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Abstract

A particle-swarm is a set of indivisible processing elements that traverse a network in order
to perform a distributed function. This paper will describe a particular implementation of a
particle-swarm that can simulate the behavior of the popular PageRank algorithm in both
its global-rankandrelative-rankincarnations. PageRank is compared against the particle-
swarm method on artificially generated scale-free networks of 1,000 nodes constructed
using a common gamma value,γ = 2.5. The running time of the particle-swarm algorithm
is O(|P | + |P |t) where|P | is the size of the particle population andt is the number of
particle propagation iterations. The particle-swarm method is shown to be beneficial in its
ease of extension and running time.
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1 Introduction

Influence, prestige, impact, and authority are all terms that refer to a class of net-
work metrics that utilize the structure of a graph,G = {N,E}, to derive an in-
fluence ranking,~I ∈ R|N |, over all its constituent nodes. Generally these metrics
determine a node’s importance in a recursive fashion. A node’s influence,~Ik, is a
function of the influence of the nodes that project to it. This idea is represented in
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Eq. (1), whereej,k is a directed edge fromnj to nk, out(nj) is the set of outgoing
edges from nodenj, andt is the current iteration represented in discrete time. The
collection of influences across all nodes in the network is represented by the vector
~I which is the principle eigenvector of the adjacency matrix formed by the graph
(1).

~Ik,t+1 =
∑

∀ej,k∈E

~Ij,t
|out(nj)|

(1)

Since the inception of these algorithms there has been a strong focus onglobal-
rank, I(n|N) or simplyI(n), and only recently has there been research interest in
relative-rankI(n|R), whereR ⊆ N (2). Global-rank determines the relative influ-
ence of each node with respect to the entire node population,N , while on the other
hand, relative-rank determines the relative influence of each node with respect to
a particular subset of the network,R ⊆ N . Global-rank algorithms have found
themselves at the forefront of web search techniques: PageRank (1), HITS (3), and
their respective extensions. While on the other hand, biased, or relative ranking
has found application in domain-specific authority using web-page networks (4),
company-specific idea influence using collaboration networks (2), and manuscript-
specific peer-review influence using co-authorship networks (5). It is important to
note that global-rank can be interpreted as a special case of relative-rank where
each node’s influence is calculated relative to a root node set that is the entire node
population,R = N .

The contribution set forth by this paper is two fold. First, this paper demonstrates
the application of particle-swarms to the calculation of these two popular influence
metrics: PageRank (global-rank) (1) and PageRank-Priors (relative-rank) (2). The
particle-swarm algorithm is beneficial in its running time and flexibility. Unlike, the
matrix models of most popular metrics, a particle-swarm has a more tangible appeal
that lends itself towards various functional modifications. This paper will only pro-
vide the rudimentary data structures and functions necessary to simulate PageRank
and PageRank-Priors, but will provide room in the framework for possible exten-
sions. The second contribution of this paper is that it provides an introduction to
the use of particle-swarms in the broader context of graph analysis and manipula-
tion. Currently there is little research in this area. Of those manuscripts found, most
of them analyze graphs from the perspective of a single random-walker and do no
include more advanced functions and properties such as particle energy, decay, and
teleportation (6) (7) (8) (9).

The outline of the paper is as follows.Section 2will discuss both PageRank and
PageRank-Priors from the standpoint of an object-oriented random-walker model.
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Section 3will then describe the graph theoretic model of the particle-swarm method
with emphasis on the various parameters and functions of the particles as they apply
to simulating PageRank and PageRank-Priors.Section 4compares both PageRank
algorithms and the particle-swarm algorithm on artificially generated scale-free net-
works. Finally,Section 5discusses the running-time of the particle-swarm method
and two optimizations. The paper concludes,Section 6, with a short discussion of
related PageRank algorithm implementations.

2 Random-Walker Model

Both PageRank (1) and PageRank-Priors (2) can be described in a random-walk
fashion where a stochastic token, or particle, moves throughtout a network,G. The
rank influence of any nodenk ∈ N is the probability that that particle-token,p,
will be seen at that node,~Ik = P (p|nk). This conceptual analogy is explicitly rep-
resented within the object-oriented framework of this paper as a swarm of particle-
tokens,P , that traverse the network landscape depositing their energy footprint on
each node they traverse. In doing so, the particles generate an influence ranking of
the nodes in terms of the node population’s normalized energy distribution,~I. This
particle-swarm model can reach near perfect correlations with both PageRank and
PageRank-Priors with a more efficient running-time.

