
Session SC5, Michael-1

A Short Course on
Software-Based Deception

and Counter Deception
Session SC5,

“Information Security Strategy
and Counter Deception”

IEEE WESCON 2003
San Francisco, California

August 13, 2003

Software-Based Deception &
Counter Deception Session SC5, Michael-2

Instructor

J. Bret Michael, Ph.D.
Associate Professor of Computer Science
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5118
Tel. +1 831 656-2655
bmichael@nps.navy.mil
http://www.cs.nps.navy.mil/people/faculty/bmichael/

Software-Based Deception &
Counter Deception Session SC5, Michael-3

Disclaimer

The views and conclusions contained
herein are those of the instructor and
should not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of the U.S. Government.

Software-Based Deception &
Counter Deception Session SC5, Michael-4

Course Outline

Learning objectives
Introduction to deception
Motivation for applying deception in cyber
space – A shift in paradigms
Intelligent software decoys
Overview of how to build intelligent software
decoys using wrapper technology
Concluding remarks

Software-Based Deception &
Counter Deception Session SC5, Michael-5

Learning Objectives

At the conclusion of this short course, the
participants will be able to

Articulate the need for a shift in computing
paradigms to provide for the use of deception to
responding to intrusions and malicious behavior
Describe the key properties of an intelligent
software decoy
Provide examples of how decoys can be used to
protect information systems
Specify a simple deception model using the
Chameleon language

Software-Based Deception &
Counter Deception Session SC5, Michael-6

This short course will not…
Make you an expert on the topic of
software-based deception

There isn’t enough time
Complex technically challenging subject

The issues are accumulating faster than we
can keep up with them

New technological innovations
New applications of existing technologies

Software-Based Deception &
Counter Deception Session SC5, Michael-7

Some Reflections on the Subject
of Deception

All warfare is based on deception.
- Sun Tzu

We are never deceived; we deceive ourselves.
- Goethe

Illusion is the first of all pleasures.
- Voltaire

One is easily fooled by that which one loves.
- Moliere

The mind is the greatest weapon.
- Rambo

Software-Based Deception &
Counter Deception Session SC5, Michael-8

What is deception?

Deception is a conscious and rational effort to
deliberately mislead an opponent. It seeks to
create in an adversary a state of mind which
will be conducive to exploitation by the
deceiver.
Counter deception is the act by the targeted
party to try to mislead the deceiver.

Software-Based Deception &
Counter Deception Session SC5, Michael-9

Why and How

Why deceive?
Freedom of action
for deceiver
Disadvantageous
action by opponent
To gain surprise by
deceiver
To save lives

How?
Increase ambiguity
Mislead by reducing
ambiguity

Software-Based Deception &
Counter Deception Session SC5, Michael-10

Principles of Deception

Aimed at the mind of the opponent
Aim is to make the opponent act
Coordination and centralized control
Preparation and timing
Security
Credibility and confirmation
Flexibility

Software-Based Deception &
Counter Deception Session SC5, Michael-11

Principles for Effective Deception
(Fowler & Nesbit, J. of Electronic Defense, June 1995)

1. Deception causes the enemy to believe what
they want to believe.

2. Deception involves timely feedback.
3. Deception is integrated with operations.
4. Deception conceals the critical true

activities.
5. Deception is tailored to the task.
6. Deception should be imaginative and should

not become stereotyped.

Software-Based Deception &
Counter Deception Session SC5, Michael-12

Deception in the Physical versus
the Cyber Realm

One cannot violate the laws of physics
Difficult to create believable deceptions in
the physical world

One can readily create deceptions in the
cyber world, partly due to the fact that
the internals of the computing system
are often viewed as a black box

Software-Based Deception &
Counter Deception Session SC5, Michael-13

Need to Protect Components of
Distributed Systems

Software from which distributed systems are composed needs
to be protected from malicious use

For example, recent “Code Red” worm
Some of the features of distributed systems make them
tempting targets

For instance, dynamic patching schemes (e.g., updating software
on communications satellites)

Software components with poorly designed interfaces are
susceptible to misuse or modification by rogue programs

For example, the UNIX fingerd program and IIS Indexing Service
DLL of Windows have been found to be susceptible to well-known
(for many years!) buffer-overflow attacks

Software-Based Deception &
Counter Deception Session SC5, Michael-14

Legal and Societal Issues

In addition to the technical feasibility of
realizing software-based deception
mechanisms, we need to explore the legal
and societal issues associated with applying
these mechanism
Tom Wingfield’s Law of Information Conflict
(Falls Church, Va.: Aegis Research Corp.,
2000), provides a good overview of the legal
issues of conducting cyber warfare

