
A Selection Algorithm for an Efficient
Interaction Pattern out of Paradigms

Hyeok Chan Kwon
Dept. of Computer Science

ChungNam National University
Kung-Dong, Taejon 305-764, Korea

+82-42-821-5442
hckwon@cs.cnu.ac.kr

Sung In Lee
Dept. of Office Automation

Taejon health sciences college
Taejon, Korea

+82-42-630-5942
silee@tjhealth.ac.kr

Sooho Sohn
ETRI

Taejon, Korea
+82-42-860-6441
shsohn@etri.re.kr

Tae Gun Kang
Dept. of computer Science

ChungNam National University
Kung-Dong, Taejon 305-764, Korea

+82-42-821-5442
tgkang@nspplab.cnu.ac.kr

Woo Jong Yoo
Dept. of Computer information processing

Taejon health sciences college
Taejon, Korea

+82-42-630-5953
wjyoo@tjhealth.ac.kr

Kwan Jong Yoo
Dept. of computer Science

ChungNam National University
Kung-Dong, Taejon 305-764, Korea

+82-42-821-5442
kjyoo@cs.cnu.ac.kr

ABSTRACT
A major benefit provided by mobile agent is the capability to
reduce network traffic by moving agent itself to server node. But
the question of whether the system using mobile agent is bringing
significant benefits to the performance of distributed applications
against traditional approach is an open one. Various parameters
must be considered to evaluate performance of a paradigm used in
developing distributed application. Performance of distributed
application is affected not only by a paradigm but also by the
migration pattern of the paradigm. In this paper, we present
performance evaluation model for mobile agent against
RPC(Remote Procedure Call) that is a traditional client-server
architecture. And on the basis of this model, we present efficient
selection algorithm for an interaction pattern from paradigms. We
also present simulation results of this algorithm.

Keywords
mobile agent, RPC(Remote Procedure Call), locker pattern,
interaction pattern

1. INTRODUCTION
A mobile agent is an executing program that can migrate during
execution from machine to machine. In RPC(Remote Procedure
Call) and multi agent, the tasks are performed by global
communication with remote site, whereas mobile agent system
performs the task by migrating a whole computational component,
together with its state, the code, and some resources[1][2].
Many researchers suggest that a major benefit provided by mobile
code is the capability to reduce network communication by
moving client's knowledge close to server's resources, thus
accessing them locally. By moving to the location of information
resource, the agent can search the resource locally, eliminating the
transfer of intermediate results across the network and reducing
end-to-end delay. Recently, for this benefit of mobile agent, the
demand of applying mobile agent to distributed systems such as
information retrieval, network management, and electronic
commerce has been increased.
But the question of whether the system using mobile agent is
bringing significant benefits to the performance of distributed

applications against traditional approach is an open one. Various
parameters must be considered to evaluate performance of a
paradigm used in developing distributed application. Performance
of distributed application is affected not only by a paradigm but
also by the migration pattern of the paradigm. So we need
quantitative performance model to decide an appropriate
interaction model in developing distributed application. In this
paper, we present performance evaluation model for mobile agent
and RPC that is, a traditional client-server architecture. And on
the basis of this model, we present an efficient selection algorithm
for an interaction pattern from paradigms. We also present
simulation results of this algorithm. This paper is intended to help
to decide which interaction model to be used in different
distributed applications.
There is no interaction pattern that is better than others in absolute
terms. The choice of the interaction pattern must be performed on
a case-by-case basis, according to the type of application. For
performance evaluation, parameters such as CPU costs, memory
usage and network traffic etc. should be considered. In this paper,
we only concern network traffic. And we choose a simple data
mining for target application.
For this model, we consider three kinds of interaction patterns:
RPC, mobile agent and another mobile agent applied locker
pattern.
In Locker pattern[5], mobile agent temporarily stores data in
private. In this way it can avoid bringing data that at the moment
are not needed. On a later occasion, the stored data can be sent to
client node, or another mobile agent migrates nodes to gather the
data stored in private area. We assumed the former case. The three
paradigms considered in this paper are shown in Fig. 1.
The paper is organized as follows. Section 2 presents performance
evaluation model for data mining application. Section 3 presents
selection algorithms. Our simulation results are presented in
section 4. Finally conclusion is given in section 5.

