscator avoids storing obfuscated methods in the normal Java way, as an isolated
code block with a method name and descriptor, to avoid giving this information to a
potential attacker. Instead, all the code comprising the obfuscated methods is collected
together, randomly ordered at the basic block level (our control flow implementation was
constructed to support this arbitrary ordering), and placed into one Java method (we call
this an “output method”). Because Java limits methods to 65536 bytes of instructions or
less, even trivial programs (once obfuscated) often exceed this limit, making several
output methods necessary. All of the “fixed code” such as the global exception handler is
stored this way also. Each output method then has extra code to support jumping to basic
blocks located in other output methods, but that is transparent to all other parts of the
output program. Then, the final program has multiple methods, but they do not mean
anything as the blocks were randomly ordered before being divideded into output
methods. The entry point of the program (usually main, but different for applets) is coded
as an “internal stub”, described in section 3.1.9.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 20

3.1.3 Data Storage and Object System
Our implementation uses “semi-raw” memory blocks to store fields and array elements.
Since Java is a type-safe language, using byte arrays would require us to perform all
operations using only those allowed on individual bytes. As that would incur so much of
a performance loss that testing would be inconvenient, we made a compromise between
byte arrays and structured storage: arrays of primitive types. We believe that using arrays
of primitive types gives only marginal information to the attacker, since they can be cast
from one to another. That is, the primitive types of the original data do not have to be the
primitive types of the obfuscated data; an int can be mapped to two floats for
example.

Each original object is replaced with generic storage using this Java declaration:
class Memory {
 int[] I;
 Object[] L;
 long[] J;
 float[] F;
 double[] D;
 Memory[] N;
}

Each class then stores its fields (including the virtual tables) in an instance of Memory.
Multiple virtual tables would be needed if the Java class had interfaces. The last array is
included for convenience and to reduce cast operations in generated code (all application
objects are instances of Memory, and so can be accessed without casting). Each class
with virtual functions stores one or more virtual tables, and an integer to identify the
runtime type. We implemented a general multiple inheritance mechanism and so (unlike
Java), the interfaces of a class were treated as additional superclasses by our simulated
class/object system. Each constructor was responsible for storing the appropriate virtual
tables (this turned out to be a critical weakness, as it allowed parts of constructors to be
recognizable as such) into the Memory instances that would represent the new object.

Our architecture supports multiple obfuscated versions of a single user-defined class, but
we did not implement that. Other data structures, such as those for implementing method
call stacks, use instances of Memory also, possibly making analysis more difficult.

For a user-defined type not needing to be passed to a system library (such as a
“Document” container or RSA private key), it has no Java class representation, only the
“emulated” class as instances of Memory as described. User-defined types that need to be
passable to library methods have an “internal stub”, detailed later, but are otherwise the
same (i.e. no direct Java class file representation). This means that an attacker would first
have to discover the method invocation protocol before calling obfuscated methods.

3.1.4 Control Flow
As described in our Obfuscation Techniques Report [BDM+01], we removed all control
flow instructions, replacing them with data-driven jumps. In Java bytecode, this means a
tableswitch instruction with a large array of targets. Each target block is based on a
basic block from the original program. The switch statements allowed us to use “basic
block addressing”, where each basic block in the obfuscated program could be jumped to

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 21

in a generic way. This mechanism was used for exception handling and virtual methods
as well: the virtual tables contained block addresses for the entry points of the methods,
and the exception records (discussed later) contained a block address for the exception
handler.

3.1.5 Method Calls
The method call stack we implemented uses the Memory class for storage allocation. The
Java local variables are stored directly in the call stack object. At each applicable method
call, a new call stack “object” is created and added to a linked list of outer call stacks
(Not a Java “LinkedList” object, but a link field (e.g. Memory::N[2]) in the simulated call
stack object). Then, the method arguments and return address are stored in the new local
variable array and control passes to the first block of the method. For a virtual method
call, the caller examines the virtual tables to determine the block address to jump to;
otherwise the jump address is hardcoded. When the method returns, it reads the jump
address from the call stack and transfers control there. If there was a return value, it is
stored in the caller's local variable array. It was necessary to store the local variables in
arrays instead of Java local variables (which would have been much faster) because of the
need to implement method calls without using Java’s method call mechanism. It also
allowed the multiple methods (mentioned in the Code Storage section) to be more
transparent, as they would access the local variables from an array passed in as an
argument.

3.1.6 Runtime Type Information
 A limited amount of runtime type information was always placed in the output program,
because many Java programs use the instanceof and checkcast instructions, or
exception handling (the search for the non-local handler in Java requires instanceof
checks). Each class was assigned an integer, the product of its private identifier and the
identifiers for all superclasses and interfaces. The Java checkcast and instanceof operators
were replaced with code that emulated the behavior of those, using the virtual tables and
class identifiers stored in the Memory instances representing the objects. No attempt was
made to use inter-method dataflow analysis to reduce the need for checkcast and
instanceof operations.

3.1.7 Exception Handling
Our obfuscator supports Java exception handling by replacing the throw and catch
mechanism with our method call mechanism. When an exception is thrown to a handler
in the same method, it is coded as an ordinary jump – removing most knowledge that an
exception was involved from the program. Otherwise, the call stack is augmented with
exception handler records (implemented as instances of Memory) analogous to those
stored in the Java class files (and maintained by the JVM for normal Java program
execution). The exception handler list is updated at the start of each basic block inside a
try range that might need non-local exception handling. Code that is not in a try range is
still subject to exception handlers from outer methods, exactly as in Java. When a non-
local exception is thrown, control is transferred to the global exception handler (stored as
part of the obfuscated program). The global handler searches the exception records of the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 22

current call stack until a type matches. Then, a jump is made (using the switch construct)
to the exception handler block indicated by the exception record. The thrown exception
(an instance of Memory, same as any other internal object) is stored in the handler’s local
variable array. We realize that the exception handler search is not good for obfuscation
purposes; however, non-local exception handling requires type information at runtime.
Java programs can be designed so they do not need non-local exception handling, so this
is not a fatal problem, however it does require careful design.

3.1.8 External Stubs
 A Java application will often store references to library objects, such as
FileInputStream, in its own classes. When an object is returned from a library, a
stub is created (an instance of class Memory with proper virtual table and class identifier
setup) that redirects calls (and untransforms arguments) to the original object. This
provides a window into the implementation of obfuscated data storage, but that is
unavoidable, as the application will have to use library objects. Our use of a type-system
conversion for library objects allows them to be accessed as their interface type is
accessed within the obfuscated program, but the true type of the library object is not
accessible. We believe that this is not a concern as many library implementation types are
private, or restricted in some other way, and do not add public functions beyond those
declared in the interface type. Note that an external stub is entirely implemented in the
simulated class system produced by the obfuscator; it has no class file. It is implemented
with instances of Memory in the same way that user-allocated objects of the same type
would be. The obfuscation tool automatically determined the classes accessed by the
application, and which of those could be “imported” and considered part of the input
program to be obfuscated. Those imported classes may need stubs for interaction with the
rest of the library. Non-polymorphic classes such as Strings usually do not need stubs; a
new object is constructed and that one is passed to the library instead.

For example, java.util.Vector and java.lang.String were “imported” and considered part
of the application for obfuscation purposes. This means that the application contained
obfuscated code for the functions in String, as well as a “deobfuscation” interface so
Strings could be passed to standard library methods.

3.1.9 Internal stubs
Another problem we encountered was passing application objects to library methods. For
example, the library method PrintStream.println(Object) requires an
Object reference that it will call Object.toString() on. When a library call is
made, a stub is created (in the Java object hierarchy) of the type of the argument, which
will make calls using whatever internal protocol is used by that object. The stub itself is a
real Java class, with a name, superclass, interfaces, and methods. The methods of the stub
class contain a small amount of code responsible for setting up the simulated call stacks
(section 3.1.5) and jumping to the appropriate basic block. Note that this provides a
window into the obfuscated data storage, but that is unavoidable, because the application
needs to pass data (including object references) to the library in order to have
interactivity.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 23

The types of stubs that will be needed for this purpose are determined at compile time. As
with external stubs, the library can only access methods declared in the declared
argument type and not any only present in the runtime type, because the library is
actually accessing instances of the stub class, which only have what the interface type
declares. This is only a limitation if the library uses reflection to call methods or examine
fields outside the interface of the argument type.
For example, the application passes an object of type UserDefinedInputStream to a
library method declared void f (InputStream o). Then, the obfuscation tool will generate
an internal stub with the InputStream interface that will call obfuscated methods in
UserDefinedInputStream. The library only sees the stub, the same one that will be used
for other user-defined InputStream subclasses, so the obfuscated type remains concealed.
Another common internal stub is that for “main”.

3.1.10 Java Obfuscation Demonstrations
At the OASIS PI meeting at Hilton Head and the summer PI meeting in Santa Rosa in
2002, we demonstrated our JBET obfuscation tool. We showed obfuscation of both a
simple program (that just counts to 10 and prints the results) and a more complex,
computationally intensive program (DES). Our tool translated compiled Java bytecodes
into obfuscated bytecodes. The demonstration showed the costs of obfuscation (an
increase in size of about tenfold, and a runtime slowdown that depended on the
application, but ranged from fourfold to twentyfold). Additionally, we showed the JVM
bytecodes generated by our tool.

3.2 Deobfuscator

We developed a “deobfuscator” (actually more of an analysis assistant) for our
obfuscation tool. It worked by searching for patterns in the input program, and running
selected parts of the program. It was largely successful, in that it was able to determine
method entry points, the structure of the class hierarchy, which methods were
constructors, etc. The DAG representation of Java bytecode developed for the obfuscator
was extremely useful for deobfuscation as well, representing particular variable writes as
operation trees.

Generating the DAG representation could be the first stage of decompiler
implementation, where accurate and readable source code could be printed for each basic
block. In Java, because of the type system and verifier, there is no way to hide the
boundaries of basic blocks with arbitrary jumps.

3.2.1 Dynamic Analysis
The deobfuscator runs the <clinit> (static initialization, run when a Java class is
loaded) of the program to retrieve the virtual tables and jump tables, so the basic blocks
of the obfuscated program can be viewed as a uniform set instead of basic blocks in
methods. If the deobfuscator were more complete, it would also run constructors to
determine which class the constructor was for (by the virtual table it stored).

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 24

3.2.2 Pattern Matching
The control flow leaving each block was determined by pattern matching on the DAG
representation of the basic block. Since our obfuscator produces basic blocks that use
data-driven jumps, there is a calculation in each obfuscated basic block that returns the
block to jump to. Our obfuscator output only a fixed number of formats for this
calculation, so the deobfuscator can match against those formats.

After simplifying the control flow leaving each basic block, the deobfuscator used the
virtual tables (read from running the initializer) to determine which basic blocks were
method entry points. Since no Java method (in the original program) can jump to code in
other methods, this allowed complete determination of method composition. The virtual
tables also associated methods with classes. Certain facts about the class hierarchy could
also be determined from the virtual tables, such as superclass and interfaces. Our
obfuscator preserved all class hierarchy information from the original program, in the
form of the factorization of the class identifiers (section 3.1.3).

Instances of primitive classes should be easy to determine from the virtual tables, or from
comparing multiple obfuscated programs, as they will have the same methods.

3.2.3 How deobfuscation could have been made more difficult
A better obfuscator could hinder many of the techniques used by our simple
deobfuscator. As the basic block to method mapping would be one of the most useful
things to the analyst, searching for common basic blocks and placing only one instance of
that block in the output program would complicate the control flow calculations required
(because that block would have twice as many successors as it once had), adding to the
list needed by the pattern matcher.

The parts of the program that dynamic analysis is useful for (clinit and constructors)
could require additional state, so that “run one block only” dynamic analysis won't work
properly.

Our implementation of the instanceof operator used integer factorization, and never
discarded information. We could have only used meaningful class identifiers if that
information was necessary. A great deal of information about an object-oriented program
is contained in the class hierarchy, because it not only reflects program behavior, but
design and specification as well.

The various control flow tables could be initialized on demand, instead of all in one place
run at program startup. This could make extracting virtual tables with dynamic analysis
harder as the table itself would not be created (or stored in a common location), until an
instance of its class was allocated. However, constructors would probably be the easiest
type of method to search for completely unaided.

Derived classes could have private casting methods, so that they may only be cast into
those base classes that are actually used in the original program. This would prevent the
attacker from calling java.lang.Object.toString() on everything in the
system once the obfuscation for java.lang.Object was discovered (unless the
attacker also discovered the cast-to-Object protocol for that class)

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 25

Each of these counter-strategies to deobfuscation has, in turn, a counter-counter strategy.

3.3 Summary

Obfuscators are hard to implement. The amount of work required to get usable
obfuscation is much greater than checking or fixing many classes of simple security flaws
(buffer overflows, not checking input, string quoting, etc). In addition, the security gained
is likely to be nonexistent to marginal. There are solutions to all of the use cases we
presented that do not involve obfuscation (such as running the program that would have
been obfuscated on a network server). Our obfuscation tool took over 2000 hours to
develop, for no to very marginal security. Implementation of obfuscators will require
source or binary editing, and compiler-like functionality, which are not trivial to
implement either.

4 Difficulties in Implementing Obfuscation
Regardless of whether obfuscation can effectively provide any security, people will use it
anyway. This section discusses problems with using obfuscation on ordinary programs. A
recurring theme is “build for obfuscation”: programs that are written to be obfuscated
from the start will get better results from obfuscation than existing programs. In this
section “defender” refers to the developer (or distributor) of an obfuscated program and
“attacker” refers to the user of such an obfuscated program who wants to change its
behavior or extract data.

4.1 Programming Languages

The programming language the obfuscation tool works on essentially determines the
obfuscation techniques that can be used. Several attributes of a language are relevant to
obfuscation: the kind of type system, the kind of system environment presented, and the
use of convenient intermediate forms (such as Java bytecode).