Software-Based Deception &
Counter Deception Session SC5, Michael-15

View of Deception in Society

Legal and cultural predisposition in U.S.
against

Institutionalizing deception
Using non-defense sectors of government
Using culturally-respected portions of private
sector (journalists, clergy, academia, NGOs) for
deception

Sissela Bok’s Lying: Moral Choice in Public
and Private Life (New York: Vintage Books,
Second ed., 1999) gives perspectives on the
morality of applying deception

Software-Based Deception &
Counter Deception Session SC5, Michael-16

Combating Cyber Terrorism

Challenge:
To use deception to combat cyber terrorism and
protect cybernetic property (e.g., the public-
switched telephone network), without having the
use of deception fall victim to negative public
sentiment (e.g., from misuse)

Solution:
Perform principled analyses to proactively assess
the

Legality of using software-based deception
Social implications of applying deception in terms of the
level of intrusiveness and impact on civil liberties

Software-Based Deception &
Counter Deception Session SC5, Michael-17

Prevalent Approach Today to
Intrusions: “Cyber Karate”

“If you try to kill me, I will try to kill you” philosophy
- Mas Oyama, famous Karate Master

Software systems and components usually terminate
interaction when suspicious behavior is detected

Indicates to the attacker that the attack has been noticed
Problem: Difficult for the defensive system to learn about the
nature of an attack (for use in improving defenses)

Can result in denial of service to legitimate users
Is not effective against sophisticated attackers who will adjust
their strategy and tactics to either deceive or bypass the
intrusion detection system

Non-real-time analysis of behavior patterns from
audit trails

Relatively large delay before compromise of system or
component can be detected

Software-Based Deception &
Counter Deception Session SC5, Michael-18

A New Way to Think about
Protecting Distributed Resources

Think in terms of protecting software components,
and the object and methods that reside in
components, using

Deception techniques built into components
Use of decoying actions to learn about the nature of attacks
and influence the behavior of the attacker

Strong interfaces to components
Survivability while tolerating inappropriate interaction by a
rogue program with a component

Automatic instrumentation of software components
Runtime monitoring of behavior patterns over event traces
Formalization of knowledge of typical intrusion patterns and
decoy strategies

Software-Based Deception &
Counter Deception Session SC5, Michael-19

A New Approach to Protecting
Software Systems

Use of decoying actions to learn about the nature of attacks and influence
the behavior of the attacker

Adapt traditional military deception for use in software-based deception
Explicit provision for survival and adjustment of system behavior to attack

Provide for intrusion tolerance within operating systems, middleware, and
applications

Automatic and selective instrumentation of software systems for intrusion
detection and decoying actions

Provide for efficient (selective) and effective (changes in nature or understanding
of the attack) runtime adaptation of detection and decoying actions (runtime
extensibility)

Explicit computer-based support for coordination among software-based
deception mechanisms

Coordinate actions across subsystems to maintain deceptions and improve, via
feedback between the subsystems, the effectiveness of the intrusion detection
mechanisms

Software-Based Deception &
Counter Deception Session SC5, Michael-20

Consider Using “Cyber Akido”

Cyber Akido
Decoy-enabled software component tolerates an attack and
learns about the opponent’s (i.e., rogue program’s)
weaknesses, sources, and methods
Decoy tries to neutralize its opponent by taking the following
steps:

First, try to reduce or eliminate the will of the attacker (e.g.,
insert delays into responses to method calls)
Next, change proximity to opponent (e.g., direct attacker to
a honeypot)
Lastly, reduce or eliminate the ability of the opponent to
attack (e.g., terminate calling process, launch counter denial-
of-service attack)

Here, the goal is not to reveal the purpose of the deceptive
actions to the targeted party (i.e., intruder/malicious user)

Software-Based Deception &
Counter Deception Session SC5, Michael-21

Intelligent Software Decoy
An abstraction for protecting objects from malicious attacks by
calling processes

We assume the attacker (i.e., rogue agent) will try to change the
behavior of the targeted object

Intended to deceive an agent into believing that
The decoy is the object it advertises itself to be
All of the decoy’s responses are legitimate

Discovers and reveals the presence of an attacker
Learns about both the usage of known attacks, and the
existence and details about previously unknown types of attacks
Neutralizes the effects of an intrusion
Initiates countermeasures (i.e., responds to attacks) based on
information about the nature (and possibly the source) of an
attack