2.1 PageRank Walker

The PageRank algorithm, as described in (1), was the driving force which has car-
ried the Google search engine to the forefront of web search-engine technology.
Simply speaking, the algorithm is calculated in a recursive fashion where a partic-
ular page in a network of web-pages is influential if it is referenced by, or linked
from, other influential pages. Imagine a random-walker,p, traversing a network of
web-pages such as the World Wide Web,G = {N,E}. If that random-walker con-
tinously finds itself at a particular pagen, then that random-walker is said to have
a high probability of being at that web page. This probability is interpreted as the
page’s, or node’s, influence. The random-walker is consitently located at that web-
page because the incoming edges tonk, in(nk) ⊆ E, are either numerous, nearing
the limit |in(nk)| ≈ |E|, or the nodes that point tonk have a numerous set of in-
coming edges which allow the random-walker to consistently reappear atnk. Taken
to its recurssive limit, a node’s influence is a measure of all the aggregate influence
it receives from pages pointing to it whether direct or indirect. A modification to
this algorithm incorporates a dampening-factor,λ ∈ [0, 1], to reduce the spread of
influence over time (10). The further the random-walker travels, the less influence
the random-walker should have, such that at full dampening,λ = 1.0, the random-
walker can not take a step and all nodes are ranked equivalent,~Ik,t=0 = 1

|N | . The
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combination of random-walker propagation and dampening is expressed in Eq. (2).
The equation represents the proportion of influence distributed tonu by nv. This
can also be interpreted as the probability of the random walker taking the edgeev,u

given the the condition that its current location isnv.

p(u|v) =

(
1− λ

out(nv)

)
+

(
λ

|N |

)
(2)

2.2 PageRank-Priors Walker

The priors idea was first proposed by (2) in their formalization of a relative-rank
extension to both PageRank and HITS. Suppose the network data structure,G =
{N,E}, is supplied with a root node set,R ⊆ N . This root set is the set of nodes
used to rank all other nodes relative too. Suppose that at each time step, the random-
walker has a probability,β, of ’teleporting’ to particular noder ∈ R as defined by
the probability distribution,P (r) = 1

|R| . A variation to the algorithm can bias the
probability distribution overR. As β approaches 1.0 the probability of seeing the
random-walker at any node inR becomes greater and therefore the influence of the
nodes inR, as well as those nodes thatR projects to, increases. At the limit when
β = 1.0, the influence distribution of alln /∈ R = 0.0 and the influence of all
n ∈ R = 1

|R| . In this way, the random-walker is biasing the ranking of the network
nodes,N , towards the subsetR. Whenβ = 0.0 there is still a bias towards the
initial root node set since the random-walker will initiate its walk from that set, but
the probability of the random-walker’s location diffuses over the network the more
time steps alloted.

The next section will now extend the random-walker model to a particle-swarm
model where a collection of random-walkers,P , traverse the network depositing
an energy footprint at each step of the way. These energy footprints, as stored in
the node’s ’memory’,~Ik, represent the probability of having a particle at that par-
ticluar node. It is important to note that the random-walker model can be easily
extended to account for weighted graphs,G = {N,E,W}, where the outgoing
edges of a node are normalized to create a probability distribution. This probability
distribution biases the random-walkers decision when taking an outgoing edge and
in such cases is called a biased random-walker. In this way, weighted PageRank
and weighted PageRank-Priors can be calculated. The next section will discuss the
full weighted model of the particle-swarm framework though the simulations are
only for the PageRank and PageRank-Priors non-weighted counterparts.
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3 Particle-Swarm Model