4.1.1 Type Systems: Abstractions and Patterns
Abstractions in a programming language cause patterns to appear in the binaries (A
pattern merely being a portion of the binary that satisfies some predicate). As discussed
in section 3, our deobfuscator worked with the patterns created by our obfuscator. The
difference between abstractions in the documentation for the language (or libraries) and
abstractions in the programming language is very important for those who intend to
implement or use obfuscation tools. In order for an obfuscation tool to disguise an
abstraction, it must be able to detect it in the input program. Control flow and low-level
obfuscations may change the appearance of a pattern but not remove it entirely. For
example, low level data obfuscations (those that operate at the assembly level) change the
representation of virtual tables to use 4 integers for each entry, but there is still an
abstract array in the obfuscated program. Static analysis defeating obfuscations work
regardless of abstractions, but don’t remove them either. Data-structure obfuscations
(those that operate on structures created by the compiler) may be able to remove or

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 26

disguise evidence of an abstraction from the program if it was known to the developers of
the obfuscation tool. For example, our obfuscator was able to disguise the abstractions of
classes and methods (as described in section 3). Had the control flow transform be
performed without integration with the type system obfuscation, the classes would be
clearly visible in the obfuscated program.

Consider bit flags. A C source program declares them as int, but they will never be
added or divided, only manipulated with bitwise logical operators. Knowing that, an
obfuscator could identify which integers are sets of bit flags. Then it could represent flag
sets in another way that makes them appear to be ordinary integers instead (e.g. by using
prime factors to represent each flag).
Note that we are using the term “type system” more generally than is common; it
includes low-level language features as well. For example: int is considered a class,
with the arithmetic and logical operators as non-virtual methods; Java's
invokevirtual operation could be considered a method of java.lang.Object;
the throw operation (in Java) could be considered a method of Throwable. We are
not normally discussing the programmer's use of the type system, but rather the effects of
typed data on execution environments. It is important to consider those low-level
operations as they carry abstractions into the output program also.

The type system of the language determines what kind (and how much) of type
information is available to the obfuscation tool. (We will assume that the obfuscation tool
attempts to work around the language's type system constraints, perhaps by representing
all polymorphic user types with simple arrays as our obfuscator did, so the deobfuscator
does not get this benefit.) In a strongly typed language, the obfuscator has enough
information to obfuscate different types of values in different ways, without needing
general conversion routines.

The worst case for hidden abstractions is a weakly typed language: the obfuscator only
knows about the “fundamental” types of the language (like atoms and lists), and not
anything higher level at all (without guessing).

The programmer, and any other reader of the source code, probably does know the high-
level use of each variable, but that information is not explicit in the program. If the same
use patterns are preserved (which they almost certainly will be), then an analyst will see
the purpose of each variable. Example: Cloakware's white box crypto [CEJ+02a, b]
claims to protect the abstraction of a fixed-key block cipher by integrating the key into
the crypto implementation. Without special obfuscation tool support for this, the block
cipher (with key) abstraction will be carried into the output program. Programming
languages that come with many abstractions are good for obfuscation, because there
would be less need for the application developer to implement more “dangerous”
(difficult to obfuscate automatically) abstractions.

4.1.1.1 Example: Obfuscated Rationals
Certain fundamental structures seem completely impossible to obfuscate (given black-
box access and a few value pairs) Consider the rational numbers. With black box access,
and one obfuscated representation of a nonzero value (e.g. the obfuscated representation
of 2 “a8654h”), it is possible to obtain all desired values in the set by repeated calls to the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 27

black box. For example, first ask the black box to divide a8654h/a8654h, and then ask the
black box to add the value received to itself, obtaining the obfuscated representation for
2. Given any unknown obfuscated rational, it is possible to derive all integers, and by
extension all rationals.

So a search for what the obfuscated value of some x is, or a search for the unobfuscated
value of some obfuscated representation, will take unbounded but finite time. With the
obfuscated rationals, the attacker need not even be told which operator is which. Consider
an attacker with two different obfuscated values, and access to add, subtract, multiply,
and divide. Assume that divide by zero is detectable. The attacker can “test” the unknown
values with the unknown operators as follows (Call the two values A and B, and each
unknown operator f):

1. Determine if either value is zero by testing each operator f(A,A). If f(A,A)=A
for at least three operators (add, subtract, and multiply), then A=0.

2. If no zero was found in step 1, find a zero (and the subtraction operator) by
applying f(A,A)=C with each function. Then repeat step 1 with C instead of
A.

3. If not discovered in step 1, find the divide operator using the known zero.

4. Find 1 by dividing a nonzero value into itself.

5. Find multiply by finding f such that f(1,1)=1

6. Find add by finding f such that f(1,1)-1 = 1

Typical obfuscated programs will contain several fundamental structures of this type
(such as integers, floating point numbers, etc.) that each provide a “window” into the rest
of the obfuscated program.

4.1.2 The Problem of Merging Type Systems
The problem of merging type systems has to be addressed to design any obfuscation tool
that masks complex data storage usage. An unobfuscated program has one type system,
that of the programming language. The obfuscated version has at least two type systems:
the obfuscated type system constructed by the obfuscator, and an unobfuscated type
system that has to be used to interface with unobfuscated code. The former is necessary
otherwise no data obfuscation is being done. The latter is necessary because all programs
need to interact at least with the system environment if only to do I/O. One might argue
that the I/O does not need to be in an unobfuscated form, however, based on the
constraint that the obfuscated program function the same as the unobfuscated version, it
eventually does.

Because it is necessary to interact with at least one unobfuscated component, the program
needs to convert some data between its obfuscated and unobfuscated forms.
Unobfuscated data provide a handle through which an observer can derive other
information. Take for example the simple case of printing a single result to stdout. An
attacker would first be able to observe where the result came from. A data-flow analysis
of that location would reveal data dependencies (albeit obfuscated dependencies) and
operations performed on it. A control-flow analysis would reveal the decisions that

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 28

guided the calculation. Whether or not that gives the attacker any useful information
depends on his goal and the program, however, it should be obvious now that
unobfuscated interfaces leak more information than simply what is passed through them.
As a general rule, the fewer unobfuscated interfaces necessary to run, the fewer handles
into the program an attacker will have.

The problem is compounded in polymorphic OO languages because at compile time, the
type of an object at runtime can be vague, necessitating general conversion routines in the
program for every type that could be the type passed into and out of an unobfuscated
interface. Because of Java bytecode’s high-level characteristics, it has additional
restrictions, which we explain in section 4.1.5.

4.1.3 System Environment
The system environment presented by a programming language and its associated
libraries are important limiting factors for the quality of obfuscation. Libraries that are
linked in (either at compilation or runtime) give useful information to the attacker, the
same as giving the attacker part of the source code to the program. Unless a custom
obfuscation tool is used, the attacker can obtain the libraries and the obfuscation tool, to
see what kind of output that tool produces for those libraries, and compare with the
obfuscated program.

One might object given a keyed obfuscator. Presumably the attacker does not have the
key used to obfuscate the program. It turns out that the amount of variation among
different obfuscated programs produced by the same tool from the same input program is
limited because the automated tool is incapable of “understanding” the program and is
merely emulating it. (This is discussed further in section 5.) Prof. Andrew Appel’s result
described in section 6.1.10 also shows that the amount of variation in multiple
obfuscations by the same tool is limited.

Developers wanting good obfuscation should forego the convenience of using existing
libraries because of the initial analysis data they give to the attacker.
In terms of the handles described in 6.1.2, it is easier to reduce the number of handles in
some environments more than in others. If a program can be completely statically linked,
the only unobfuscated interfaces are the system calls. In Java, the “system calls” are
interleaved with support classes in one giant standard class library. Section 4.1.2
discusses why these integrated standard libraries cannot be split into system calls and
support functions, which would be desirable. Being able to disentangle system and
support calls allows the support calls to be imported into the input program for
obfuscation purposes, eliminating the need to treat it as an unobfuscated interface.

4.1.4 Language Feature Concerns
We have discussed how general features of a program and its environment affect high-
level obfuscations, now we discuss specific language features. It turns out that many
languages with characteristics that are good for data obfuscation also contain features that
are bad for data obfuscation. Ideally, the writers of an obfuscation tool would provide a
summary of the benefits and penalties of using certain language features. This section
lists a few problematic features we observed in Java, which we believe are relevant in

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 29

principle to other languages as well. Note that implementing particular features manually
is just as bad for obfuscation purposes as using those supplied with the languages (e.g.
adding reflection to C++). It may be worse because obfuscation tools designed for that
language may have implementations or warnings for some difficult to obfuscate features,
but a feature added by the user will not be noticed (unless the user also augments or
writes the obfuscation tool).
Our experience in implementing obfuscators is limited to the Java language (and those
features), but we have analyzed some other language features for this report.

4.1.4.1 Reflection
Reflection capabilities present a problem for obfuscation in several ways. Usually, the
application will contain class or method names as strings. Some applications may access
fields generically (i.e. through the Class.getField() method), requiring the
reflection interface be able to access any data structure unobfuscated in the application,
since it is not known in advance which runtime types may be used this way.

In an obfuscated program, the reflection mechanism will have to provide a uniform
interface to all the differently-obfuscated data structures, essentially making it a
“deobfuscation interface” within the application. If the attacker discovers the interface to
ordinary reflection features, he can probably deobfuscate the program. If an application
only makes limited use of reflection features, the obfuscated program’s implementation
of reflection only has to support a subset of the original language's features on a subset of
data structures. However, there is no way to determine that an application using reflection
generically only accesses a subset of classes (or methods, or fields), without requiring
extra input from the user.

We believe the best way to support reflection in an obfuscator is to require input from the
programmer, and not include any functionality unless specifically requested. Of course,
if he requests a complete implementation then a complete interface will have to be
provided, but many applications do not need that, and he was made aware of the
consequences.

Some languages (such as Perl) have even more capable reflection features, allowing
global variables to be searched through or accessed by name. If the program relies on that
method of accessing variables, the obfuscator cannot remove the names.

4.1.4.2 Exception Handling
Non-local exception handling requires some runtime type information in order to
determine which exception handler is most applicable. Even if the obfuscator implements
exception handling independently of the language's implementation, it still must use
'instanceof' checks and go through the exception stack. If the application has a
complicated hierarchy of classes used as exceptions (like the Java standard library), their
virtual methods may be exposed through the exception handler implementation

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 30

4.1.4.3 Excessive use of Polymorphism
Polymorphic types, in general, are hard to obfuscate with the techniques we have
discussed. However, using them is preferable to other means of achieving the same
programming idiom, such as function pointers or switch statements, because of the
information given to the obfuscator in the form of class declarations. Since polymorphic
base classes are abstractions, the obfuscator will create patterns in the output program.

Deep class hierarchies (with base classes having many derived classes) are a problem for
obfuscation, because a common interface to a lot of application data is exposed through
the base class (or classes) of that hierarchy. In Java, the universal class java/lang/Object
has a toString() virtual function, which is often used to print fairly verbose diagnostic
information about the object. If an attacker can discover the cast-to-Object interface for
several obfuscated classes (which will almost certainly exist), and the interface for calling
Object::toString(), he would have a large window into the operation of the obfuscated
program.

4.1.4.4 Arbitrary Casting
Some languages (notably C and C++) allow arbitrary type casts. Because arbitrary
casting violates the type system, the obfuscated program will need to contain special case
conversion routines used in case of an arbitrary cast, or prohibit them. For example, a C
program to be obfuscated contains the following segment:
{

 float x;

 int *pi = (int *) &x;

 *pi = 3;

 printf (“%f\n”, x);
}

When this program is obfuscated with per-variable obfuscation techniques (such as those
described in the Obfuscation Techniques Evaluation Report), the obfuscated version of
the float variable x will have to support an additional operation (that normal float
variables do not have): bitwise assignment from int. The per-variable obfuscation
techniques are often unable to support all the normal operators while remaining obscure.

4.1.4.5 Templates
Some languages (e.g. C++ and Ada) support templates which benefit obfuscation because
common idioms (e.g. container classes) can be specialized for certain types by the
obfuscator, removing the need to use runtime type information to examine objects in a
container as in Java.

4.1.4.6 Range Types
Range types (found in Ada) allow a programmer to specify that a variable may assume a
range of integer values. The runtime environment checks those values for correctness
when they are used. This facility is (if used properly) of great benefit to the obfuscator,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 31

because many more representations of integers become useable if the range of values is
limited. For example, several integers from 0-16 could be stored in one processor
register.

4.1.4.7 Perl and other modern scripting languages
Perl has a combination of useful features which we believe are especially bad for
obfuscation: weak type system, encouraged mixing code and data, and building and
executing code at runtime. Although this section is specifically about Perl, it is not the
only language with this kind of feature set; many modern scripting languages are similar.

Perl has a single type, 'scalar', that stores strings, numbers, and references. The string and
number are indistinguishable; a program that stores a number into a scalar variable can
access it later as a string or a number. The obfuscator would have to support this. As
scalar variables are common, the attacker would discover the “get string value” protocol
very quickly and be able to use this on everything (“get string value” also reports the type
of reference, if any). In Java, it would be equivalent to discovering how to call
Object::toString()for every class and primitive value type.

In Perl, objects are often represented using hashes, but this is usually unnecessary
because only fixed strings are used as indices. But the language provides no 'struct' data
structure, so hashes are used instead. A Perl obfuscator would have no choice but to
represent all hashes the same way, even those that will only ever contain the same
number of fixed-string entries. Even if only fixed strings are used, database modules and
persistence mechanisms in Perl iterate over the contents of the hash tables, so they would
require the fixed strings to be present anyway.

For example, if the obfuscator remapped a fixed-string hash to use arbitrary integers
instead, and a persistence mechanism was used on those hashes (ex: if they were saved to
disk), corrupted data would result as the fixed strings were actually needed when the
saved hashes were reloaded by another program. Otherwise, the fixed strings remain in
the program for the attacker to find.

Perl variables can be accessed by name, and the entire set of global variables can be
searched through. In addition, Perl allows any ordinary values (strings, numbers, lists, file
handles, or hashes) to become polymorphic objects at any time. These last two features
practically prohibit using the 'information hiding' obfuscation techniques because since
the program can use any number of data access methods on all variables, the obfuscator
will have to support those general methods for all variables. This is even worse than the
problems with reflection because there is no static type system to show that reflection
methods are only used on some types (however a good type-resolution system might be
able to help).