2. PERFORMANCE EVALUATION
MODEL
For Simplicity we make the following assumptions:
- The locations of client and server node are different.

- Uniform network
- There exist N network nodes.
- All requests have a fixed length.
- The average document size is different at each node.
- The probability r that a document contains useful

information is fixed. (0 � r � 1)
- In case of RPC, client requests the document header to each

server. In this time, the client can find whether the document
contains useful information or not by document header. If the
document is considered to contain useful information, the
client requests it to the server.

client server

request

response

client server

request

response

agent

agent
agent

client server

request

response

agent

response
agent

migrate another sites

(a) RPC (b) Mobile Agent

(c) Mobile Agent with locker pattern

Figure 1. Three paradigms

parm. unit

N
Mj

r
req
rephj

repdj

�

�

Ma

the number of network node
the number of documents of node j
the probability that a document may contain
useful information
size of request message
size of reply message (header) of node j
average size of document
network delay
average network bandwidth
size of mobile agent

number
number
0�r�1

bytes
bytes
bytes
ms

KB/sec
KB

Table 1. parameters
Parameters are shown in table 1. The size of mobile agent to
transfer is shown in equation 1.
Ma = DMA + (DMA/payload)*(IPheader + TCPheader) (1)

 DMA = ATP_header + SMA
 SMA = M_state + M_code + M_data
where SMA denotes the size of mobile agent itself that contains
agent code, data and state. For transferring agent, agent is attached
at the next of an ATP(Agent Transfer Protocol) header. And ATP
message is segmented into TCP messages. The payload in
equation 1 is TCP payload. Each TCP message is attached at the
next of a TCP header and encapsulated into an IP packet[3].

2.1 Eliminating duplicate data
In this section, we present a couple equations that calculate
duplicate data at each node. The additional parameters are shown
in Table 2.
TD is the total number of documents of all nodes. VD indicates
the number of documents that were found in the previous. UR is

the ratio of unique data out of all data. In this paper, we assume
there is no duplicate data within a node. The number of unique
data is represented as TD*UR, and NUR is obtained by
subtracting one from UR. The equation 2 shows the average
number of duplicate data at node j.

Parameter unit
UR

NUR
TD
VD

Unique Rate
Non Unique Rate
Total Document

Visited Document

0�UR�1
0�NUR�1

number
number

Table 2. Additional parameter

10 == jifNMj (2)

1)}2()/({ 〉××−× jifNURMjTDVDMj

Table 3 shows the process of eliminating duplicate data when
network node is 5 (N=5), and unique rate is 0.8 (UR=80%). At
each node, the numbers of documents are 10, 30, 20, 10 and 30
respectively.
With header information, we could distinguish duplicate data in
some degree by comparing one document’s header to another, not
by their contents. But, in case of mobile agent, much more data
can be eliminated if we compare whole content of one document
to the other, because mobile agent has accumulated documents
while migration.
The method of eliminating duplicate data at each paradigm is as
follows: In RPC, a client can discriminate whether a data is
duplicate one or not by header information that the client has got
from servers. First, the client receives header list from server, and
then eliminates unnecessary data and duplicate data, and then
requests the rest documents to server. Mobile agent easily
discriminate duplicate data by moving agent itself with collected
document. In locker pattern, to discriminate duplicate data,
mobile agent accumulates headers into data area of itself, and then
it migrates to another site.

2.2 Model for RPC(Remote Procedure Call)
Equation 3 and 4 shows network load and network execution time
at a node j respectively. UMj is the number of documents after
eliminating duplicate data, that is, the number obtained by
subtracting NMj from Mj from the equation 2.

)()1(djhjjSRPC rreprepUMreqrUML +++=− (3)

of doc. that removed (approx.)Visit
node Mj Equation %

of selected
doc. (approx.)

1 10 0 0 0 10 M

2 30 1.7 30*{10/(100-30) * (2*0.2)} 5.7 28.3 M-1.7
3 20 4 20*{40/(100-20) * (2*0.2)} 20 16 M-4
4 10 2.6 10*{60/(100-10) * (2*0.2)} 26.7 7.4 M-2.6
5 30 12 30*{70/(100-30) * (2*0.2)} 40 18 M-12

Tot. 100 20.3 79.7

j Mj Mj*{DB/(TD-Mj)*(2* NUR)}

Table 3. The process of eliminating duplicate data

δ
β

)22(rUMLT j
SRPC

SRPC ++= −
− (4)

Client requests headers just once at each node while it requests as
many documents as it needs. For each node, it requires delay of
two to request and reply document header, and delay of 2rUMj for
document bodies. Client does not have to receive all documents
from server because it can decide whether the document is
necessary or not by looking up its header respectively.