Software-Based Deception &
Counter Deception Session SC5, Michael-22

Examples of Types of Responses
 Low

runtime
resources

Medium
runtime
resources

High
runtime
resources

Low setup
resources

Fake error
messages

Scripted
response to
known attack

Operating
system
"sandbox"

Medium
setup
resources

Exaggerate
processing
times

Fake
debugging
tools

Dynamically
simulate new
viruses

High setup
resources

Fake
directories

Fake a
known-virus
infection

Dynamically
counterplan
on attack

Software-Based Deception &
Counter Deception Session SC5, Michael-23

Decoys as an Airlock between
Technology and the Law

Can be programmed with a wide spectrum of
options for taking action
Provide for anticipatory exception handling

One could develop policy that places boundaries
on the extent and type of deception to be
employed, but provide latitude to the user of
decoys to inject creativity into deceptions so as to
increase the likelihood that the deceptions will be
effective
The boundaries could be used to delineate the
thresholds that if breached could result in the
misuse or unlawful use of decoys

Software-Based Deception &
Counter Deception Session SC5, Michael-24

All Objects Can Serve as Decoys

Decoy mode is triggered when the target
object receives a message that violates the
object-agent contract in one or more ways
Decoy behavior is specified in an ante
chamber

When the precondition fails, the object’s
interaction with the calling process is controlled
internally via decoying action language

Software-Based Deception &
Counter Deception Session SC5, Michael-25

Objectives
Provide a generic framework for intrusion detection and
countermeasures based on precise models of system behavior
Explore decoy strategies that alleviate the lack of variability in
previous work, and provides for a broad spectrum of responses
to attacks
Develop an architecture that supports formalization of
knowledge of intrusion patterns and decoy strategies
Provide for a significant level of automation of decoy activities,
making much of the low-level details of instrumentation of
systems for detection and response transparent to the user of
the decoy technology

Software-Based Deception &
Counter Deception Session SC5, Michael-26

Properties of Intelligent Software
Decoys

Intelligent
Adapt their behavior to changes in their operating
environment

Autarkic
Do not rely on the internal state of other objects to
protect themselves
However, for certain types of interactions (e.g.,
chained calls between components), decoys can
cooperate using global knowledge

Polymorphic (chameleon-like character)
Disguise themselves by altering their object-interface
contracts at run-time

Software-Based Deception &
Counter Deception Session SC5, Michael-27

Properties of Intelligent Software
Decoys

Policy-governed
Behavior governed by pre- and
postconditions, in addition to class
invariants

Deception policy determines decoying actions
to apply

Self-replicating
Replicate themselves, either in an
autonomous or cooperative manner

Software-Based Deception &
Counter Deception Session SC5, Michael-28

Primary Differences between
Decoys and Honey pots/nets

In contrast to honey pots and honey nets,
intelligent software decoys

Are part of the operational system, rather than a
separate system

Decoys must meet or exceed the performance criteria
specified for the software-based systems they protect

Learn about the nature of the attack by
encouraging continued interaction with the
attacker
Can be used in a defensive or offensive manner,
rather than just for analysis purposes

Software-Based Deception &
Counter Deception Session SC5, Michael-29

Interaction between Calling
Program and Software Decoy

polymorphic
messages &

authenication
information

software
decoy

contract
method1

methodn
reply

Calling
program

L/RPCs or RMIs public interface advertised
to other components

Software-Based Deception &
Counter Deception Session SC5, Michael-30

Wrapper

System
component

Wrapper

Intrusion

Supervisor

Interpreter

Rules for behavior
patterns and decoy actions

Operating System

System
component

Local-level wrapping of
system and application calls

with detection and
decoy capability

Supervisor performs
instrumentation, and

coordinates the actions of
software decoys, other supervisors,

and global-level
detection-and-response tools

Software-Based Deception &
Counter Deception Session SC5, Michael-31

Intrusion/Misuse Detection and
Decoy Responses

contract

software
component

...