4.2 The Portability of Language Features

We already know that reflection is hard to support in an obfuscator, but what if the user
builds reflection into a language that doesn't support it directly? Then the obfuscator
would not necessarily be aware of it, and the complete interface would be present in the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 32

obfuscated program. For example, consider a C++ program has a common base class
with a reflection interface:
 class Object {

 public:
 virtual ClassInfo *getClassInfo() const;
 }

The obfuscator would not be able to remove this function, because it has no way of
knowing which runtime types it will be called for at runtime. So it will be common in
every Object in the output program also. Then to access any data, the attacker only
needs to decode the method call protocol for getClassInfo, and ClassInfo's
methods in order to access any data. The obfuscator will also not know about the
universal class Object, so that abstraction will be carried into the output program.
While the obfuscator could use alternate representations for derived classes when being
used as derived classes, it would have to create a stub that uses the same protocols as
Object when cast into an Object. These stubs may be apparent in the output program
since they contain the same kind of virtual table as Object instances.

The white-box crypto proposed by Cloakware [CEJ+02a, CEJ+02b] is a solution to this
type of problem also: encryption algorithms are fairly obvious, that is a technique
“writing specifically for obfuscation” that can be used.

4.3 Networked Programs

An attacker with complete control over the program's environment, as is the case when
the program runs entirely on the attacker's computer, will eventually gain whatever
behavior changes or secret data he wants. The only counter to this is to split the program
so that it does not run entirely on the attacker's computer. This is the client/server model,
where the attacker only runs the user interface; any real functionality is done on a remote
server, away from the attacker. The emphasis here is on “real functionality”; adding
functions that simply contact a networked service to check license keys or anything
similar provides little protection. Note that since both “efficient operation” and “real
functionality” is involved, the choice of which sections of the program can run on the
attacker's machine cannot be accurately determined automatically; it must be designed
into the program. A program that attempted to determine which functions were
computational might include user interface routines, making the client-server split
inefficient.

4.4 Summary

At this point it should be clear that the best results from obfuscation will come from
designing the program with the obfuscator in mind and avoiding language constructs that
are hard to obfuscate.

To make obfuscation the most effective, a program should be written in a statically-typed
object-oriented language with distinct system calls and support libraries. Additionally,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 33

techniques that require an altered program (such as white-box cryptography) should be
used whenever possible

5 Theories on Obfuscation
This section describes conclusions we reached about obfuscation.

5.1 Game theory

We analyzed the situation of obfuscator and deobfuscator in the language of elementary
game theory. There are two ways to look at obfuscation situations.

5.1.1 Known deobfuscator
In this “game”, we start by defining what the secret is; that is, what information the
defender wishes to keep from the attacker. Then, the attacker then chooses a
deobfuscation method, and announces it. Based on the information provided by the
attacker, the defender is then free to choose any obfuscation method. The game continues
with the defender obfuscating the secret with the previously chosen obfuscation method
and passing the obfuscated information to the attacker. The attacker attempts to
deobfuscate, using the previously announced deobfuscation mechanism.

This situation might correspond to the cases of virus attack, where sites are equipped with
virus detection tools. A virus creator, knowing the characteristics of the tools that
detected viruses at each site, could attempt to create a virus that couldn’t be detected
without updating the sites.

It is clear that it is always possible to construct an obfuscator that will defeat a chosen,
fixed deobfuscator, so the defender (the one obfuscating information) can always win in
this case.

5.1.2 Known obfuscator
This game is similar to the first; again, we start by defining what the secret is. But, in this
game, the defender then chooses an obfuscation method, and announces it. Based on the
information provided by the defender, the attacker is then free to choose any
deobfuscation method. The game continues with the defender obfuscating the secret with
the previously chosen obfuscation method and passing the obfuscated information to the
attacker. The attacker attempts to deobfuscate, using the previously announced
deobfuscation mechanism.

This situation is more like that contemplated for Self Protecting Mobile Agents. We have
to assume that the attacker can find out the mechanism used to obfuscate mobile agents,
and that the only security is in the set of random choices made during obfuscation;
otherwise we are depending on security through obscurity. Given a fixed obfuscator, our
practical experience shows that it is possible to create a mechanical obfuscator that will
rapidly deobfuscate the information.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 34

5.1.3 Solution
What we see from this analysis is that, if perfect information is available, whoever
commits to a strategy (i.e. automated tool) first loses.

5.2 Recursion Theory vs. Complexity Theory

We contend that recursion-theoretic statements about obfuscation are sometimes not very
meaningful from a pragmatic point of view. For example, we can define another game,
in which the attacker (deobfuscator) picks a program and a set of axioms for
mathematics, and publishes them. Then the obfuscator then produces two outputs, a real
obfuscated program that computes the same function as the original program, and a fake
one that does not. The attacker’s job is then to figure out which is which, and prove it
from his axioms. It is not hard to prove (prove that the set of indices of total functions is
productive and use that) that the defender can always win this game. This result is not
meaningful because the attacker's algorithm need not be anything close to polynomial,
because people don't need to prove program equivalence in order to get at the secrets they
typically want to get, and because even if for some bizarre reason the attacker did need a
proof of program equivalence there is no reason they should limit themselves to a
constant set of axioms.

Another recursion-theoretic result that can be applied to obfuscation is Rice’s Theorem,
described in section 6.1.1, which can be interpreted to say that all programs are
obfuscated in the first place (if the secret is some property of the function that the
program computes). This result is not meaningful because it does describe promise-
problems, i.e. if you know that the program doesn't go into an infinite loop you can
obviously run it and find out what it outputs. Rice's Theorem says you cannot find out
what it outputs because you have no such a priori knowledge. There is a version of
Rice's Theorem that does concern promise problems, and it says (more or less) that even
if you do have a priori knowledge the best thing you can do with a program is run it.
However the promise problem generalization of Rice's theorem still only deals with what
is computable, not what is efficiently computable, so it is still not very meaningful for
real-world obfuscation. You can formulate a complexity-theoretic version, but it is false,
as proven in [BGI+00]

5.3 Automated Obfuscation is Emulation

We believe that all automated obfuscation is merely emulation; that is, the high-level
structure of the program is preserved by the obfuscator. For example, consider a program
that sorts a list with bubble sort, computes a greatest common denominator with Euclid's
algorithm, and uses polymorphic objects to distinguish different kinds of network clients.
Under this theory, an obfuscated version of the program will still use the same sort and
greatest common denominator algorithm, and will still use polymorphic objects, although
the low level implementation of each may be disguised. In essence, both programs carry
out the computation “in the same way.” An obfuscator could search for patterns in an
input program to recognize particular algorithms and substitute alternate ones, but only
for a finite number of algorithms. An obfuscated program preserving the structure of the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 35

original is very useful for the attacker. All obfuscating transforms we implemented, as
well as those in the Obfuscation Techniques Evaluation Report, satisfy our informal
definition of emulation.

We made several attempts to formalize this concept of emulation (within the context of
achieving a result about obfuscation), but none were successful. One of the more
interesting is to consider the program as a “deterministic automaton”: a DFA, but with an
infinite number of states. Each state of the automaton represents a complete memory and
register configuration. The state just before a conditional jump will have two successors,
for the condition met and not met. Representation of other control flow is similar. Note
that if there no loops in the automaton, the program always halts. An “emulation” of a
program would then have a deterministic automaton similar to that of the original
program: it could be isomorphic, or a quotient.

Our “switchify” control-flow transform preserves the deterministic automaton structure
of its input: only unreachable states are added. Our per-variable transforms also preserve
structure; the new state graph is a quotient of the old. Our implementation of runtime type
information and local variable storage added intermediate states to every operation and
new unreachable states, but the structure of original states was otherwise unchanged.

The failure of this approach was that some trivial changes to the program could change
the deterministic automata's structure, and some nontrivial changes would result in a
similar deterministic automaton. Also, some nontrivial changes to the program could
result in a “similar” deterministic automaton but seemed more difficult to reverse than
our definition allowed for.

5.4 Static and Dynamic Analysis

Static analysis tools examine a program and attempt to produce higher-level explanations
of the program's future behavior. In addition to traditional decompilers and
disassemblers, we also include traditional data flow analyses (typically used to enable
compiler optimizations), program slicing, and abstract interpretation in this category.
Static analysis characterizes all possible executions of a program, with all possible inputs,
with respect to some property of interest.

Dynamic analysis tools run the program being studied under a tracing environment that
watches and records what the program actually does given chosen inputs, at any of
various levels of detail; such traces can then be analyzed to discover future behavior and
actual data operated on. Tracing virtual machine environments, subroutine call and
system call tracers, test point insertion tools, data reference traces and counters, and
packet and message tracing tools are commonly used for this purpose. Even if the
computation of static control flow or block liveness for a program has been made
intractable, dynamic analysis will observe the actual execution path taken by the
program. Reverse engineers often use tracing to determine the general flow of a program,
and then use static analysis to examine specific regions to see what they do.

To frustrate dynamic analysis, a program creator would need to arrange that a program
took very different execution paths on different runs of the program, so that determining
which basic blocks were ever invoked, and in which combinations, would require

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 36

unacceptable effort. To make the effort large enough to discourage reverse engineering
would probably require an expansion of program size of many orders of magnitude, and
is at the limit of practicality.

Wang et al [WHK+00] showed that there are obfuscation techniques that can foil static
analysis. In order to deobfuscate those programs, dynamic analysis is necessary. This
coincides with our experiments on obfuscation: static analysis alone is not enough.
However, unless performed carefully, the results of dynamic analysis will only apply to
the particular input(s) of the program specified in that run. To avoid this, dynamic
analysis can be performed on sections of the program that do not depend on inputs. (This
was a weakness in our obfuscator: the constructors could be partially evaluated to
determine the virtual tables, even without inputs). Hybrid techniques, such as evaluating
the program statements formally, may be of use in some scenarios. Had our constructors
been designed to use the input before storing the virtual tables, running them and
ignoring input-dependant statements would have provided the same information.

6 Related work
This section describes work by other researchers related to our problem. There are three
major areas: obfuscation and deobfuscation research, reverse engineering, and
cryptography.

Our approach to obfuscation, along with work of Hohl [Hohl98] and Wang et al.
[WHK+00, W00, WDH+01], aims to delay an attacker. Other researchers are looking
into whether one could develop an obfuscator that would prevent access entirely
[BGI+01]. Other related research is in the categories of electronic commerce and mobile
agent protection, computing with encrypted functions, and in practical obfuscation and
reverse engineering and decompilation. These are described in section 6.1.

Section 6.2 describes reverse engineering, including both static and dynamic methods,
some assisted by hardware.

People occasionally try to draw parallels between obfuscated programs and cryptographic
functions, arguing that obfuscated programs have similarities to cryptographic functions
and that the security of the obfuscated program should bear some resemblance to the
security of cryptographic functions. In Section 6.3 we will see that it is the cryptographic
functions whose security begins to resemble the security of obfuscated programs when
the adversary can engage in probing attacks that are not as severe as what a reverse
engineer can subject an obfuscated program to.

6.1 Obfuscation and Deobfuscation Research

Obfuscation has been studied as both a pragmatic discipline and a theoretical topic in
mathematics. In order to prove that any obfuscation method works, we need to
understand the limits that theory of computability places on what can be proved, and the
limits that complexity theory enforces on the difficulty of the task.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 37

6.1.1 Rice’s Theorem
Rice’s theorem says that given a non-trivial property P of Turing-acceptable languages,
the problem of identifying the property in the language of some Turing machine is
undecidable.

There are two types of questions that a deobfuscator could ask: (1) questions about the
program’s representation (ex: object or source code), and (2) questions about the function
that it computes. Rice's theorem says that type 2 questions are undecidable; therefore no
program could be guaranteed to answer it.

This means that if a deobfuscator has only black box access to a program, it is
fundamentally limited in what it discover.

6.1.2 The Rice-Shapiro Theorem
The Rice-Shapiro theorem proves that non-trivial type 2 questions are not recursively
enumerable (RE) or co-RE either, meaning that given a type 2 question there are cases
where it is impossible to prove that the answer is correct, even if the answer is known.
This result holds under any proof system; if a proof system is extended to add a proof for
one case, there will always be another case it cannot prove. Consequently, general
solutions to type 2 problems are not possible.

It should be noted that although a general solution to a type 2 problem is not possible, the
specific instances of these problems that occur in the real world are often solvable. For
instance the Halting problem is not decidable, but given a real-world program it is often
possible to prove whether or not it halts based on human understanding, which is not
bound by algorithmic limitations.

This suggests that attackers seeking to answer type 2 questions about an obfuscated
program would not be able to write general tools to do it, but would be able to sit down
with a debugger and figure out how it works. This is indeed how deobfuscation is
typically done. Consequently, the process of deobfuscating type 2 information in the real
world is a human one, not a computational one, and therefore no meaningful bounds can
be put on its difficulty. One can only estimate the difficulty by the time it takes real
people to solve it.

It may seem contradictory that the question “what does the program output for a
particular input?” is a type 2 problem, because the “solution” is to simply run the
program on that input. Technically, the problem is unsolvable because the program may
never halt, or it may halt after a very long time. This counterintuitive result suggests that
sometimes we should consider the deobfuscation problem “solved” if we have a
procedure that can solve it given that the obfuscated program is guaranteed to halt.

One might imagine that such a conditional solution is possible even though a general one
is not. Barak et al. in [BGI+00] prove that this is not the case (except for trivial
instances): in fact they prove that if P is a type 2 problem that is solvable with respect to
some guarantee (i.e. it is a “promise problem”) then P is solvable given only oracle
access to the obfuscated program (oracle access to a program essentially means access to
a black box which runs it for t steps; if the program terminates within t steps the output is
given, if it does not terminate, the output is a special message indicating it). In other

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 38

words, obfuscation does not make P more difficult because solving P does not require
access to the internals of the program.

Thus from a pure decidability point of view, all programs are obfuscated to begin with.
Given program P that computes function f, anything that can be learned about f can be
learned with only oracle access to P and the length of P. A natural question to ask is
whether or not the previous sentence is still true if “learned” is replaced with “learned
efficiently,” which (very informally) is the main question that Barak et al. [BGI+00] ask
and answer in the negative.

