What Is a Control Chart?

A statistical tool used to distinguish between process variation resulting from common causes and variation resulting from special causes.
Why Use Control Charts?

- Monitor process variation over time
- Differentiate between special cause and common cause variation
- Assess effectiveness of changes
- Communicate process performance
What Are the Control Chart Types?

Chart types studied in this module:

- X-Bar and R Chart
- Individual X and Moving Range Chart
 - For Variables Data
 - For Attribute Data

Other Control Chart types:

- X-Bar and S Chart
- Median X and R Chart
- c Chart
- u Chart
- p Chart
- np Chart
Control Chart Decision Tree

Are you charting attribute data?

- **YES**
 - Use XmR chart for attribute data

- **NO**
 - Data are variables data

 Is sample size equal to 1?

 - **YES**
 - Use XmR chart for variables data

 - **NO**
 - For sample size between 2 and 15, use X-Bar and R Chart
Elements of a Control Chart

<table>
<thead>
<tr>
<th>Date</th>
<th>M E A S U R E M E N T S</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Title: ____________________________________
2. _________________
3. 2
Elements of a Control Chart
Constructing an X-Bar & R Chart

Step 2 - Collect and enter data by subgroup

<table>
<thead>
<tr>
<th>Date</th>
<th>1 Feb</th>
<th>2 Feb</th>
<th>3 Feb</th>
<th>4 Feb</th>
<th>5 Feb</th>
<th>6 Feb</th>
<th>7 Feb</th>
<th>8 Feb</th>
<th>9 Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.3</td>
<td>14.4</td>
<td>15.3</td>
<td>15.0</td>
<td>15.3</td>
<td>14.9</td>
<td>15.6</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>2</td>
<td>14.9</td>
<td>15.5</td>
<td>15.1</td>
<td>14.8</td>
<td>16.4</td>
<td>15.3</td>
<td>16.4</td>
<td>15.8</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>14.8</td>
<td>15.3</td>
<td>16.0</td>
<td>17.2</td>
<td>14.9</td>
<td>15.3</td>
<td>16.4</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
<td>15.6</td>
<td>18.5</td>
<td>15.6</td>
<td>15.5</td>
<td>16.5</td>
<td>15.3</td>
<td>16.4</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>16.4</td>
<td>14.9</td>
<td>14.9</td>
<td>15.4</td>
<td>15.5</td>
<td>15.1</td>
<td>15.0</td>
<td>15.3</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Enter data by subgroup in time sequence
Constructing an X-Bar & R Chart

Step 3 - Calculate and enter subgroup averages

<table>
<thead>
<tr>
<th>Date</th>
<th>1 Feb</th>
<th>2 Feb</th>
<th>3 Feb</th>
<th>4 Feb</th>
<th>5 Feb</th>
<th>6 Feb</th>
<th>7 Feb</th>
<th>8 Feb</th>
<th>9 Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>M E A S U R E M E N T S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15.3</td>
<td>14.4</td>
<td>15.3</td>
<td>15.0</td>
<td>15.3</td>
<td>14.9</td>
<td>15.6</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>2</td>
<td>14.9</td>
<td>15.5</td>
<td>15.1</td>
<td>14.8</td>
<td>16.4</td>
<td>15.3</td>
<td>16.4</td>
<td>15.8</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>14.8</td>
<td>15.3</td>
<td>16.0</td>
<td>17.2</td>
<td>14.9</td>
<td>15.3</td>
<td>16.4</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
<td>15.6</td>
<td>18.5</td>
<td>15.6</td>
<td>15.5</td>
<td>16.5</td>
<td>15.3</td>
<td>16.4</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>16.4</td>
<td>14.9</td>
<td>14.9</td>
<td>15.4</td>
<td>15.5</td>
<td>15.1</td>
<td>15.0</td>
<td>15.3</td>
<td>15.0</td>
</tr>
<tr>
<td>Average</td>
<td>15.36</td>
<td>15.04</td>
<td>15.82</td>
<td>15.36</td>
<td>15.98</td>
<td>15.34</td>
<td>15.52</td>
<td>15.58</td>
<td>14.56</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enter the average for each subgroup
Constructing an X-Bar & R Chart

Step 4 - Calculate and enter subgroup ranges

<table>
<thead>
<tr>
<th>Date</th>
<th>1 Feb</th>
<th>2 Feb</th>
<th>3 Feb</th>
<th>4 Feb</th>
<th>5 Feb</th>
<th>6 Feb</th>
<th>7 Feb</th>
<th>8 Feb</th>
<th>9 Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>M E A S U R E M E N T S</td>
<td>1</td>
<td>15.3</td>
<td>14.4</td>
<td>15.3</td>
<td>15.0</td>
<td>15.3</td>
<td>14.9</td>
<td>15.6</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.9</td>
<td>15.5</td>
<td>15.1</td>
<td>14.8</td>
<td>16.4</td>
<td>15.3</td>
<td>16.4</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15.0</td>
<td>14.8</td>
<td>15.3</td>
<td>16.0</td>
<td>17.2</td>
<td>14.9</td>
<td>15.3</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15.2</td>
<td>15.6</td>
<td>18.5</td>
<td>15.6</td>
<td>15.5</td>
<td>16.5</td>
<td>15.3</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16.4</td>
<td>14.9</td>
<td>14.9</td>
<td>15.4</td>
<td>15.5</td>
<td>15.1</td>
<td>15.0</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Average | 15.36 | 15.04 | 15.82 | 15.36 | 15.98 | 15.34 | 15.52 | 15.58 | 14.56 |