Wrapping can be
performed at more than
one level of abstraction.
from application-level
objects such as web
applets to low-level
operating system calls

Software components are
wrapped with decoy
functionality on a selective
basis

Software contract is the
public interface of the
component

Software-Based Deception &
Counter Deception Session SC5, Michael-32

Example

software
component

system or
application call

request
(malicious)

contract

Supervisor

Repository

updated wrappers
containing detection
patterns and decoy
actions

feedback on
effectiveness of
deception

Software-Based Deception &
Counter Deception Session SC5, Michael-33

Coordination and Interoperability
Among Supervisors

System A

Supervisor

System B

System C

Supervisor

System D

Organization Alpha Organization Bravo

Boundary of
administrative

domains

information about
nature of attack,
response policy and
IO doctrine, response
effectiveness

information
necessary to

maintain
deception

across systems

Supervisor* Supervisor*

relay of information
from System A

filtered on profile of
System D supervisor

feedback

fe
ed

ba
ck

fe
e d

ba
ck

Software-Based Deception &
Counter Deception Session SC5, Michael-34

Software-based Deception is not
New

Misrepresentation of an agent’s true goal, for
purposes of negotiating with other software agents

Reasoning with incomplete information
Byzantine Generals problem

Reasoning about the intelligent behavior of software-
based systems

Turing’s “imitation game” (a.k.a., Turing test)
Self-deceiving software-based systems

Software-based tools for constructing and
maintaining deceptions in virtual worlds

for instance, Cohen’s Deception Toolkit (DTK)

Software-Based Deception &
Counter Deception Session SC5, Michael-35

Software-based Deception is not
New

Information-theoretic techniques for detecting
evidence of deception

for example, authentication-coding schemes
Use of the “art of illusion” in the design of human-
computer interfaces

Managing the virtual reality that the user of the interface
perceives

Inserting delays into operating-system responses
Somayaji’s pH system provides the operating system with
time to evaluate the nature of an pattern of system behavior

Software-Based Deception &
Counter Deception Session SC5, Michael-36

Novel Aspects of Our Software
Decoys

Software contracts are used to
Specify security policy, and mediate the interaction
under policy between the intelligent software decoy
and the attacker

Postconditions and invariants place fail-safe
constraints on the behavior of the decoy

Contain and observe the attacker, while attempting to
prevent the attacker from learning that the attack has
been detected

Class invariant makes it impossible for a rouge
program to change the decoy’s behavior via the
interface
Decoy can change its appearance via polymorphism

Software-Based Deception &
Counter Deception Session SC5, Michael-37

A View of the Deception Process

Deco
y re

sponse

Decoy
Action

Compiler

NAI
Wrapper

Toolkit

Target OS

Technical
Support
Personel

Decoy action specif ications
(in our high-lev el detection-action language)

I
N
T
R
U
S
I
O
N

Specif ication
packages

Intermediate representation
(input to NAI Wrapper Toolkit)

Operational Wrappers
(Kernel Modules)

Platf orm inf o
(Target OS,
Middleware,
Applications)

NAI f unctions

Detection Rules,
Decoy Actions

Policy / Doctrine

Checking
tool

OK or
NOT OK

AttackerInf ormation
Warrior

Superv isor

High-Lev el
GUI

Specif y ty pe of deception,
parameters, conf iguration

Feedback

Feedback

Requests f or new ty pes
of deception & f eedback

Nature of attack
Attacker's response

Ef f ectiv enes of
deception

ID, CNA, CND,
Data mining,

etc.

Instructions
to other tools

Software-Based Deception &
Counter Deception Session SC5, Michael-38

Intelligent Software-Decoy
Architecture

Software decoys are objects within components
Connectors between components are named
interfaces

Name advertised to other components need not be unique
Consist of an ordered list of arguments

Primitive types or object classes (supporting polymorphic
types)

Each class is composed of its own arguments and
behavior

Arguments are used to access methods of objects within a
component

Software-Based Deception &
Counter Deception Session SC5, Michael-39

Intelligent Software-Decoy
Architecture

Modification of the software decoy’s interface
is supported by polymorphism

Change one or more of the
Arguments
Order of the arguments
Data type or class of arguments
Number and position of dummy arguments

Component interaction is based on a contract
that is controlled by assertions as well as a
polymorphic type

Software-Based Deception &
Counter Deception Session SC5, Michael-40

Intelligent Software-Decoy
Architecture

An calling process cannot modify the behavior
of the decoy beyond the extent to which such
modification is permitted by the parent class
of the decoy
Venus flytrap model

If the precondition fails, then the decoy does not
thwart the attack, but rather contains the attacker

Invariant and postconditions defend the object
The decoy deceives the attacker into thinking its attack
has not been detected, maintaining the interest of the
attacker
Observe and try to determine intent and source of attack

Software-Based Deception &
Counter Deception Session SC5, Michael-41

Principles of Implementation

Based on precise system behavior model
Automatic translation of decoy strategy rules
into component selective instrumentation
Automatic generation of wrappers for system
and application components
Perform computations over event traces in
order to both detect patterns of behavior and
associate decoy actions with events

Software-Based Deception &
Counter Deception Session SC5, Michael-42

Precise Model of Behavior

Event
An abstraction of any detectable action performed at runtime

Binary relations over events (partial ordering):
Precedence and inclusion

Event attributes
Beginning & end of an event, source code associated with event,
etc.