Type 1 questions may or may not be solvable in principle, but every obfuscation problem
based on one we have encountered was solvable. For example, an obfuscator may add a
copy prevention mechanism to a program. This mechanism may be parameterized by
random input, and the obfuscator could be run several times on the input program. Then
there are several versions of the obfuscated program that are distributed, with the hope
that if the copy protection in one version is broken by hand, the work would have to be
done all over again for another version. The associated type 1 deobfuscation problem is
to write a program that automatically cracks any version of the copy-protected software.
Another example: there is a program p(x,y) known to Alice and Bob. Alice gives Bob an
obfuscated version p'(x) which computes p(x,y0) for some fixed y0. Bob 's type 1
deobfuscation problem is to determine y0. These two problems share a common feature:
the deobfuscator has some a priori knowledge of the obfuscator and the input program.
In fact, every interesting type 1 deobfuscation problem will have this property. It is hard
to imagine interesting questions that the deobfuscator could ask about an arbitrary
obfuscated program except “What does it do and how does it do it?” and “Does it have
characteristic X?” Most deobfuscation attempts will be done with some knowledge of
the program and the secret being protected (e.g. remove the copy prevention, obtain the
maximum bid from the auction mobile agent).

6.1.3 Cohen: Evasion and Mutation
Fred Cohen [Cohen92] was one of the first investigators of techniques to obfuscate
programs. He proposed the notion of program evolution, where programs could protect
and obfuscate themselves by either mutating themselves or by being mutated by another
program into an equivalent program. Two programs are considered equivalent if, given
identical input sequences, they produce identical output sequences. The paper focuses on
proposing techniques and provides simple illustrative examples of the techniques.

The equivalence of two programs is undecidable as is the determination of whether one
program can evolve from another. However the author notes that practical considerations
may limit our ability to reach the levels of complexity of equivalent programs “required
to eliminate concerted human attack, but we may succeed in increasing the complexity of
automated attacks to a level where the time required for attack is sufficient to have
noticeable performance impacts, even to a level where no attacker is able to design a
strong enough attack to defeat more than a small number of evolutions.”4

4 In the “Techniques for Program Evolution” section of [Cohen92], see
http://www.all.net/books/IP/evolve.html

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 39

More specifically, Cohen proposed the following obfuscations:

• Equivalent instruction sequences, i.e. replacing a sequence that adds 17 to some
number with one that adds 20 and subtracts 3.

• Variable substitutions, i.e. altering the locations of memory storage areas to
inhibit the static examination and analysis of parameters and altering memory
references throughout a program without affecting program execution.

• Variable relocation

• Mangling control flow by adding jumps and subroutine calls

• Garbage insertion: Given an instruction sequence, inserting a meaningless
independent sequence.

• Program encodings that are decoded just before execution, i.e. compression and
encryption.

• Encoding the program for a different platform and using an interpreter to execute
it.

He also suggested building redundancy and self-checking into these modified programs
along with anti-debugging features and suggests that the techniques should be combined
for best results.

Cohen reported performing some experiments; however no obfuscation tool appears to be
available.

6.1.4 Collberg: Obfuscation and Watermarking
Collberg’s team investigated properties of a large number of potential obfuscation
techniques including techniques for obfuscating general program layout, control
obfuscation, data obfuscation, “preventive” obfuscation techniques (i.e., techniques to
defeat known de-obfuscators), and opaque constructs [CTL97a, CTL98a, CTL98b,
CT02].

The techniques they examined for general program layout include scrambling identifiers,
removing comments, and changing formatting. Their control obfuscation techniques
include inserting dead code, interleaving methods, and loop fusion. Data obfuscation
techniques they studied include splitting variables, refactoring classes, and merging scalar
variables. Their preventive obfuscation techniques are designed to defeat known de-
obfuscators by using artificial data dependencies, aliasing parameters, etc. The opaque
constructs include opaque predicates and making programs more parallel with multi-
threading.

Collberg et al. have announced SandMark [SM03], a tool for software watermarking,
tamper-proofing, and code obfuscation of Java bytecode. This tool was originally an
implementation of the Collberg-Thomborson watermarking algorithm. Recently the
scope of the tool has expanded significantly with additional watermarking and
obfuscation techniques. The obfuscation techniques include [Col03]:

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 40

• A number of code obfuscations from Collberg, Thomborson, Low's “Breaking
Abstractions and Unstructuring Data Structures” [CTL98b] and “Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs” [CTL98a],

• An implementation of Paul Tyma's name obfuscation algorithm: Method for
renaming identifiers of a computer program, US patent 6,102,966,

• Additional code obfuscations including (inlining, Boolean variable splitting
(using XOR, parity, and equality splitting algorithms), class splitting, array
obfuscations) and an obfuscation loop that selects and applies a sequence of
obfuscations to a program,

and in the upcoming release:

• An opaque predicate library,

• Control flow obfuscations that rely on opaque predicates,

• A number of code reordering obfuscations, and a string obfuscator.
The toolbox provides many obfuscation techniques, but is not accompanied by an
argument we can use to show resistance to deobfuscation for any minimum time.

6.1.5 Wang et al: Obfuscation
Wang et al. [WHK+00, W00, WDH+01] have implemented several control and data
obfuscations in a source-to-source tool for C language programs. Of particular interest to
this project is their technique for flattening control flow, and for exploiting the difficulty
of alias analysis to prevent static analysis. They studied the performance and precision of
the results of running static analysis tools, specifically the IBM NPIC tool [HBC+99],
and the Rutgers PAF toolkit [Rutgers], on outputs of their obfuscator. They also provide a
worst-case complexity analysis of their flattening and aliasing techniques against static
analysis.

In addition to the obfuscation techniques that Wang et al. have implemented, they discuss
a survivability architecture and a number of other potential obfuscation techniques. These
techniques include multi-threading, variable splitting and obfuscating procedure call and
function call interfaces.

6.1.6 Hohl: Time Limited Black Box
[Hohl98] proposes using code and data obfuscation techniques to construct time-limited
black box agents. He assumes that these agents can execute safely for a period of time,
based on how much time-consuming reverse engineering is required for a host to know
how to make any changes to an agent's code or state that could be useful to the host.
During this period an attacker can, at most, make random changes to the mobile agent.
Similarly, this technique protects secrets for a limited period of time, since a host must
reverse-engineer an agent to know how to interpret its state.

Like all programs, obfuscated agents are subject to black box testing. [HR98] defines a
protocol to detect such testing by using a trusted registry server to monitor agent
execution.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 41

6.1.7 Barak et al: Obfuscation is Impossible
Barak et al. [BGI+01] presented a paper on the theoretical limits of obfuscation
techniques. Informally, they prove that all obfuscators leak some information, in fact
there is a question whose answer is that all obfuscators must leak, or put another way, a
completely secure obfuscator is impossible.

To be more specific, one must first define what “secure” means in the obfuscation
context. One approach is to examine a single use case by specifying the secret to protect
and defining "security" as that which makes the secret difficult to deobfuscate. The
disadvantage of this approach is that it must be repeated for every problem.

An alternative would be to prove a very general security property of an obfuscator once
and for all, and then use obfuscation as an opaque building block for other protocols,
algorithms, and techniques. This second type of analysis is the sort used to describe the
security of cryptographic methods; higher-level constructs such as pseudorandom number
generators are built up and analyzed in terms of lower level ideas such as one-way
functions. In trying to apply this sort of analysis to obfuscation, the “virtual black-box
property” (VBB) seems to be the most natural and useful definition of security.
Informally an obfuscator is VBB-secure if given white box access to a program, an
attacker could derive no more information about what the program computes than they
could with black box access. Barak et al. prove that no obfuscator is secure in this sense;
they prove it for circuit obfuscators by describing a class of properties of programs (or
circuits) that cannot be obfuscated. They also examine a particular use case and show
that it is impossible to protect with obfuscation, whether the obfuscator is VBB-secure or
not.

These results strongly suggest that analysis of obfuscation must be done on a use-case
basis, because it is impossible for an obfuscator to be secure in every case. This paper
does not prove, and should not be construed to say, that there are no use cases that can be
secured with obfuscation; in fact it suggests several weaker criteria for obfuscator
security that may be useful for certain cases. It only proves that no obfuscator is
completely secure in the general case. The reason their conclusion does not preclude
obfuscation for particular use-cases is that the information leaked may be of no value in
that use-case.

One should note that the formalism used in [BGI+01] addresses only the situation where
the obfuscator is seeking to hide information about the function that the program
computes. In fact the VBB definition of security can be thought of as the strongest
possible complexity theoretic definition of security in this situation. In this sense it is
very similar to the definition of secure computation given in [MR91].

6.1.8 Sander/Tschudin/Cachin/Micali: Computing with Encrypted Functions
E-commerce and mobile agent security research has sought a method to compute
encrypted functions on the agent platform. Several researchers have sought methods to
encrypt a function, send it to a remote location, and execute it such that the execution
environment could obtain the result but not know the function. This work is summarized
here. In effect, these techniques obscure the operation of a program by cryptographic

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 42

techniques and in some cases by also distributing the program across multiple agents or
to trusted servers.

The mobile agent paradigm can be viewed as a situation where several mutually
distrusting parties want to perform a computation, while keeping certain parameters of
that computation secret from each other. The problem is further constrained by the
requirement that the computation take place off-line, i.e. once the agent is sent from one
host to the next, no further communication is required between them to run it. In
[GMW87] it is proven that without that constraint, and assuming that the majority of
players are honest, then there is a cryptographic protocol that allows them to carry out
their computation securely. This protocol does not rely on obfuscation in any way and is
provably secure under reasonable assumptions. Since then a great deal of progress has
been made towards a general solution to the mobile agent problem, using techniques
based on oblivious transfer of secrets and encrypted circuits.

Sander and Tschudin [San98a, San98b, San98c] describe a model where a source
launches a mobile agent that executes some program on an untrusted host (the agent
receives inputs from the host), and then sends the results back to the sender. In their
approach, the host executes a program that embodies an enciphered function. The host
cannot decrypt the program to discover the original function. The only information
exposed to the host is the result it computes and the inputs it provided.

The techniques of Sander and Tschudin are effective only for the evaluation of
polynomial expressions, a very limited subset of agent algorithms. Sander, Young and
Yung [SYY99] have developed a polynomial time (in circuit size) technique by which
any circuit in NC1 (functions with circuits that are logarithmic in the size of their inputs)
can be evaluated.
Cachin et al. [CCK+00] developed a technique that, assuming the hardness of the
decisional Diffie-Hellman problem, can be used to protect polynomial-size circuits, and
they described how to support mobile agents that visit multiple hosts. These approaches
do not allow interaction between the encrypted function and the executing host, i.e., the
agent receives inputs from the host, but cannot provide clear-text results to the host. In
particular [CCK+00] proves that if an agent can be expressed as a circuit, has a fixed list
of hosts to visit, and does not need to provide output except to its originator when it
returns, then there is a protocol for its execution that doesn't reveal any information to
any of the parties that they would not already know. In a sense this is a generalization of
oblivious transfer: The agent’s input is a database and the agent is a query. The protocol
allows a query to be answered without the database knowing what the query was.

The requirement of [CCK+00] that the agent not provide output to the hosts arises
because it is impossible to prevent the hosts from simply rerunning the agent on different
inputs in order to gain more information then they ought. In order to prevent such reruns,
[ACC+01] adds a generic third party to the situation. The third party does not need to
know anything about any particular agent and cannot learn anything about the agent
computations without colluding with one of the participants. The addition of this third
party allows rerun attacks to be eliminated, because running the agent requires
communication with the third party, so the requirement that the hosts not receive output
from the agent is lifted. Furthermore the agent can specify its next destination on the fly,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 43

instead of needing a fixed list of hosts to visit. In principle [ACC+01] provides a solution
to a subset of the problems that the SPMA project set out to solve. For example, the
“comparison-shopping” agent can be made secure by it, although as the agents get bigger
the protocol can get quite slow, and the method becomes impractical for medium or large
agents. Also, any agent that requires frequent communication with the host (e.g. database
searches) would be completely unsuitable, as the agent would have to contact a trusted
server after each round of communication. The introduction of a trusted third party is
similar to SPMA’s multiple agentlet scheme; in fact, one could replace the third party
with an agentlet that implemented the third party protocol and ran unencrypted on a
separate host from the primary agent. Clearly then the two hosts running agentlets would
have to collude in order to learn anything they weren’t supposed to, because the second
host is playing the role of the generic third party.

These techniques are limited to solving small functions and if a trusted server T is used,
and the server crashes, the protocol stops: another trusted server cannot be used to
complete the protocol. T must not collude with either the originator or the other hosts in
order to protect everyone’s interests.5 The Cachin et al. model only considers a single
interaction between the mobile agent and each host that it visits and a mobile agent only
visits a host once, but simply visiting a host repeatedly (with a different version of the
program) can simulate multiple interactions.

6.1.9 Cloakware
People at Cloakware have written several papers [CW00, CW01a, CW01b, CW01c] on
obfuscation. The company uses the term “Tamper Resistant Software” to describe their
approach. Their overall approach is similar to Wang et al: obfuscation is designed to
eliminate any benefit of static analysis and force a difficult dynamic analysis to be
performed. In particular, the problem of statically analyzing the control flow of the
transformed program is showed to be reducible from the acceptance problem for Linear-
Bounded Turing Machines (LBTM). Since the acceptance problem for LBTMs is
PSPACE-complete, the problem of statically analyzing the transformed program's control
flow graph is PSPACE-complete as well.

Cloakware’s product obfuscates control flow by 1) applying transformations to sequential
programs that flatten their control-flow structure, and 2) grouping the control-flow of the
source program on a switch statement called a dispatcher, so that the targets of static
jumps are determined dynamically. The dispatcher may be viewed as a deterministic
finite-state automaton (DFA). Cloakware claims that once the program has been
transformed in this manner, in order to obfuscate the program's flow control, it suffices to
apply further obfuscation techniques to the dispatcher. Having already established that
the problem of analyzing the dispatcher, named the REACHABILITY problem, is
PSPACE-complete, the Cloakware paper proposes implanting another instance of this
PSPACE-complete problem into the design of the dispatcher. Essentially, they take the
natural instance of the problem that emerges from applying their transformation to the

5 The authors want to limit what the originator and the hosts can learn about the inputs provided by the
other hosts.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 44

source program, and another instance of the problem that is the encoded form of an
instance of the LBTM acceptance problem, and form a combined, merged instance of
their REACHABILITY problem. They then argue that the resulting obfuscated program's
resistance to deobfuscation of the program's control flow is guaranteed by the hardness of
the implanted, merged instance of the problem. This portion of their argument appears to
be intuitive, rather than rigorous, as they do not establish an argument regarding the
inability of an attacker to separate the merged instance of REACHABILITY into the
original two instances.