A particle-swarm,P , is a collection of unique processing entities that, by travers-
ing a network in a stochastic manner, collectively perform a distributed function.
In relation to the random-walker model, a particle-swarm is simply a collection
of many random-walkers. The unification of the network particles, nodes, roots,
edges, and weights form the data structureG = {P,N,R,E,W} where each edge
is assigned a weight,|E| = |W |, andR ⊆ N . A single particle,pi ∈ P , can con-
tain any number of properties and behaviors, but for the purposes of this paper only
those properties and behaviors that apply to PageRank and PageRank-Priors are
described,P = {ε, δ, r, β, c}. A particle is an indivisible entity, but its local energy
content,εi ∈ [0, 1], is not. Each time a particle traverses an edge, its local energy
content is affected by a decay-scalar,δi ∈ [0, 1], which is related to the damp-
ening factor,λ, described previous. To simulate PageRank-Priors a particle must
have a reference to its originating, or root node,hi ∈ R, so that it can ’teleport’
home as detemined by a back-probability,βi ∈ [0, 1] and a back selection function
B(βi) ∈ {0, 1}. Finally a particle traverses an outgoing edge from its current node
location,ci ∈ N , according to an edge selection function,θ(out(ci)) ∈ out(ci).
These properties and behaviors are enumerated below for ease of reference. Note
that δ andβ are the same for every particle in the following simulations,δi = δl
andβi = βl. Extensions to this framework can assign different values to different
particles.

(1) ε: a local energy valueε ∈ [0, 1]
(2) δ: a energy decay-scalarδ ∈ [0, 1]
(3) h: a reference to its home, or root, nodeh ∈ R
(4) β: a back-probabilityβ ∈ [0, 1]
(5) c: a reference to the current node locationc ∈ N
(6) a probabilistic back selection functionB(β) ∈ {0, 1}
(7) a probabilistic outgoing edge selection functionθ(out(c)) ∈ out(c)

A network node,nk, is represented by the triplet{P (nk), out(n), ϑk} whereP (nk)
is a unique set of particles located atnk, out(nk) is a unique set of outgoing edges
from nk, andϑ ∈ R is nk’s local energy value. Any edge in the network,ek,j, is a
directed edge, fromnk to nj, with an associated weight,wk,j ∈ [0, 1]. The weights
of the set of all outgoing edges from any node,out(nk), must be normalized to
create a probability distribution for each particle’s propagation function (Eq. 3).

wk,j(t+1)
=

wk,j(t)∑|out(nk)|
i=0 wk,i(t)

(3)
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Initially a set of nodes in the network are seeded with a collection of particles,P .
This distribution can be an equal distribution or a biased distribution depending on
the desired functional output. For global-rank metrics, each node in the network
is provided with an equal initial distribution,|P (nk)| = |P |

|N | , while for relative-
rank methods, only an initial root set,R ⊆ N , will be provided with particles,
|P (rk)| = |P |

|R| whererk ∈ R. At each time step of the algorithm a particle performs
three behaviors. First, the particle increments its current node’s energy content,
ϑk, with its current energy content,εi, by way of ϑk(t+1) = ϑk(t) + εi(t) where
nk = ci (Alg. 1-16). Next, the particle decays its energy content by the parameter-
ized decay-scalar,δi (Eq. 4, Alg. 1-17).

εi(t+1) = εi(t) − (δiεi(t)) (4)

Lastly, the particle calculatesB(β) (Alg. 1-18). If the function returns1, then the
node will return home,ci(t+1) = hi. If the function returns0, then the particle
chooses an outgoing edge of its local node depending on the probability of that
node’s outgoing edge weights,ci(t+1) = θ(out(ci)) (Alg. 1-26). The outgoing edge
chosen,ei,j, determines the particles new nodal reference,ci(t+1) = nj. A particle’s
death occurs whenεi = 0.0. Since the decay function of the particle is based on
the percentage of its current energy content, formally the particle energy will ap-
proach, but never reach0.0. Therefore, a threshold for particle death is given when
εi ≤ 10−8. Unlike the ’random teleport’ functionality of most PageRank implemen-
tations, if nodeci does not have an outgoing edge, then the particle is destroyed,
εi = 10−8 (Alg. 1-22). Once all the particles in the network have died or a desired
t has been reached the particle propagation algorithm is complete. The energy con-
tent,ϑk, of all nodes can be normalized to yield the proportion of energy every node
has with respect to one another. This proportion can be interpreted as the probabil-
ity of seeing a random-walker at that particular node. The aggregated values of all
energy in the network forms the influence vector~I.