Event trace
Representation of system execution as a set of events with the two
basic relations between them

Event grammar (for describing the structure of events)
Set of axioms that determines possible configurations of events of
different types within the event trace

Software-Based Deception &
Counter Deception Session SC5, Michael-43

Event

Any action that can be detected during
program execution
Can have attributes
Example of an event with two
attributes:
event read (buf, nbyte)

Software-Based Deception &
Counter Deception Session SC5, Michael-44

Event Trace

Two binary relations are defined for
events
1. Precedence
2. Inclusion

These relations suffice to describe a
program execution as a partially
ordered set of events—an event trace

Software-Based Deception &
Counter Deception Session SC5, Michael-45

A Lightweight Semantics
Specification with Two Parts

Part 1: Axioms (event grammar rules)
Define constraints on the behavior of components
execute-assignment::
(evaluate-right-hand-part
perform-destination)

Part 2: Patterns of behavior
Expressed in terms of event patterns

Use model to automatically instrument source code
for intrusion detection and monitoring activities

Recognize patterns and perform computations over event
traces
Selectively instrument, on a component-by-component basis,
the event types and event attributes-of-interest

Software-Based Deception &
Counter Deception Session SC5, Michael-46

Chameleon Specification
Language

Developed at the Naval Postgraduate
School
Used for specifying axioms and patterns
of behavior in the context of software
deception

Software-Based Deception &
Counter Deception Session SC5, Michael-47

Example of a Specification
(Domain Model) for fingerd_call

fingerd_call
Attributes: caller_id

begin_time
param_pass

Attributes: length
read

Software-Based Deception &
Counter Deception Session SC5, Michael-48

Example of a Behavioral
Specification for the Morris Worm

A probe is a Boolean expression evaluated
immediately after the preceding event
pattern has been matched successfully

Used to filter events to create views of the
event trace subspace, evaluating the truth of
assertions, computing specific values, etc.

fingerd_call:: (x: param_pass
)

& length(x) > max_buffer_size
read +
probe(buffer_overflow)

computation
over an

event trace
(separated from
the source code)

Software-Based Deception &
Counter Deception Session SC5, Michael-49

Example of Decoying Strategy for
Use Against the Morris Worm

detect [x: fingerd_call::
(y: param_pass)
& length(y) > max_buffer_size
read +] && CONST(process_id)
probe (buffer_overflow)
from execute-program
do enable delay (t) to z: utility_call
& process_id(x) = process_id(z)

insert process-
suspension time

(create illusion that
a delay has been
introduced for

system calls in the
same process)

Software-Based Deception &
Counter Deception Session SC5, Michael-50

Practical for Use with Legacy
Systems?

Yes
One can selectively wrap existing software
components, especially components that affect
the correct behavior and availability of mission-
critical systems or the underlying information
infrastructure

Eventually, one would want to rewrite the
software components, such as the
implementation of fingerd, using strong
software contracts (in the Meyer sense)

This is costly, but one can gradually introduce
contracts through the use of contract-wrappers

Software-Based Deception &
Counter Deception Session SC5, Michael-51

Practical from a False-Positive
View?

Need to minimize the probability that a decoy will
turn a false positive into a situation in which the
component denies service to a legitimate user

For example, a buffer overflow can be due to either
An egregious use of the interface (i.e., non-attack scenario)
An attack

In signature-based systems, the signatures tend to be
general, and there are issues of temporal validity of the
signatures

Decoy provides the component time to assess the
nature of the interaction and signature

Software-Based Deception &
Counter Deception Session SC5, Michael-52

Potential Weakness and Solution

Relies on a strong foundation: the distributed
operating system (e.g., 2K, StratOSphere, Legion)
along with the local network operating systems (e.g.,
Windows NT)

If the operating system is not trusted, then the
attacker will circumvent the software decoy, preferring
to instead attack the weak infrastructure

Proposed solution
Incorporate the intelligent software decoys into the
design of the operating system itself

Most modern operating systems are full of security holes that
could be partially addressed with the use of software decoys