There is a second point upon which their argument is intuitive rather than rigorous. They
argue that:

The redundancy of program components is the basic property to be checked to
comprehend (or to optimize) a program. Therefore, it is highly reasonable to
measure a resistance of obfuscated programs in terms of the complexity of
redundancy checking for these programs.

Their argument then continues by establishing that determining if a basic block of code,
or a variable is redundant, is itself a PSPACE-hard problem. While the formal part of the
argument is undoubtedly correct, it is an open question whether other techniques that do
not directly attack the redundancy problem can be used to successfully perform static
analysis of the program's control flow.

Next we consider Cloakware's complementary effort in obfuscation of data as opposed to
code. They obfuscate data by a combination of several mathematical transforms, these are
[NCJ01]: 1) polynomial transforms based on linear additive and multiplicative encodings;
2) residue transforms (essentially using Chinese Remainder Theorem to represent
integers) and 3) “matrix or multi-linear” transforms using polynomials of several
variables. Cloakware conducted a reverse engineering experiment on their data
obfuscation using an outside organization. [NCJ01]. As a result of the experiment they
claim that their data transform techniques alone can delay a knowledgeable insider for a
month from successfully reverse engineering the transformed program. They define a
successful reverse engineering of a program as reaching a level of program understanding
sufficient to successfully alter the program's execution.

They report that their techniques increase a program's size by a factor of three to five
times [NCJ01] (2-3 times in [NCJ+02]), and a slow down a program by about five to ten
times [NCJ01] (4-5 times in [NCJ+02]) but point out that only part of the program may
need to be obfuscated.

Cloakware’s commercial product may use some of the techniques described above.
Sample code obfuscated with their product may be available only when reviewers sign an
agreement. Because of this, the security of the scheme is questionable. Additionally, their
results contradict both [Appel02] and [Schwab].

6.1.10 Appel
Prof. Andrew Appel of Princeton recently produced a nice result showing that
“Deobfuscation is in NP” [Appel02]. He considered the complete deobfuscation problem
i.e., positively determine the entire “source program” or a trivial equivalent from the

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 45

obfuscated binary. More formally, Appel assumes that the obfuscator is known, runs in
polynomial time, and that the obfuscated programs are only polynomially slower then the
source programs they were produced from. Further he assumes that the obfuscator is a
deterministic algorithm (F) that takes a program to obfuscate (S) and a key (K). He then
defines “complete deobfuscation” of an obfuscated program P as finding a source
program that when obfuscated yields P. The algorithm is simply to nondeterministically
guess all source programs, guess a key, compute P’ = F(K, S), and verify that P’ = P.
This problem is clearly in NP because every element is polynomial.

What this result tells us is that in NP-time one can “reverse” the obfuscator. It does not
necessarily mean that one can find the information wanted in NP-time, because that
might be hard even without obfuscation. For instance, one might want to know whether a
certain program is malware (e.g., “wipes the hard drive”). Malware writers may use
obfuscation to make it more difficult to determine this. Appel’s result says that in NP-
time one can reverse the writers’ obfuscator, but it does not say that one can determine if
the program is malware in NP-time, because determining if a program is malware is
undecidable whether it is obfuscated or not.
Since many program analysis problems are undecidable, or at least not NP, many authors
have tried to embed these problems into their obfuscators in the hope that deobfuscation
would inherit this hardness and also be outside of NP. Appel’s result says that these
arguments are necessarily erroneous. This error may arise from a backwards reduction
(A is hard, B can be reduced to A therefore B is hard), or as above, because the
deobfuscation problem under study was outside NP even for unobfuscated programs, or
for other types of faulty reasoning.

Appel further states that,

 “In practice, it is my suspicion that program obfuscation will not provide
strong security in practice because the resources and techniques available
to attackers are so numerous and powerful: debuggers, simulators, test
coverage tools, decompilers. Then, once the attacker has information
about the algorithm F, it should be possible to make specialized execution-
analysis tools tuned to F.”

This point of view is consistent with our own. Also, in practice one may not need to
completely deobfuscate a program in order to attack it, and one can typically break down
the deobfuscation problem for a program into multiple smaller/simple deobfuscation
problems and solve them piecemeal.

6.1.11 Ahpah and InterTrust
Ahpah Software produced a commercial Java decompiler and an obfuscator and once
claimed that its obfuscator could not be reversed. More recently, their web site states that
on further reflection, they believe that unbreakable obfuscation is impossible. We
discussed their position via email with Paul Martino, formerly a principal of Ahpah,
especially the statement “we did a lot of research on obfuscation and it's impossible” in
their FAQ. Ahpah, InterTrust, and Princeton did a five-year research project on
obfuscation, funded by a commercial organization. They chose similar obfuscation
strategies to ours: making control flow dynamic, changing the representation of variables,

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 46

commuting control flow, etc. However, they ran into the same problem we did. Except
for a few instances of irreversible information loss (variable names, variable extents,
etc.), they could think of a way to reverse the transforms as quickly as they came up with
the transforms themselves. As far as theoretical results go, they do not have any, because
their employer was much more interested in the practical side of things. Another former
member of this team stated informally that InterTrust felt that the hacker community
would be able to break the best they could do within 24 months.

6.1.12 Schneier
Bruce Schneier’s CRYPTO-GRAM articles often contain statements about trusted client
software (which many uses of obfuscation aim to create) being impossible. The May
2000 CRYPTO-GRAM in particular, says, “Building a trusted client in software, and
trying to limit the abilities of a user, on a general purpose computer is doomed to failure.
For now, though, it provides a nice false sense of security.” [Sch005] He also discusses
Kerckhoffs’ Principle (that a cryptosystem should not need a secret algorithm) in relation
to other security schemes: “A corollary of Kerckhoffs’ Principle is that the fewer secrets
a system has, the more secure it is. If the loss of any one secret causes the system to
break, then the system with fewer secrets is necessarily more secure.” [Sch025]

6.1.13 Fraunhofer CCRG
Chenghui Luo at the former Fraunhofer Center for Research in Computer Graphics had
an AFRL project for Rome Labs. Their web page claimed they can do “perfect”
obfuscation and watermarking. What they mean by “perfect" is that they obfuscate the
program and the libraries it calls (as our JBET obfuscator does also). Luo states, “It’s
hard to define a quantitative measure for the strength of obfuscation, and in our project,
we didn't define it. The reason is that obfuscation is to remove or hide information, which
falls in the ‘security from obscurity’ model, so it may be a wrong question to ask, based
on a ‘security from complexity’ notion.” [Luo02].

6.2 Reverse Engineering

The purpose of code obfuscation is to prevent reverse engineering. See Figure 2 for an
illustration of the reverse engineering process.
A good deal of the research on reverse engineering does not consider obfuscated
programs. This section describes some of the tools and techniques that do.

We partition these tools and techniques roughly into static and dynamic methods.
However, real attempts at reverse engineering software whether performed in a lab or “in
the wild” (e.g., by software license crackers [Acad]) involves the use of both types of
techniques.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 47

Figure 2: Mainstream software engineering and reverse engineering tasks [PTO-DR]

Figure 2 depicts the traditional breakdown of software (forward) engineering and reverse
engineering tasks. We view decompilation and disassembly as the lowest forms of all
software reverse engineering and when dealing with an obfuscated program these are the
most difficult steps, especially when the goal of the reverse engineering is to accomplish
the recovery of a secret or the bypassing of a control.

6.2.1 Static Reverse Engineering Methods
Static methods are essentially algorithmic methods: i.e., they can be modeled as applying
an algorithm that produces useful information from the obfuscated program (e.g., a less
obfuscated version of the program. Note that a standard binary is more obfuscated than
the assembly source, which is more obfuscated than the high-level source.) The static
methods used by the reverse engineer may be known to the obfuscator prior to
performing the obfuscation.

In mainstream reverse engineering there are two primary classes of static methods,
disassembly and decompilation, which are discussed below. Such methods can be
abstractly modeled in complexity theory but much care must be taken in interpreting the
results since a tool that only provides an approximate solution to a deobfuscation problem
(e.g. detects 90% of the dead code) may be nearly as useful to an experienced reverse
engineer as a perfect solution and problems that are theoretically difficult in the worst
case may have efficient solutions in the average case, special cases, etc.

6.2.1.1 Disassemblers
Disassembling is the process of translating an executable program into its equivalent
assembly representation. The greatest problem in disassembling is distinguishing code
from data especially on architectures that can execute from data segments, store data in

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 48

code segments, or write to code segments. In principle this problem can occur in any
architecture because a program can store another program as data and simulate it.

The problem occurs mainly when data is embedded inline with code. On variable-length
instruction architectures, mistakenly disassembling inline data can cause instruction
alignment problems in the disassembler, causing it to incorrectly disassemble the code
that follows the data. Disassembly accuracy can be improved by making use of
knowledge of compilers and libraries, but that method is not generally explored for
obvious reasons. The best algorithms currently available essentially do a reachability
analysis under the assumptions that only jump targets contain executable code and that all
code that is executable is jumped to [Schwarz].

In theory, accurately disassembling a program in the general case is undecidable and
hence cannot be fully automated for all programs. However even partial disassembly of a
program is a great aid to the reverse engineer, who can combine partial disassembly
(from static disassemblers) with disassembled execution traces generated by debuggers,
logic analyzers or in-circuit emulators.

Most debuggers provide a simple disassembler and there are a number of stand alone
disassembler products [PTO-DA], therefore these tools are readily available to potential
adversaries of the developers of obfuscated programs.

6.2.1.2 Decompilers / Reverse Compilers
Since disassembly is required for decompilation, decompilation has all of the same issues
in addition to the issues around identifying the nature and scope of control structures, and
reconstructing non-primitive data types.

The main steps in decompilation are [PTO-DR]:

• Disassemble the program. This step is crucial because all other analyses depend
on it. For example, the quality of a control-flow analysis depends on the quality
of the raw control-flow information it gets.

• Perform semantic analysis to recover low-level data types such as integer
variables, and to simplify the decoded instructions based on their semantics.

• Perform data-flow analysis to remove low-level aspects of the intermediate
representation that do not exist in high-level languages (e.g., registers, condition
codes, stack operations) and to reconstruct expressions.

• Perform control-flow analysis to recover the high-level control structures in each
procedure.

Perform type analysis to recover high-level data types such as arrays and structures,
classes, etc.
Architecture alone can make a program easy or hard to decompile. For example, Java
bytecode is relatively easy to disassemble and is very object-aware. Class files are
already structured into classes and methods, and the instruction set has single instructions
to do complex, high-level things like call a virtual method. Consequently, a lot of the
work involved with executing a Java program is done by the virtual machine. By

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 49

comparison, the work that can be done by a single instruction on a real processor is
relatively small because of practical limitations. A C++ compiler for a real architecture
has to synthesize all of its OO functionality from much lower-level primitives, which
obviously requires more work to interpret as high-level phenomena.

Interestingly, many of our obfuscations attempt to make Java bytecode look more like
C++ object code.

6.2.1.3 Specialty Tools and Techniques
Many tools and techniques have been developed by the research community to perform
static analysis on object and source code. Such techniques include program slicing and
alias analysis.

6.2.1.3.1 Program Slicing
The slice of a program with respect to a set of program elements S is the program
elements that S is, or might be, code- or data- dependent on. Slicing gets rid of code and
data that are irrelevant to S, effectively reducing the size of the program to analyze
[WPS].

Extensive research has been done on slicing including work by Weiser [Weiser84], Tip
[Tip95], Horwitz [KH02] and Reps [RT96, Reps98]. This research has led to the
development of research slicing tools including The Wisconsin Program-Slicing Tool
[WPS], Chopstick [CP], and commercial products such as CodeSurfer [CS03].

Slicing has also been used to extract functions of interest from executables [LV97].

6.2.1.3.2 Alias Analysis
Aliasing occurs in a program when multiple pointers reference the same memory location
but are used separately. Given two pointer variables that refer to the same object, making
a change through one changes the value that would be read through the other. Any
analysis that considers data flow will be affected by knowledge that the pointers refer to a
single object as opposed to two. As a result, being able to detect aliases has implications
for many types of static analysis as well as for reverse engineering.

The problem of detecting aliases comes in several forms, whose solutions belong to
different theoretical complexity classes [LR91, Deut94]. Programming mechanisms that
create aliases include the following: reference formal parameters, single-level pointers,
multiple-level pointers (i.e., pointers that point to pointers), and pointers to structures
containing pointers. Alias analysis is used in software analysis tools such as JAAT
[KOK+01] and Ajax [Ajax].

6.2.2 Dynamic Methods
Reverse engineers typically employ a combination of static and dynamic methods to
analyze a program. The following summary of the reverse engineering of the Internet
Worm from the famous “With Microscope and Tweezers” paper [ER89] demonstrates
this.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 50

The Internet was attacked on November 2, 1988 by a virus. In response a handful of
teams across the country worked to reverse engineer the virus to discover how it worked,
specifically, the vulnerabilities it exploited and how it propagated. The MIT team
reported their findings in [ER89]. They conducted their analysis mainly by decompiling
the virus rather than through black box testing. The team viewed the
deobfuscation/reverse engineering task as:

• isolating a specimen of the virus in a form, which could be analyzed.

• “decompiling”6 the virus, into a form that could be shown to reduce to the
executable of the real thing, so that the higher level version could be interpreted.

• analyzing the strategies used by the virus, and the elements of its design in order
to find weaknesses and methods of defeating it.

The first two steps were completed in less than two days, primarily by the efforts of the
MIT team and people at Berkeley.

While the virus used a number of methods to obscure itself including preventing core
dumps and erasing its argument list it was not really obfuscated nor was the actual virus
very large. Its only real obfuscation was the XORing of strings.

It should be pointed out that the goal of the MIT and Berkeley teams was a complete
understanding of the virus, not just understanding a single mechanism. When the goal is
defeating copy protection [Gos85] the reverse engineer only needs to know about the
copy protection mechanism; and providing effective defense through obfuscation is more
difficult simply because the goal is smaller.

In the remainder of this section, we will discuss some of the dynamic analysis tools that
are available. These tools all offer greater capability and better protection against anti-
reverse engineering techniques than the tools used by MIT and Berkeley. The typical
dynamic analysis tools available to the reverse engineer consist of debuggers and
software emulators as well as logical analyzers and in circuit emulators.