Range | 1.5 | 1.2 | 3.6 | 1.2 | 1.9 | 1.6 | 1.4 | 2.4 | 1.6 |

Enter the range for each subgroup
Constructing an X-Bar & R Chart

Step 5 - Calculate grand mean
Step 6 - Calculate average of subgroup ranges
Step 7 - Calculate UCL and LCL for subgroup averages
Step 8 - Calculate UCL for ranges
Step 9 - Select scales and plot
Step 10 - Document the chart
Constructing an X-Bar & R Chart

Step 9 - Select scales and plot
Constructing an XmR Chart

Step 2 - Collect and enter individual measurements

<table>
<thead>
<tr>
<th>Date</th>
<th>1 Apr</th>
<th>2 Apr</th>
<th>3 Apr</th>
<th>4 Apr</th>
<th>5 Apr</th>
<th>6 Apr</th>
<th>7 Apr</th>
<th>8 Apr</th>
<th>9 Apr</th>
<th>10 Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual X</td>
<td>19</td>
<td>22</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>23</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Moving R</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Enter individual measurements in time sequence
Constructing an XmR Chart

Step 3 - Calculate and enter moving ranges

<table>
<thead>
<tr>
<th>Date</th>
<th>1 Apr</th>
<th>2 Apr</th>
<th>3 Apr</th>
<th>4 Apr</th>
<th>5 Apr</th>
<th>6 Apr</th>
<th>7 Apr</th>
<th>8 Apr</th>
<th>9 Apr</th>
<th>10 Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual X</td>
<td>19</td>
<td>22</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>23</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Moving R</td>
<td></td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Enter the moving ranges
Constructing an XmR Chart

Step 4 - Calculate average of data points
Step 5 - Calculate average of moving ranges
Step 6 - Calculate UCL and LCL for individual X
Step 7 - Calculate UCL for ranges
Step 8 - Select scales and plot
Step 9 - Document the chart
Constructing an Xmr Chart

Step 8 - Select scales and plot
Constructing an XmR Chart

Step 10 - Check for *inflated* control limits

Step 11 - If inflated, calculate 3.144 times median mR

Step 12a - Do not recompute if 3.144 times median mR is greater than 2.66 times average of moving ranges

Step 12b - Otherwise, recompute all control limits and centerlines
Constructing an XmR Chart

Step 10 - Check for inflated control limits

Any point is above upper control limit of moving range

2/3 or more of data points are below average of moving range
(13 of 19 data points = 68%)
Step 12b - Constructing an XmR Chart

Upper Plot

\[
\begin{align*}
\text{UCL}_X &= \bar{X} + (3.144) \text{ (Median Moving Range)} \\
\text{LCL}_X &= \bar{X} - (3.144) \text{ (Median Moving Range)} \\
\text{Centerline}_X &= \bar{X}
\end{align*}
\]

Lower Plot

\[
\begin{align*}
\text{UCL}_{mR} &= (3.865) \text{ (Median Moving Range)} \\
\text{LCL}_{mR} &= \text{None} \\
\text{Centerline}_{mR} &= \text{Median Moving Range}
\end{align*}
\]
Control Chart Zones

UCL

ZONE A

ZONE B

Centerline

ZONE C

ZONE C

ZONE B

ZONE A

LCL

1/3 distance from Centerline to Control Limits
Rule 1 - Interpreting X-Bar & R Charts

UCL

Centerline

LCL

ZONE A

ZONE B

ZONE C

Out of Limits
Rule 2 - Interpreting X-Bar & R Charts

2 out of 3 successive values in Zone A
Rule 3 - Interpreting X-Bar & R Charts

4 out of 5 successive values in Zones A & B
Rule 4 - Interpreting X-Bar & R Charts

8 successive values on same side of Centerline
Exercise 1
Values of X-Bar and Ranges

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>1</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>X_2</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>X_3</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>X_4</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X-Bar</td>
<td>5.0</td>
<td>5.3</td>
<td>4.3</td>
<td>5.5</td>
<td>4.5</td>
<td>5.3</td>
<td>4.8</td>
<td>5.0</td>
<td>3.3</td>
<td>4.5</td>
<td>3.8</td>
<td>3.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.3</td>
<td>4.0</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
EXERCISE 1
X-Bar & R Control Chart

Note: Solid lines represent the grid used in this module; dashed lines separate zones.
EXERCISE 2

Values of Moving Ranges

<table>
<thead>
<tr>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Values</td>
<td>16</td>
<td>20</td>
<td>21</td>
<td>8</td>
<td>28</td>
<td>24</td>
<td>19</td>
<td>16</td>
<td>17</td>
<td>24</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>19</td>
<td>15</td>
<td>21</td>
<td>17</td>
<td>22</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>mR</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
EXERCISE 2
XmR Control Chart

Note: Solid lines represent the grid used in this module; dashed lines separate the zones in the upper plot.
EXERCISE 2
XmR Control Chart Revised for Inflated Limits

Note: Solid lines represent the grid used in this module; light dashed lines divide the zones in the upper plot.