The pseudocode for the particle-swarm implementation of PageRank is provided in
Algorithm 1. The first functional block expresses a particle-distribution algorithm
and the second block expresses the particle-propagation algorithm. To implement
PageRank-Priors the loop on line3 should run throughR notN and a desiredβ
should be set at line6. An overview of the different Big-O running times of the two
functions are presented in their respective comments and will be examined more
closely in theSection 5.

The next section will provide simulation results of the aforementioned particle-
swarm algorithm, with varying parameters. The results of these simulations are
compared to the results given by PageRank, PageRank-Priors, and In-Degree.
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#distribute particles: O(|N |particlesPerNode) = O(|P |);1

int i = 0;2

foreach (nk ∈ N) do3

int particlesPerNode = 10;4

for (l = 0, l < particlesPerNode, l++ ) do5

εi = 1.0; δi = 0.15; ri = nk; βi = 0.0; ci = nk;6

i++;7

end8

end9

#disseminate particles: O(|P |t);10

int t = 0;11

while (t < pageIterations) do12

t++;13

for (i = 0, i < |P |, i++ ) do14

if (εi > 10−8) then15

ϑci = ϑci + εi;16

εi = εi − (δi ∗ εi);17

if (B(βi) == 1) then18

ci = ri;19

end20

else21

if (|θ(out(ci))| == 0) then22

εi = 10−823

end24

else25

ci = θ(out(ci));26

end27

end28

end29

end30

end31

Algorithm 1 : Particle-Swarm implementation of PageRank

4 Simulation Correlations

This algorithm test suite was originally run on random networks and scale-free net-
works of a varyingγ ∈ [2.0, 3.0] and size|N | ∈ [100, 10000] with insignificant
variation on the particle-swarm’s simulation peformance. Since the network size
and topology are not dimensions for analysis, only a collection of scale-free net-
works of γ = 2.5 and |N | = 1000 are used for the remainder of the paper. For
scale-free construction, each node is given a predetermined set size for their in-
coming connections as defined by Eq. (5), where the random numberψ ∈ [0, 1],
|in(nk)| ≤ |N | − 1, andin(nk) is the set of incomming edges tonk (11).
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|in(nk)| = bψ−[1.0/(γ−1.0)]c (5)

From here nodes randomly connect to each other until their maximum incoming
connectivity is reached, at which point the network construction algorithm is com-
plete. By predetermining the maximum incoming connectivity of a node, the topol-
ogy of the network maintains a small portion of node hubs and a relatively large
portion of sparsely connected nodes which is characteristic of many naturally oc-
curing networks (12).

4.1 In-Degree as a Trivial Case of PageRank and Particle-Swarm

The trivial case of the random-walker model is when the random-walker is only
allowed to take one step. This is a method for calculating the influence of a node
with respects to In-Degree and is an extreme case of PageRank asλ → 1.0 and
δ → 1.0 or the algorithm is halted att = 1. To simulate In-Degree, each edge
in the network must be traversed att = 1. To accomplish this, every node is sup-
plied with a collection of random-walkers proportional to its outgoing edge size,
|P (nj)| = α|out(nj)| whereα ∈ N+. Now if each random-walker has an equal
probability of taking any outgoing edge, then att = 1 the distribution of random-
walkers across the set of nodesN is the In-Degree influence of that node (Eq. 6).

~Ik =
∑

∀ej,k∈E

|P (nj)|
|out(nj)|

(6)

Since the set of allej,k ≡ in(nk), then when substituting|P (nj)| for α|out(nj)|
yields ~Ik = α|in(nk)| and therefore produces an influence calculation perfectly
correlated to In-Degree. Given that this is a random-walker, stochastic noise will
disrupt the probability that each outgoing edge of every node is taken once and
only once. Therefore as the size of the intital distribution of particles increases (as
α increases), but at the same time remaining proportionally equal for every node,
the noise is reduced and the appropriate In-Degree influence vector is returned. If
the distribution of random-walkers is equal,|P (nk)| = |P |

|N | , then only an approxi-
mation of In-Degree can occur. In such cases, the more uniform the distribution of
outgoing edges of all the nodes, the more accurate the approximation.