6.2.2.1 Debuggers and Associated Tools
A debugger is a utility program that allows a reverse engineer to run a program while
controlling its execution and examining the values of its variables. Many debuggers
provide an execution history mechanism that at a minimum allows a reverse engineer to
see a trace of previously executed instructions. Typically these traces are of limited
length and are read only, i.e., the reverse engineer cannot roll back the state of the
program, change an earlier state, and then resume execution.

EXDAMS [Bal69] was one of the first debuggers to provide a long execution trace
facility. It was an interactive FORTRAN debugger developed in the late 60’s. Under
EXDAMS the program being debugged was first executed in its entirety and the full

6 Decompiling was performed by first doing tool assisted disassembly, followed by with decompilation
done by hand. The disassembly tools were simple disassembler (adb), an architecture manual, and the
UNIX sources. However, even at the time (Nov. 1988) based on its experience with PC viruses, the
National Computer Security Center felt that more sophisticated analysis tools must be developed.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 51

execution history was saved. Then the program was “re-executed” through this trace.
This re-execution could be backtracked any time using the trace. However, the reverse
engineer could not change values of variables or registers.

INTERLISP [TM81] and the Cornell Program Synthesizer [TR81] provided execution
traces with undo operations. These systems maintained a history list of operations while
recording their side effects. They used bounded history lists: as new events occurred, the
existing events on the list were aged, with oldest events “forgotten.” The first complete
execution trace solution was provided by the experimental Spyder debugger [ADS91].
By using such a tool the reverse engineer can stop the program at any point and examine
past events that lead up to the current state, restart the program in a modified version of
the previous state and observe the impact of the changes. Depending on how a debugger
is implemented, a program can detect that it is running in a debugger and attempt counter
measures.

6.2.2.2 Software Emulators
Simple software emulators are essentially instruction set interpreters for various
processors or family of processors. More sophisticated emulators such as the Stanford
SimOS/Embra [SimOS, Embra, RBD+97, WR96] emulate processors, caches, and
memory systems of a set of processors. Some systems are toolkits for building emulators
for different architectures [UC00, OG98]. For example, the New Jersey Machine-Code
Toolkit [NJMCT, RF97]. This toolkit provides a specification language for describing
the behavior of processors allowing a reverse engineer to create emulators for new
systems. It is reasonable to assume that the reverse engineer of a program that we would
obfuscate may have a high quality emulator. The emulations are typically not perfect; for
example, providing the correct timing is difficult and detectable, so if the emulator is
known to the obfuscator it may be possible to exploit such imperfections to improve the
obfuscation.

6.2.2.3 Logic Analyzers
A logic analyzer is a physical test instrument used for developing, debugging, and
maintaining digital systems. A logic analyzer can show the prior events that occurred at
probe points when triggered by a predefined set of stimulus signals and subsequent
events. Two well-known manufacturers of logic analyzers are Agilent/HP and Tektronix.
Their systems support many popular processors.

Logic analyzers provide the reverse engineer the ability to monitor a program without the
program being able to detect the monitoring even if the obfuscator has knowledge that the
monitoring will occur. The logic analyzer may be a stand-alone system or PC-based.
Some common characteristics of interest to software reverse engineers:

• A good analyzer automatically disassembles, shows executed instructions and
filters out unexecuted code fetches, trigger in instruction execution patterns,
memory access patterns, register contents, data bus patterns.

• Analyzers provide large buffers for storing system activity that occur before and
after a trigger.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 52

• Acquire every bus cycle in real time without interfering with full-speed operation
of the processor or bus; probing cannot be detected in software so static
obfuscations cannot provide a defense. Only dynamic obfuscations can , which
currently push the limit of what is feasible.

• Some systems correlate execution traces to high-level source code (if source
provided by the user). This can be very handy if the reverse engineer is dealing
with an executable with partially known source code, i.e., standard language
library.

6.2.2.4 In-circuit Emulators
Unlike a logic analyzer, which attempts to passively monitor signals sent between
devices, especially between processors and memory and I/O devices, an in-circuit
emulator replaces a component of the system with a special device (sometimes called a
pod). The pod is controlled by the emulator and provides data to it. Unlike a logical
analyzer the emulator can stop execution and change the contents of the emulated
processor registers. These devices are especially well suited for injecting faults for
reverse engineering purposes. In-circuit emulators and related systems such as in-circuit
debuggers offer the reverse engineer greater capability than a logic analyzer, but at some
potential loss in stealth since the pod is not exactly the same as the device it is replacing,
especially with respect to undocumented features and bugs that the device may have.
Two well known manufacturers of these devices are Lauterbach and Microekintl.

The power of logic analyzers and in circuit emulators have long been recognized by the
reverse engineering community and also by the maintainers of license cracking web sites.
[Acad]

6.3 Cryptography

People sometimes draw analogies between the security of cryptosystems and the security
of obfuscated programs. They both obscure an object through a keyed transform,
however, their uses are very different and reverse engineering them is very different. An
obfuscated program must retain the functionality of the original program, so attacking
obfuscation can be done through interaction with the program and noticing patterns by
white-box inspection. There is no interaction possible with an encrypted object; ideally it
should be indistinguishable from random bits. Theoretically, if a cipher is good, the only
possible attack is a brute-force attack on the key. Obfuscation transforms are not
designed to be reversible, so finding the key yields almost nothing.

6.3.1 Exploiting Error Conditions
Real world cryptosystems can be less secure than their abstract models. For example the
different error conditions of a real implementation occasionally yield information about
the key, for example attacks on RSA PKCS #1 v1.5 by Bleichenbacher [Ble98], PKCS #1
v2.0 by Manger [Man01] and on Cipher Block Chaining modes by Vaudenay [Vau02].
These kinds of attacks use error conditions generated by implementations of decryption
functions (or in specifications of how to securely use a cryptosystem) to slowly learn

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 53

about the private keys used by the functions. In the published results new mathematical
models of the cryptosystems are developed that can be used to determine the private keys
by applying typically large amounts of data collected by probing the system. Such attacks
roughly correspond to a reverse engineer learning about an obfuscated program by
manipulating the programs input parameters, calling the function, and examining the
return values.

6.3.2 Power Analysis and Similar Attacks
Real cryptographic systems can leak information through electromagnetic radiation
[Tempest], power consumption [CJR+99, KJJ99], or the time required to perform
operations [Koc96]. While these attacks are usually performed in an otherwise black box
setting, some of these attacks determine events that may be observed during the reverse
engineering of some obfuscated program. An example of this relationship is that simple
power analysis exposes information about the execution path of the function. Simple
power analysis can expose:

• Sub-key bits of a DES key from the DES key schedule behavior and from the
behavior of DES permutations

• Duration of string comparison operations, usefully for examining a secret bit by
bit, and

• Data used by modular multipliers and by modular exponentiation operations.
[KJJ99].

Timing attacks also exploit data dependent variations in control flow of cryptographic
functions [Koc96]. Tempest attacks can reveal internal state or data flows of a function,
for example traffic on a data bus,7 which is not that different from a reverse engineer
monitoring a data bus using a logic analyzer.

6.3.3 Fault Analysis Attacks
Other probing attacks against cryptosystems are the Differential Fault Analysis (DFA)
attacks [BDL97, BS97, BMM00] including glitch attacks [AK96, AK97, SA02]. Such
attacks involve interjecting faults into hardware or software that is performing a
cryptographic function. These faults may attempt to manipulate crypto-variables, (e.g.,
transient register faults), or read bits of crypto-variables (e.g., detecting leakage currents),
or alter the control flow of the function. Some published DFA attacks, like the error
condition attacks of Section 6.3.1, result in new mathematical models of the
cryptosystems that can be used to determine the private keys by applying data collected
by probing the system, while other fault analysis attacks are a direct (or indirect) reading
of critical memory locations.

Conventional models of cryptographic functions assume a protected space in which
cryptographic functions are performed. The adversary can attack the system by passively

7 Sometimes the signals from a bus are so strong that an ordinary AM radio receiver can be used to detect
them [KJJ99].

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 54

monitoring physically insecure interfaces to these spaces and actively probing (i.e.,
sending data) only these interfaces.8 For this general model cryptographers seek to
establish that the valid cryptographic functions only have to perform a feasible number of
operations relative to a value (called a security parameter) while an adversary that can do
anything allowed by the model has to perform an infeasible number of operations to
break the system. However, changing the model alters the adversary’s cost relative to the
conventional security parameter or introduces an alternative new cost parameter, (e.g.,
rather than the cost of breaking the system being exponentially related to the size of a
cryptographic key, the cost may be linearly related to the size of the memory used by the
function).

7 Our Conclusions
The major issue at stake in this research is whether automated obfuscation tools can
produce obfuscated code that is resistant enough to analysis so that deobfuscation always
requires significant manual analysis (or manual guidance of deobfuscation tools). If
those techniques are sufficient to force a manual component to deobfuscation, they have
provided a positive cost/benefit tradeoff between obfuscation and deobfuscation since the
obfuscation techniques were automatically applied without human involvement, and are
therefore relatively inexpensive. This cost/benefit relationship could be highly useful for
protecting code in environments where code could be frequently (re)obfuscated and run
for limited periods of time, such as in mobile agent systems, and smart clients of security-
aware servers. However, our experiments and much of the related work we examined
lean in the other direction; that is that automated obfuscation will not be useful for
protecting long-term secrets. Additionally, our experiments show that the attacker has to
perform less computational work than the obfuscator.

It should be noted that security by obscurity (e.g. a secret obfuscation program) is not a
solution as there are numerous ways the attackers could obtain the "secret" obfuscation
algorithms, especially if the obfuscator is a commercial product.
It should be noted that security by obscurity (e.g. a secret obfuscation program) is not a
solution as there are numerous ways the attackers may obtain the “secret” obfuscation
program, especially if the obfuscator is a commercial product.

The SPMA scheme would work if (1) a lower bound on deobfuscation could be
established, or (2) the obscurity of the obfuscation technique could be relied upon.
Alternative 1 is not possible for obfuscation algorithms that blindly obfuscate all
programs -- but the Barak, et al. paper suggests that perhaps some restricted class of
programs could be obfuscated -- in any event, this is a hard path forward. Alternative 2 is
really security through obscurity, which is known to be fragile. But as long as a user is
willing to replace an obfuscation method with a new one each time it is detected that it
has been broken, and the user is willing to accept some intrusions/compromise of some
agent sessions on occasion, then this scheme could still be used.

8 The classic notion of an insecure channel is a collection of the insecure interfaces.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 55

Future arguments surrounding strength of obfuscation should attempt to incorporate the
practical differences between idealized models of computation such as Turing machines
and real finite space and time register machines such as Intel Pentiums. Again, we found
that recursion theory leads to results not useful in practice, as it is primarily concerned
with what is computable and what is not. In practice being able to compute something
"most of the time" would be good enough for a deobfuscation process, especially when
monitored by humans.

7.1 Don’t Depend on Obfuscation for Security

First and foremost, we conclude that (at this time) there is no reason at all to depend on
obfuscation for security. This is not to say that obfuscation should not be used, but high-
value secrets must not be entrusted to it. For instance a game company might use
obfuscation to prevent copyright infringement, but it would be very unwise for such a
company to forecast its revenue assuming that the obfuscation will hold. They must
assume that it will not, and plan accordingly (The history of commercial software greatly
favors that it will not).

7.1.1 Argument From Theory
We make this conclusion for several reasons. The first reason is that we know of no
theoretical result that suggests a deobfuscation problem is hard. Although we trust
cryptography and have no proof that a strong cryptographic algorithm exists, we can
prove that one exists assuming one-way functions exist. We have found nothing
analogous to that result for obfuscation. There are also results to the contrary, such as
Barak.

Of course some deobfuscation problems cannot be formalized at all, such as the secret
algorithm use-case. These situations are even worse, from a trust point of view. Not
only do we not have a lower bound, or a lower bound relative to a reasonable assumption,
but we cannot hope to ever have one, because the problem: to “understand” the secret
algorithm, cannot be defined in any formal way. The success criteria for these types of
problems are fundamentally human, and not mathematical; therefore, their difficulty
cannot be analyzed. You can never have assurance that tomorrow someone will not find
a new way of looking at your code that allows him or her to “understand” how it works.
Thus obfuscation for either formalizable or non-formalizable use cases must be regarded
as “icing on the cake,” and not an essential component for security.

7.1.2 Argument From History
Our second reason for concluding that obfuscation cannot be trusted is the real-world
history of obfuscation. Software companies have been trying to use obfuscation (to
prevent copyright infringement, to prevent competitors from creating a product that is
compatible with theirs, to hide APIs, to hide algorithms) for years, and their schemes are
broken routinely, and often very soon after release. We know of no obfuscation that has
been actually deployed and withstood serious attack. This indicates that all of the
techniques in current use are far from effective. If in fact there were a use-case where

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 56

obfuscation can actually be secure, then that obfuscator would need truly new ideas.
Therefore no incremental improvement in obfuscator technology is useful.

7.2 Barak’s Result is Very Strong

Our second conclusion regards purported proofs that obfuscators are secure. Barak's
paper clearly proves that a general obfuscator does not exist. Therefore any claim that an
obfuscator protects all the information not explicitly revealed by the program's behavior
is false. Any claim that an obfuscator works in any use-case is false. Any claim of “drop-
in” security, “just run it through our tool and it'll be secure” is false. Any attempt to
analyze the hardness of deobfuscation must identify the secret that is being protected, i.e.
it must choose a particular use-case (or a proper subset of use-cases). This provides a
sort of litmus test for obfuscation-related snake oil: if someone makes general claims
about obfuscation security, rather than about protecting a specific secret, then they are
wrong. Note that one-round obfuscated program execution (e.g. Cachin [CCK+00]) is
not general program execution, and examining claims about such schemes will
necessarily be different.

Consequently we suggest that anyone seeking to write an obfuscator first lay out very
clearly what secrets they wish to protect. It may be (probably is) the case that different
types of secrets require entirely different types of obfuscator to protect them (if they can
be protected at all).

7.3 Better Solutions Are Available

Our third conclusion is that many of the use cases that people suggest have better
solutions than obfuscation.

One common use case is secure execution of mobile agents. These use cases can be
solved via cryptographic means. Unfortunately the cost can be rather high except for
small agents, but if it is not too high for what you want to do, then the cryptographic
approach is clearly superior to obfuscation.