Software-Based Deception &
Counter Deception Session SC5, Michael-53

Examples of Related Work
Wrapping operating-system
calls, such as

Sekar & Uppuluri (1999)
Ko et al. (2000)

WDL
Instrumenting object code
and virtual machines (with
hypervisors)

Erlingsson & Schneider
(1999)
Bressoud and Schneider
(1996)

Use of event traces, such as
Vigna and Kemmerer (1998)

NetSTAT, STATL

Intrusion tolerance and
confinement, such as

Liu & Jajodia (2001)
Somayaji (2002)

pH
Sekar et al. (1999)

ASL
Architectures for intrusion-
response systems, such as

Lewandowski et al. (2001)
Survivable Autonomic
Response Architecture
(SARA)

Neumann and Porras (1999)
EMERALD

Software-Based Deception &
Counter Deception Session SC5, Michael-54

Future Directions
How would one measure the effectiveness with which software decoys
and other security mechanisms guard against attacks on semantic
webs?
Is it technically feasible to coordinate a deception across a distributed
system (e.g., a cooperative engagement grid) if the attacker has
multiple avenues for both launching attacks and observing the state of
the targeted data, information, and software components?
How does one protect the software decoy or other security mechanism
itself from being compromised?
Can defensive responses by an intelligent software decoy cause
unintended side effects on the attacker’s computing platform, due to
software defects in software that the attacker uses?
To what extent can we integrate existing intrusion-detection-and-
response technology into architectural frameworks for software decoys
(to avoid “reinventing the wheel”)?

Software-Based Deception &
Counter Deception Session SC5, Michael-55

Future Directions
Is it technically feasible to

Identify the true source of an attack?
Develop a precision-guided cyber weapon for use in responding to attacks?
Determine with a high level of confidence that the use of the cyber weapon will
not have effects beyond those that are both intended and permissible (e.g., if
one targets the enemy’s command and control system, that the loss of the C2
system will not have an adverse affect on the function of civilian information
systems that were somehow coupled to the C2 system)?

To what extent can the details of creating and maintaining deceptions be made
transparent to the users of such technology?
Just because one demonstrates the technological feasibility of a realizing a
security mechanism does not mean that a user can legally apply that
mechanism, the software decoy being a case in point. Legal experts be involved
in the development of such technology early in the process (i.e., at the time of
system conceptualization and requirements specification)?

In terms of jus in bello (i.e., the rules of war), what constitutes a perfidious act
on the part of a decoy?

Software-Based Deception &
Counter Deception Session SC5, Michael-56

To Learn More…
“Intelligent Software Decoys.” In Proc.
ARL/DARPA/NSF/ONR Workshop on Eng. Automation
for Software Intensive System Integration (Monterey,
Calif., June 2001)
“Intelligent Software Decoys: Intrusion Detection
and Countermeasures.” In Proc. IEEE Workshop on
Information Assurance (West Point, N.Y., June 2002)
“Software Decoys for Software Counterintelligence.”
To appear the IA Newsletter (June 2002)
“On the Response Policy of Software Decoys:
Conducting Software-based Deception in the Cyber
Battlespace.” In Proc. Computer Software and
Applications Conf. (Oxford, Eng., Aug. 2002)

Software-Based Deception &
Counter Deception Session SC5, Michael-57

To Learn More…

“Lawful Cyber Decoy Policy.” In Gritzalis, D., Capitani
di Vimercati, S., Samarati, P., and Katsikas, S., eds.
Security and Privacy in the Age of Uncertainty: IFIP
TC11 Eighteenth International Conference on
Information Security. Boston: Kluwer Acad.
Publishers, 2003.
“An Experiment in Software Decoy Design.” In
Gritzalis, D., Capitani di Vimercati, S., Samarati, P.,
and Katsikas, S., eds. Security and Privacy in the
Age of Uncertainty: IFIP TC11 Eighteenth
International Conference on Information Security.
Boston: Kluwer Acad. Publishers, 2003.

Software-Based Deception &
Counter Deception Session SC5, Michael-58

To Learn More…

“Experiments with Deceptive Software Responses to
Buffer-Overflow Attacks.” In Proceedings of the 2003
IEEE Workshop on Information Assurance (West
Point, N.Y., June 2003)
“Measured Responses to Cyber Attacks Using Schmitt
Analysis: A Case Study of Attack Scenarios for a
Software-Intensive System.” In IEEE Proc. Twenty-
seventh Annual Int. Computer Software and
Applications Conf. (Dallas, Tex., Nov. 2003)