To simulate In-Degree influence using PagePank,λ was scaled between0.005 and
0.995 to produce the following correlation plot (Fig. 1a). The reason for limiting
the experiment toλ = 0.995 is because whenλ = 1.0 there is no deviation in
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the rank vector because~Ik = 1
|N | . It is shown that PageRank best approximates In-

Degree influence at the limit asλ → 1.0. For example, atλ = 0.995, C = 0.998.
Next, the particle-swarm method for simulating In-Degree was determined using
various initial particle distribution sizes of|P (nk)| ∈ [1, 20], |P | ∈ [1000, 20000],
andβ = 0.0. The importance of|P |will become apparent in theSection 5when the
particle-swarm’s running time is discussed. Theδ of each particle was scaled from
0.005 to 0.995 and asδ → 1.0, δ = 0.995, In-Degree influence is approximated
most closely,C = 0.997 (Fig. 1b). Figure 1b has20 superimposed particle distri-
bution size plots. The following influence vector relationship exists between these
three algorithms:~IIN ≈ ~Iλ→1.0 ≈ ~Iδ→1.0. Notice that PageRank and the particle-
swarm method are nearly equivalent in their behavior for the respectiveδ = λ
values,~Iλ ≈ ~Iδ when|P (nk)| > 1. Also note that the divergent plot in Figure 1b
occurs when|P (nk)| = 1, |P | = 1000.
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Fig. 1.a. PR vs. IN overλ ∈ [0.005, 0.995] b. PS vs. IN overδ ∈ [0.005, 0.995]

4.2 Correlating Particle-Swarm to PageRank and PageRank-Priors

To simulate the results of PageRank (global-rank), the decay-scalarδ was varied be-
tween0.005 and0.995 for every potential dampening factorλ between0.005 and
0.995. The iterations of the particle-swarm method were constrained totPS = tPR,
wheretPS andtPR are the amount of iterations for the particle-swarm method and
PageRank, respectively. Note that whenδ is high, particle death occurs before the
amount of iterations is complete. For this experiment|P (nk)| = 10, |P | = 10000.
The resulting figure, (Fig. 2a), demonstrates that an equal distribution of particles
across all ofN with β = 0.0 simulates the respective PageRank calculation with a
near1.0 Pearson correlation whenδ = λ.

PageRank-Priors (relative-rank), on the other hand, is a function of two variables,
the size of the root node set,R, and the back-probability,β. The root node set was
determined by randomly assigning a portion of the node population toR, R =
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Fig. 2.a. PR vs. PS overδ andλ b. PRP vs. PS overβ

f(N,ϕ) where the percentageϕ ∈ [0.01, 1.0] and |R| = ϕ|N |. The selection of
the root node set had no effect on the correlation between PageRank-Priors and the
particle-swarm method. Therefore, to represent the correlations in a 3-D plot, theϕ
factor was omitted. The iterations of the particle-swarm method were constrained
to tPS = tPRP wheretPRP is the amount of iterations required for PageRank-Priors
to converge. Furthermore,δ = 0.0 since PageRank-Priors has no dampening-factor
parameter. Figure 2b provides the correlations values when the particle-swarms
βPS ∈ [0.1, 1.0] for all βPRP ∈ [0.1, 1.0] of PageRank-Priors. The root node set was
generated from10% of the node population,ϕ = 0.10, therefore when|P (rk)| =
10, |P | = 1000. PageRank-Priors and the particle-swarm method have near perfect
correlation whenRPRP = RPS andβPRP = βPS.

5 Optimizations and Running Time

This section will extend the current particle-swarm model to express two particular
optimizations:iteration constrainingand random seeding. Currently, the running
time of the particle-swarm method isO(|P | + |P |t) where|P | is the number of
particles used in the simulation, andt is the number of particle propagation itera-
tions. In comparison, the running time of both PageRank and PageRank-Priors is
O(|E|t) whereE is the set of edges in the network andt is the number of iterations
required till convergence (13) (14). It is important to note that|P | is a function
of |N |, |P | = α|N |, not |E|, and for most real-world networks|N | << |E|. An
accurate particle-swarm simulation of PageRank is possible when|P (nk)| = 1
and therefore|P | = 1000. While for aγ = 2.5 scale-free network of1000 nodes
|E| ≈ 2575. Therefore, the Big-O speed up, given20 iterations for each algorithm,
is a factor of approximately2.45 = (2575)(20)

(1000)+(1000)(20)
, |E|t
|P |+|P |t .