Because obfuscation is rather difficult to implement, untrustworthy, and has a history of
being broken, we suggest that obfuscation not even be considered until all other possible
approaches have been ruled out. It should be noted that there are several formulations of
security problems that are impossible to solve, but by making slight modifications they
become possible. We suggest that people considering obfuscation ask themselves if the
formulation of their problem is too restrictive and eliminates from consideration security
mechanisms that are effective. For example, the “comparison-shopping mobile agent” use
case is not solvable in the usual mobile agent set up, where the computation takes place
totally offline. However by adding a generic trusted third party it becomes possible.
[CCK+00] Another example: software-only trusted clients are impossible [Sch005], but
by adding the assumption of tamper-resistant hardware it becomes possible to hinder
attackers who cannot attack the hardware.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 57

7.4 Applicability beyond Java

We could devise analogues of many of our obfuscating transforms on Java programs for
use on native languages similar to Java, such as C++. Assume that the native program
obfuscator is implemented as a compiler back-end, or is a source-to-source obfuscator, so
it can have easy access to structural information. Note that an ordinary C++ compiler
performs some of our obfuscating transforms already, such as the replacement of class
names with unique identifiers. Other control flow transforms, such as using table-
computed jumps in place of processor conditional jump instructions, can be implemented
in the same way as our obfuscator as all processors should have a jump-to-address
instructions. Our call stack mechanism is considerably less revealing than Java's
mechanism, but is probably equivalent to a stripped executable call stack. The local
variable transforms could be implemented similarly, as our DAG code representation is
similar to (at least) the compiler's parser, and possibly its internal representation (for
performing optimization and code generation from).

7.5 Summary

We introduced three unknowns about obfuscation. All three remain unknown, especially
when restricted to certain use cases, or by having non-general program execution models.
Our experiments showed that “simple” obfuscation techniques are not secure, and they
create less work for the attacker than the defender. The findings on patterns show that the
variability able to be produced by obfuscation tools similar to ours is very limited.

The SPMA Project set out expecting obfuscation to be merely a software engineering
problem. It turned out to be something much more difficult, if not impossible. None of
the techniques we know of are sufficient to get any reasonable level of assurance that our
secrets are secure. Furthermore, Barak’s result rules out general obfuscation, which is
what we wanted to achieve. If obfuscation is to succeed, it must concentrate on particular
use cases, and it must contain fundamentally new ideas. We have seen that obfuscation is
more than an engineering problem, although it will be a difficult engineering problem as
well: it is a mathematical problem. In order to come up with an effective obfuscator,
researchers need some new insights that go beyond the techniques currently known.

8 Acknowledgements
Our thanks to our program managers Jay Lala and Doug Maughan, for their support.
Thanks also to our former team members Lee Badger, Doug Kilpatrick, Steve Kiernan,
and Larry Spector for their contributions. Thanks also to Andrew Appel, Ross Anderson,
Stanley Chow, John Knight, Chenxi Wang, Christian Collberg, Paul Martino, and
Chenghui Luo for stimulating discussions and ideas.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 58

9 Bibliography
[Acad] Academy of Reverse Engineering: ESSAYS 1-100,

http://www.woodmann.com/fravia/aca100.htm [License cracking website,
with many “how to” essays on reverse engineering].

[ACC+01] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. “Cryptographic
Security for Mobile Code,” in Proceedings of 2001 IEEE Symposium on
Security and Privacy, Oakland, May 2001, pp. 2-11.

[Ada95] Ada 95 Language Reference Manual, Intermetrics Inc., ISO/ICE
8652:1995.

[ADS91] H. Agrawal, R. DeMillo, and E. Spafford. An Execution Backtracking
Approach to Program Debugging. IEEE Software, pp. 21-26, 1991.

[AFK87] M. Abadi, J. Feigenbaum, and J. Kilian, “On Hiding Information from an
Oracle,” in Proceedings 19th Annual ACM Symposium on Theory of
Computing (STOC), 1987, pp. 195-203.

[Ajax] Ajax Project web page, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/
user/roc/public/www/Ajax.html.

[AK96] R. Anderson and M. Kuhn, Tamper Resistance - A Cautionary Note, in
Proceedings of the Second USENIX Workshop on Electronic Commerce.
(1996) pp. 1-11, 1996.

[AK97] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant
Devices, in Security Protocols, 5th International Workshop, Paris, France,
LNCS 1361 pp. 125-136, 1997.

[Appel02] A. Appel, “Deobfuscation is in NP.” Preprint available from
http://www.cs.princeton.edu/~appel/papers/deobfus.pdf

[Ble98] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS#1, in Advances in Cryptology --
CRYPTO '98, LNCS 1462, pp. 1-12, 1998.

[BMK+01] L. Badger, B. Matt, D. Kilpatrick, and L. Spector, “Self-Protecting Mobile
Agents Architecture and Policy Specification,” NAI Labs Technical Report
01-006, March 23, 2001.

[BDM+01] L. Badger, L. D'Anna, B. Matt, A. Reisse, and T. Van Vleck, “Self-
Protecting Mobile Agents Obfuscation Report,” NAI Labs Technical
Report 01-036, November 30, 2001, Revised January 2003.

[Bal69] R. Balzer, “EXDAMS -- EXtendable Debugging And Monitoring System,”
in AFIPS 1969 Spring Joint Computer Conference, Vol. 34, AFIPS Press,
May 1969, Proceedings SJCC, 1969, pp. 567-580.

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton “On the Importance of
Checking Cryptographic Protocols for Faults,” in Advances in Cryptology

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 59

--- EUROCRYPT '97 Proceedings, Springer-Verlag, 1997, pp. 37-51.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (Im)possibility of Obfuscating Programs,” in
Advances in Cryptology, Proceedings of Crypto'2001, Lecture Notes in
Computer Science, Vol. 2139, pp. 1-18.

[BMM00] I. Biehl, B. Meyer, and V. Müller: Differential Fault Attacks on Elliptic
Curve Cryptosystems, in Advances in Cryptology, Proceedings of
Crypto'2000: pp. 131-146.

[BS97] E. Biham and A. Shamir: Differential Fault Analysis of Secret Key
Cryptosystems, in Advances in Cryptology, Proceedings of Crypto'1997:
pp. 513-525.

[CCK+00] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. “One-round Secure
Computation and Secure Autonomous Mobile Agents,” in Proceedings
27th International Colloquium on Automata, Languages and Programming
(ICALP), Volume 1853 of Lecture Notes in Computer Science, pp. 512-
523. 2000.

 [CEJ+02a] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, White-Box
Cryptography and an AES Implementation, in Proceedings of SAC 2002 -
9th Annual Workshop on Selected Areas in Cryptography, August 2002.

 [CEJ+02b] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, A White-Box DES
Implementation for DRM Applications, in Proceedings of ACM CCS-9
Workshop DRM 2002 - 2nd ACM Workshop on Digital Rights
Management, November 2002.

[CG95] C. Cifuentes and K. J. Gough, “Decompilation of Binary Programs,”
Software - Practice & Experience. Volume 25 (7), July 1995, pp. 811-829.

[CJR+99] S. Chari, C. Jutla, J. Rao, and P. Rohatgi, Towards Sound Approaches to
Counteract Power-Analysis Attacks, in Advances in Cryptology,
Proceedings of Crypto 1999, pp. 398-412.

[Cohen92] F. Cohen, “Operating System Protection Through Program Evolution,”
Computers and Security 1992. http://all.net/books/IP/evolve.html

[Coll03] C. Collberg, “SandMark Algorithms,” V3.1.1, January 28, 2003
http://cgi.cs.arizona.edu/~sandmark/SandMark3.1.1/smalgs.pdf

[CP] “Chopstick Program Analysis and Visualization Tool,” http://www-
2.cs.cmu.edu/afs/cs/project/chopshop/pub/www/home.html

[CS03] “CodeSurfer Program Analysis Tool,”
http://www.grammatech.com/products/codesurfer/overview.html

[CT02] C. Collberg and J. Thomborson, “Watermarking, Tamper-Proofing, and
Obfuscation - Tools for Software Protection,” in IEEE Transactions on
Software Engineering 28:8, pp. 735-746, August 2002. See also University
of Arizona Technical Report 2000-0, February 2000.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 60

[CTL98a] C. Collberg, J. Thomborson, and D. Low, “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs,” in IEEE International
Conference on Computer Languages, May 1998.

[CTL98b] C. Collberg, J. Thomborson, and D. Low, “Breaking Abstractions and
Unstructuring Data Structures,” in ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, January 1998.

[CTL97a] C. Collberg, J. Thomborson, and D. Low, “A Taxonomy of Obfuscating
Transformations,” University of Auckland Technical Report #170, July
1997.

[CW00] “Preliminary Report on Optimizing Compilers and Code
Transformations,” Cloakware Corporation, June 2000.
http://www.cloakware.com/resources/external.html

[CW01a] “Preliminary Analysis of the Security of Data Flow Code
Transformations,” Cloakware Corporation, March 2001.
http://www.cloakware.com/resources/external.html

[CW01b] “Preliminary Analysis of the Security of Control Flow Code
Transformations,” Cloakware Corporation, April 2001.
http://www.cloakware.com/resources/external.html

[CW01c] “An Approach to the Obfuscation of Control Flow of Sequential Computer
Programs,” Cloakware Corporation, October 2001.
http://www.cloakware.com/resources/external.html

[DCC] C. Cifuentes, DCC C Decompiler Home Page,
http://www.itee.uq.edu.au/~cristina/dcc.html.

[Deut94] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers: Beyond k-
Limiting,” in Proceedings SIGPLAN Conf. Programming Language
Design and Implementation (PLDI '94), pp. 230-241, June 1994.

[Embra] The Embra simulator web page, http://www-flash.stanford.edu/Embra/

[ER98] M. Echin and J. Rochlis, “With Microscope and Tweezers: An Analysis of
the Internet Virus of November 1988,” in Proceedings of 1989 IEEE
Symposium on Research in Security and Privacy. May 1998.

[FHS+96] S. Forrest, S. A. Hofmeyer, A. Somayaji, and T. A. Longstaff, “A Sense of
Self for Unix Processes,” In Proceedings of 1996 IEEE Symposium on
Computer Security and Privacy (1996).

[FIPS 46-3] “Data encryption standard”, Federal Information Processing Standards
Publication 46-3, U.S. Department of Commerce/National Bureau of
Standards, National Technical Information Service, Springfield, Virginia,
October, 1999

[FM99] S. Funfrocken and F. Mattern. “Mobile Agents As An Architectural
Concept For Internet-Based Distributed Applications - the WASP Project
Approach”. In Kommunikation in Verteilten Systemen (KiVS). Springer-

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 61

Verlag, 1999.

[GMP+97] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond
the Sandbox: An Overview of the New Security Architecture in the Java
Development Kit 1.2, in USENIX Symposium on Internet Technologies
and Systems, Monterey, California, December 1997.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental
Game,” in 19th ACM Symposium on Theory of Computing, pp. 218-229,
ACM Press, 1987.

[Gos85] J. Gosler, Software Protection: Myth or Reality?, Advances in Cryptology,
Proceedings of Crypto 1985, August 1985, pp. 140-157.

[H02] S. Hada, “Zero-Knowledge and Code Obfuscation,” Asiacrypt 2000
http://link.springer.de/link/service/series/0558/bibs/1976/19760443.htm

[HBC+99] M. Hind, M. Burke, P. Carini, and J. Choi, “Inter-procedural Pointer
Analysis,” ACM Transactions on Programming Languages and Systems,
Vol. 21, No. 4, July 1999, pp. 848-894.

[HMST01] B. Horne, L. Matheson, C. Sheehan and R. Tarjan, “Dynamic Self-
Checking Techniques for Improved Tamper Resistance,” Proc. ACM
Workshop on Security and Privacy in Digital Rights Management, Nov
2001. Also in LNCS 2320.

[Hohl98] F. Hohl. “Time Limited Blackbox Security: Protecting Mobile Agents
from Malicious Hosts,” in Mobile Agents and Security, 1419 in LNCS.
Springer-Verlag, 1998, pp. 92-113.

[HR98] F. Hohl and K. Rothermel, “A Protocol Preventing Blackbox Tests of
Mobile Agents,” the 11th Fachtagung “Kommunikation in Verteilten
Systemen” (KiVS'99). To appear.

[KH02] S. Kumar and S. Horwitz, “Better Slicing of Programs with Jumps and
Switches,” in Proceedings of FASE 2002: Fundamental Approaches to
Software Engineering, April 8-12, 2002.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun: Differential Power Analysis. Advances in
Cryptology, Proceedings of Crypto 1999: pp. 388-397.

[Koc96] P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems, in Advances in Cryptology, Proceedings of
Crypto 1996: pp. 104-113.

[KOK+01] T. Kamiya, F. Ohata, K. Kondou, S. Kusumoto, and K. Inoue:
“Maintenance Support Tools for JAVA Programs: CCFinder and JAAT.”
ICSE 2001: pp. 837-838.

[LR91] W. Landi and B. G. Ryder. “Pointer-induced Aliasing: A Problem
Classification,” in Proceedings of the Eighteenth Annual ACM
Symposium on the Principles of Programming Languages, pp. 93-103,
Orlando, Florida, January 1991.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 62

[Lou02] C. Lou, private communication to Tom Van Vleck, E-mail December 31,
2002.

[LV97] F. Lanubile and G. Visaggio, “Extracting Reusable Functions By Flow
Graph-Based Program Slicing,” in IEEE Transactions on Software
Engineering, Vol. 23, No. 4, pp. 246-259, April 1997.

[MR91] Silvio Micali and Phillip Rogaway: Secure Computation (Abstract).
Advances in Cryptology - CRYPTO 1991: pp. 392-404, 1991.

[MS-ZM] MacAfee -AVERT virus information library entry for W32/Zmist.gen
http://vil.nai.com/vil/content/v_99382.htm

[NCJ01] J. Nickerson, S. Chow and H. Johnson. “Tamper Resistant Software:
Extending Trust into a Hostile Environment,” ACM MultiMedia 2001,
October 2001.

[NCJ+02] J. Nickerson, S. Chow, H. Johnson, and Y. Gu. “The Encoder Solution to
Implementing Tamper Resistant Software,” Information Survivability
Workshop ISW-2001/2002. March 2002.

[Nec97] G. Necula. Proof-carrying code, in 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 106-119, New
York, January 1997.

[NJMCT] The New Jersey Machine-Code Toolkit web page
http://www.eecs.harvard.edu/~nr/toolkit/

[OG98] S. Onder and R. Gupta, “Automatic Generation of Microarchitecture
Simulators,” in the IEEE International Conference on Computer
Languages (ICCL98), May 1998.

[Reps98] Reps, T., “Program Analysis via Graph Reachability,” Information and
Software Technology 40, 11-12 (November/December 1998), pp. 701-726.

[PTO-AS] Program-Transformation.Org Decompilation Application Specific
Approach web page (including Java and .Net), http://www.program-
transformation.org/twiki/bin/view
/Transform/DecompilationApplicationSpecificApproach

[PTO-DA] Program-Transformation.Org Companies Offering Disassemblers and tools
for building disassemblers web page, http://www.program-
transformation.org/twiki/bin/view /Transform/DecompilationDisassembly

[PTO-DC] Program-Transformation.Org Companies Offering Decompilation Services
web page, http://www.program-transformation.org/twiki/bin
/view/Transform/CompaniesOfferingDecompilationServices

[PTO-DR] Program-Transformation.Org Decompilation And Reverse Engineering
web page, http://www.program-transformation.org/twiki/bin
/view/Transform/DecompilationAndReverseEngineering.

[PW97] T. Proebsting and S. Watterson. “Krakatoa: Decompilation in Java (Does
Bytecode Reveal Source?),” in Proceedings of the Conference on Object-

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 63

Oriented Technologies and Systems, Portland, Oregon, USA, June 1997,
USENIX.

[RF97] N. Ramsey and M. F. Fernandez. Specifying Representations of Machine
Instructions. ACM Trans. Programming Languages and Systems, 19(3):
pp. 492-524, May 1997.

[RT96] T. Reps and T. Turnidge, “Program Specialization via Program Slicing,” in
Proceedings of the Dagstuhl Seminar on Partial Evaluation, (Schloss
Dagstuhl, Wadern, Germany, February 12-16, 1996), LNCS, Vol. 1110,
1996, pp. 409-429.

[Rutgers] “The Prolangs Analysis Framework (PAF).” Rutgers University.
http://www.prolangs.rutgers.edu/public

[SA02] S. Skorobogatov and R. Anderson, Optical Fault Induction Attacks,
Workshop on Cryptographic Hardware and Embedded Systems 2002
(CHES 2002), August 13-15, 2002.

[Sch005] Bruce Schneier, “CRYPTO-GRAM, May 15 2000”
www.counterpane.com/crypto-gram-0005.html

[Sch025] Bruce Schneier, “CRYPTO-GRAM, May 15 2002”
www.counterpane.com/crypto-gram-0205.html

[Schwab03] Steve Schwab, “The Embedded Hard Problem Fallacy,” to appear.

[Schwarz] B. Schwarz, S. Debray, G. Andrews; “Disassembly of Executable Code
Revisited”; Proceedings of 2002 Working Conference on Reverse
Engineering, pp 45-54; Oct 2002.

[SimOS] The SimOS Simulator web page http://simos.stanford.edu/

[SM03] SandMark Project home page. http://www.cs.arizona.edu/sandmark

[SML-C] Software Migrations Ltd IBM 370 Decompilation to C Code
http://www.smltd.com/Products.htm

[ST98a] T. Sander and C. Tschudin. “On Software Protection via Function Hiding,”
in Proceedings of the Second Workshop on Information Hiding, Portland,
Oregon, USA, 12 April 1998.

[ST98b] T. Sander and C. Tschudin. Towards Mobile Cryptography, in Proceedings
of the 1998 IEEE Symposium on Security and Privacy, Oakland,
California, May 1998.

[ST98c] T. Sander and C. Tschudin, “Protecting Mobile Agents from Malicious
Hosts,” in Mobile Agents and Security, LNCS 1419, G. Vigna (Ed.),
Springer-Verlag, 1998, pp. 44-60.

[SYY99] T. Sander, A. Young, and M. Yung, “Non-interactive CryptoComputing
for NC1,” in Proceedings 40th IEEE Symposium on Foundations of
Computer Science (FOCS), 1999.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 64

[Tempest] The Complete, Unofficial TEMPEST Information Page,
http://www.eskimo.com/~joelm/tempest.html

[Tip95] F. Tip, “A Survey of Program Slicing Techniques,” Journal of
Programming Languages, 3(3): pp. 121-189, September 1995.

[TM81] W. Teitelman and L. Masinter. The Interlisp Programming Environment.
IEEE Computer, pp. 25-33, April 1981.

[TR81] T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A Syntax-
directed Programming Environment. Communications of the ACM, 24(9):
pp. 563-573, September 1981.

[UC00] D. Ung and C. Cifuentes, Machine-Adaptable Dynamic Binary
Translation, in Proceedings of the Workshop on Dynamic and Adaptive
Compilation and Optimization, pp. 37-47, 2000.

[Vau02] S. Vaudenay: Security Flaws Induced by CBC Padding - Applications to
SSL, IPSEC, WTLS, Advances in Cryptology EUROCRYPT'02, LNCS
No. 2332, pp. 534-545, 2002.

[WLA+93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient Software-
based Fault Isolation,” in Proceedings ACM Symp. on Operating System
Principles, December 1993, pp. 203-216.

[Weiser84] M. Weiser, “Program Slicing,” IEEE Transactions on Software
Engineering SE-10(4) pp. 352-357 (July, 1984).

[W00] C. Wang. “A Security Architecture for Survivability Mechanisms.” PhD
Thesis, University of Virginia, School of Engineering and Applied
Science, October 2000. Http://www.cs.virginia.edu/
survive/pub/wangthesis.pdf.

[WDH+01] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of Software-based
Survivability Mechanisms,” in International Conference of Dependable
Systems and Networks, Goteborg, Sweden (July, 2001).

[WHK+00] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software Tamper
Resistance: Obstructing Static Analysis of Programs.” Technical Report
CS-2000-12, Department of Computer Science, University of Virginia,
2000.

[WPS] The Wisconsin Program-Slicing Project web page, http://www.cs.
wisc.edu/wpis/html/

[WR96] E. Witchel and M. Rosenblum, Embra: Fast and Flexible Machine
Simulation, in Proceedings of ACM SIGMETRICS '96: Conference on
Measurement and Modeling of Computer Systems, 1996.

[WPS] The Wisconsin Program-Slicing Project web page, http://www.cs.
wisc.edu/wpis/html/

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 65

Appendix A: JBET
The Java Binary Enhancement Tool (JBET) is a general Java program analysis and
manipulation tool. JBET uses a convenient internal representation of all the contents of
Java binary (.class) files, for easy manipulation. For example, the code in each method is
stored as a list of Instruction objects, which know about the operands of the Java
instructions, how to emulate the instruction, etc. A directed acylic graph (DAG)
representation of code is also available. Various manipulations are very easy to code, for
example, a plugin that automatically turns field accesses into getter/setter method pairs is
152 lines of source code.

We tested the correctness of JBET by reading in and writing out thousands of Java
binaries and ensuring that the generated files are identical, and by using JBET to
transform itself and verifying that the program still ran. Our approach includes
representation of the entire Java instruction set. JBET can insert new methods (or
functions) into Java binary (.class) executable files, and also cause original program code
to invoke our new functions; this ability allows us to augment the functionality of mobile
agents (and Java programs in general) without requiring access to source code. This
binary capability will significantly ease the technology transfer of our technology since
the technology can be applied to fielded Java programs without having to first obtain
their source code.

Design

Basic data structures
The JBET core uses several classes to represent the contents of a Java class file in an
easily manipulatable form. Many transformations on Java programs are easy to code
using these data structures.

ClassInfo
The ClassInfo data structure represents a single Java class (essentially, the contents of
one .class file). It stores data such as name, access flags, a list of MethodInfos for the
methods, and a list of FieldInfos for the fields.

MethodInfo
MethodInfo represents a single Java method. It stores the name, descriptor, containing
ClassInfo, the exception specification for the method, and a list of Instructions
representing the code for the method (if any). An equivalent to the Java class verifier is
included, so that assembled code can be checked for errors that would cause the JVM to
reject the class to be detected during processing. In addition, our verifier outputs the exact
instruction causing the problem.

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 66

Instruction
Instruction objects represent one Java instruction, including opcode and operands. The
Instruction class has a database of Java instructions, allowing it to be used in a “Java
assembler” to ensure that all instructions have correct operands. The Instruction class also
handles jump addresses internally, so programmers of JBET modules do not need to be
concerned with aligning bytes and adjusting jump targets.

Graph-based representation
For nontrivial code transformations, a graph-based representation is desirable compared
to a list of raw instructions. (We developed the graph-based representation while writing
the obfuscator). In this representation, the code for a method is stored as a list of basic
blocks, each containing graph nodes for Java operations. This frees the programmer from
having to manage the Java operand stack while manipulating code. Because of the strict
requirements on code layout enforced by the JVM, it is always possible to split a method
into basic blocks. The programmer may use the graph-based and normal representations
interchangeably, converting to one or the other depending on which is more desirable.

The graph representation stores Java instructions in a high-level form (almost like parse
trees of source code). For example, an invokevirtual node contains a list of nodes
for the arguments, whereas in the instruction list, the arguments would have merely been
pushed on the stack by earlier instructions.

Plug-ins
JBET is designed to allow separate code (or graph) modification transformations to be
plugged in, and to make it reasonably easy to continue development of advanced
transformation techniques into the future. (If the on-disk layout of class files is changed,
we can include support for that in an updated version, without affecting “most” plug-ins.)

The obfuscator and deobfuscator are two notable examples of plug-ins.

Use in Survivable Server Project

One use proposed for JBET technology is to rewrite parts of the Java standard library to
include security checks that the Java security manager interface does not support (for
example, access to files checked at every read). This use of JBET was part of the DARPA
funded Survivable Server project, which applied multiple technologies to hardening a
component of the Joint Battle Infosphere. This project, led by Teknowledge Corporation,
began in July 2002 and ended in March 2003.

We created a plug-in for JBET that operated on a Java program to intercept calls to native
methods invoke policy enforcing code before each such method call.

Packaging

We developed a portable build environment for JBET. (Only tested on Linux and
Windows NT/XP, but should work on other Unix platforms with Java) Our. environment

SPMA Obfuscation Report

DARPA contract N66001-00-C-8602 67

requires only a few free and easily downloaded tools to build and run our software on any
of these platforms.

To support Survivable Server and other projects, we organized JBET into separable
packages, and removed all traces of obfuscation from the main core, which supports
general analysis of Java class files. The obfuscation and deobfuscation operations are
separately packaged and need not be shipped with the main JBET core.

In discussions with the DARPA Program Manager, it became evident that our
obfuscation software could be used by attackers as well as by defenders. To prevent this,
the Program Manager requested that we not distribute JBET as Open Source software or
make it available except to the Government and NAI's trusted business partners. While
this will reduce visible transfer of SPMA technology, we believe it is a prudent decision
and will not materially affect our ability to transfer the technology to national defense
applications. With the reorganization of the software, we can distribute the JBET core
while holding back the obfuscation tool, forestalling embarrassing malicious use of the
obfuscation tool.

	Introduction
	Technical Approach
	Original Tasks

	Accomplishments of SPMA Project
	Agent division
	Obfuscation

	Weaknesses in the SPMA Approach
	Breaking Obfuscation
	Rerun Attacks

	Revised Research Program

	New Problem Definition
	Overview of the Problem
	Components of the Obfuscation Relationship
	Deobfuscation
	Success
	Work factor

	Use cases
	Mobile Agents
	Problem
	Attack
	Use of Obfuscation

	Standalone Software Copy Prevention
	Problem
	Attack
	Problems With Obfuscation
	Use of Obfuscation

	Viruses
	Problem
	Attack
	Use of Obfuscation

	Algorithm Hiding
	Problem
	Use of Obfuscation
	Problems With Obfuscation

	Summary

	Our Experiments
	Obfuscator
	Java Binary Manipulation
	Code Storage
	Data Storage and Object System
	Control Flow
	Method Calls
	Runtime Type Information
	Exception Handling
	External Stubs
	Internal stubs
	Java Obfuscation Demonstrations

	Deobfuscator
	Dynamic Analysis
	Pattern Matching
	How deobfuscation could have been made more difficult

	Summary

	Difficulties in Implementing Obfuscation
	Programming Languages
	Type Systems: Abstractions and Patterns
	Example: Obfuscated Rationals

	The Problem of Merging Type Systems
	System Environment
	Language Feature Concerns
	Reflection
	Exception Handling
	Excessive use of Polymorphism
	Arbitrary Casting
	Templates
	Range Types
	Perl and other modern scripting languages

	The Portability of Language Features
	Networked Programs
	Summary

	Theories on Obfuscation
	Game theory
	Known deobfuscator
	Known obfuscator
	Solution

	Recursion Theory vs. Complexity Theory
	Automated Obfuscation is Emulation
	Static and Dynamic Analysis

	Related work
	Obfuscation and Deobfuscation Research
	Rice’s Theorem
	The Rice-Shapiro Theorem
	Cohen: Evasion and Mutation
	Collberg: Obfuscation and Watermarking
	Wang et al: Obfuscation
	Hohl: Time Limited Black Box
	Barak et al: Obfuscation is Impossible
	Sander/Tschudin/Cachin/Micali: Computing with Encrypted Functions
	Cloakware
	Appel
	Ahpah and InterTrust
	Schneier
	Fraunhofer CCRG

	Reverse Engineering
	Static Reverse Engineering Methods
	Disassemblers
	Decompilers / Reverse Compilers
	Specialty Tools and Techniques
	Program Slicing
	Alias Analysis

	Dynamic Methods
	Debuggers and Associated Tools
	Software Emulators
	Logic Analyzers
	In-circuit Emulators

	Cryptography
	Exploiting Error Conditions
	Power Analysis and Similar Attacks
	Fault Analysis Attacks

	Our Conclusions
	Don’t Depend on Obfuscation for Security
	Argument From Theory
	Argument From History

	Barak’s Result is Very Strong
	Better Solutions Are Available
	Applicability beyond Java
	Summary

	Acknowledgements
	Bibliography
	Appendix A: JBET
	Design
	Basic data structures
	ClassInfo
	MethodInfo
	Instruction

	Graph-based representation
	Plug-ins

	Use in Survivable Server Project
	Packaging