Greater gains are seen in the particle-swarms simulation of PageRank-Priors when

10



|R| < |N |. Since the particle population of a node is a proportion of the total
population,|P (nk)| = |P |

|R| , then this ratio allows for a smaller particle population
when simulating PageRank-Priors without degrading the accuracy of the calcula-
tion. Therefore,|P (rk)| = |PPRP|

|R| = |PPR|
|N | , wherePPRP andPPR are the particle

sets for PageRank-Priors and PageRank, respectively. For|P | = |R|, the particle-
swarm algorithms has a running time ofO(|R|+ |R|t) when simulating PageRank-
Priors. The PageRank-Priors particle-swarm simulation is more efficient in terms
of running time than its originally, and only, published analysis ofO(|E|t) (2).
The benefits of the particle-swarm simulation of PageRank-Priors are best realized
when|R| << |N | << |E|.

These calculations assume that the particle-swarm method and PageRank/PageRank-
Priors both share the same amount of interations,tPS = tPR, and that the particle-
swarm method has a homogenous initial particle seeding of at least1 particle per
node. Both of these parameters can be reduced to lower the particle-swarms run-
ning time with varying effects on the correlation. The following list of variables
will be discussed in the following subsections and are presented here for ease of
reference.

(1) tPS: number of iterations to propagate particlest ∈ N+

(2) φ: proportion of nodes to receive an initial seeding of particlesφ ∈ [0, 1]
(3) α: number of particles per node in the initial seedingα ∈ N+

(4) S: the set of nodes receiving particle from the intitial seedingS ⊆ N and
|S| = φ|N |

5.1 Constraining Particle Iterations and Random Particle Seeding

Algorithm 1-12 assumes that a particle propagates for the same amount of itera-
tions as PageRank,tPS = tPR. This isn’t the best method for settingtPS since it
requires PageRank to be executed in order to determine the amount of iterations
required. Another way of determining the amount of interations for the particle-
swarm method is to wait until all particles have died, which occurs when the par-
ticle’s energy content has decayed toεi = 10−8 or whenci no longer has outgo-
ing edges. For aδ = 0.15 and whenci always has at least one outgoing edge,
particle death occurs after113 iterations, while the average PageRank converges
after 22.7 interations on aγ = 2.5 scale-free network. This obviously is not the
fastest method. Therefore, Figure 3a plots the correlation between the particle-
swarm method and PageRank as the particle-swarm method’s iteration value is
constrained,tPS ∈ [1, 25]. The range from25 < tPS ≤ 113 is omitted due to
insignificant variation in the algorithm’s behavior. The result demonstrates that the
particle-swarm method is strongly correlated with PageRank,C = 0.953, after only
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4 iterations,tPS = 4.
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The particle-swarm method can also be optimized by randomly choosing a subset
of the network to initially seed with particles,S ⊆ N . This random subset can be
expressed as a proportion of the whole network,φ|N | whereφ ∈ [0, 1] and|S| =
φ|N |. Figure 3b plots the correlation between PageRank and the particle-swarm
method for different initial particle seed proportions. It is shown that atφ = 0.335,
when only33.5% of the nodes in the network are seeded with a single particle,
the Pearson correlation is approximately0.95. Therefore an accurate PageRank
calculation does not require all nodes to begin with an equal set of particles. Thus,
|P | << |N |.

5.2 Combining the Optimizations

The combination of both optimizations is represented in Figure 4 where each ini-
tial seed proportion,φ ∈ [0.01, 0.5], is calulated for every iteration amount,tPS ∈
[1, 25]. Next, Figure 5 plots the iteration amount against the seeding proportion for
the lowest value pair obtaining aC ≈ 0.95. Each plot point’s shade value is calcu-
lated asφt, which represents the cost of performing that parameter pair to obtain
aC ≈ 0.95. Therefore, to achieve aC ≈ 0.95, the most computationally efficient
way is to use a moderate amount of particles (φ ≈ 0.45) propagated over a moder-
ate amount of time steps (tPS ≈ 8).

The speed-up of the particle-swarm method with respects to PageRank is repre-
sented in Eq. (7) asΦ. Sinceφ|N |α represents the particle population, the full
running time can still be expressed asO(|P | + |P |tPS). The numerator in Eq. (7)
is based on the standard PageRank implementation ofO(|E|tPR).
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Φ =
|E|tPR

(φ|N |α) + (φ|N |α) tPS

(7)

For aγ = 2.5 scale-free network of|N | = 1000, the theoretical speed-up of the
fastest particle-swarm method yielding aC ≈ 0.95 (α = 1, φ = 0.45, t = 8)
is calculated to be14.43 = (2575)(22.7)

[(0.45)(1000)(1)]+[(0.45)(1000)(1)(8)]
. To verify this hypothe-

sis, PageRank, as implemented in (14), was compared against the most optimized
particle-swarm method. The benchmark testing was done over500 trials of 500
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different γ = 2.5 scale-free networks of|N | = 1000 with the average speed-up
factor determined to be22.23. A potential explanation for the increased benchmark
speed-up relative to the theoretical speed-up may be in part to the fact that over
the course of the particle-swarm algorithm, particles die before all iterations are
complete (Alg. 1-15,17,23). Therefore, the general rule is that ast increases,|P |
decreases.

Given different gamma values, the amount of iterations should vary. For exam-
ple, aγ = 2.0 scale-free network only requires12.52 iterations for PageRank to
converge. Similarly, The particle-swarm method requires only1.01 iterations to
produce aC ≈ 0.95. At the other extreme, aγ = 3.0 scale-free network requires
approximately28.88 iterations to converge while the particle-swarm method re-
quires6.23 iterations. The general trend, for producing aC ≈ 0.95, is tPS ≈ 1

5
tPR

or for eachγ ∈ [2.0, 3.0], tPS ≈ 2γ.

6 Conclusion

Due to the popularity of the the global-rank implementation of PageRank there ex-
ists much literature on efficient implementations of the algorithm. One particulary
example includes an algorithm that partitions the graph into related influence clus-
ters (15). Unfortunately, this publication does not represent the algorithm’s run-
ning times in terms of Big-O notation and only provides ’wall time’ for a spe-
cific machine architecture. For comparison, the graph clustering method states a
Spearman correlation of0.95 and a2 fold increase in calculation time relative to
a ’highly optimized’ implementation of PageRank. The graph clustering method
groups nodes of a similar PageRank into a hyper-node and then calculates the full
converging PageRank vector on the newly constructed hyper-network. In this way,
the clustering method is able to reduce the total amount of edges,E, iterated over.
The publication states that the typical edge reduction between the original network
and the hyper-network is a factor of20 for networks containing billions of edges.
Edge reduction, by way of node grouping, also reduces the amount of nodes in the
networks. Therefore, there is a strong incentive to combine the graph clustering
method and the particle-swarm method. This has not been tested as of yet.

Finally the space contraints of the particle-swarm method are larger than traditional
matrix methods since these methods do not represent particles, only the influence
vector,~I, and the adjacency matrix of the graph. This representaiton lends itself
towards efficient space modifications (16). The particle-swarm implementation dis-
cussed in this paper is calculated solely in main memory for small networks less
than 10,000 nodes. This test-bed implementation is obviously not useful for calcu-
lations on web-sized networks. Future work will describe a system architecture for
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performing particle-swarm algorithms on large-scale networks.

The particle-swarm method for graph analysis has an appeal in its potential for
functional modification. From the object-oriented perspective, a particle can be
seen as an ’agent’ that can contain any number of properties and behaviors. The
potential for modifying the particle-swarm framework presented in this paper can
lead to a host of augmentations to the demonstrated influence metrics. One ex-
ample includes the incorporation of ’negative’ energy particles to reduce specific
node influence as explained in (5). New particle-swarm metrics are currently be-
ing implemented and results will be presented in future publications. This paper’s
simulations were performed using the Confluence package (17). The Confluence
API has been written such that new particles can be easily extended to the basic
’energy’ particle framework.
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