2.3 Model for Mobile agent
Equation 5 and 6 shows network load and network execution time
for migrating a mobile agent to node j respectively.

∑
=

++=
t

k

jdjdkkMA UMrrepreprUMMaL
1

)(2 (5)

 (t is number of node that is visited before by mobile agent)

β
δ MA

MA
LT += 2 (6)

Two times of network delay are required for agent migration. In

the equation 5, ∑
=

t

k

dkkreprUM
1

)(stands for the size of previously

accumulated data, and jdjUMrrep is the amount of accumulated
data from the current node.

2.4 Model for locker pattern
Equation 7 shows the network load, and equation 8 for the
network execution time when mobile agent applied locker pattern
migrates to node j.

djjLMA reprUMMaHL +=)((7)

 ∑
=

+=
t

k

hkkreprUMMaMaH
1

)(

 (t is number of node that is visited before by locker pattern)

δ
β

)1()(
)(rUMLT j

LMA
LMA ++= (8)

As for discriminating duplicate data, locker pattern accumulates
each document’s header into the data area of mobile agent. The
size of accumulated headers is relatively small compared to the
total size of data to be moved. In locker pattern, the amount of
rUMjrepdj network load is required for transferring collected
document to server.
The model devised so far is meaningful only for a uniform
network. For non-uniform network environment, it requires
somewhat different model against communication costs. We are
going to design a model for non-uniform networks in the future.

3. A SELECTION ALGORITHM
The performance of each paradigm hinges on its parameter value.
The major parameters are network bandwidth, size of accumulated
data, number of interaction with server, size of mobile agent, and
so on. In mobile agent, as we can see from the equation 5 and 6, it
consumes a little time to make the network connection, whereas it
consumes much more time to transfer mobile agent and its

accumulated data. But in RPC as we can see the equation 3 and 4,
it normally needs to make many global communications, which
produces a great deal of delay, whereas it needs far less time in
migrating over network. Mobile agent, therefore, shows better
performance than RPC does when it requires frequent global
communications or when the condition of given network is good
as well. On the contrary, RPC shows performance than mobile
agent when it requires fewer global communications or the
condition of given network is not good. The number of global
communications depends on the number of documents at each
node in case of data mining applications. The performance of both
mobile agent and locker pattern is affected by the size of mobile
agent.

3.1 The criterion of selective migration
We simplify notations given in section 2 for presenting better
insight into the meaning of the formulae.
Mobile agent performs better than RPC if TRPC-S > TMA. After
substituting and elaborating equations 3-5 in TRPC-S > TMA in
criterion of network delay times, we obtain

β
δ reqUMreprreqtADMarUM jh

j
−+−+〉)()(2

 (9)

AD(t) means ∑
=

t

k

dkkreprUM
1

)(.

RPC performs better than locker pattern if TRPC-S > TMA(L). After
substituting and elaborating equations 3,4,7,8 in TRPC-S > TMA(L)
in criterion of network delay times, we obtain

β
δ reqUMreprreqMaHrUM jh

j
−+−〉+)()1((10)

Mobile agent performs better than locker pattern if TMA > TMA(L) .
After substituting and elaborating equations 5-8 in TMA > TMA(L) ,
we obtain

δδ
β

)1()(−〉−
jrUMMatAD (11)

3.2 Algorithms
An algorithm selecting an efficient interaction pattern from the
given paradigms is presented in this section. In the following
algorithm, migration function is inferred from formulae in section
2 and 3.1.

 � Case I : fixed node sequence to visit

input : node list, other parameters
output : selected_paradigm_list, agent_position_list

set current_agent_position as client_node
for node# from 1 to last_node

 choose paradigm which has minimum execution time by
 migration function

 Add selected_paradigm into selected_ paradigm_ list
 If selected_paradigm = locker pattern
 update accmulated_header value

 set current_agent_position as node#;
 If selected_paradigm = MA

 update AD(t) value
 set current_agent_position as node#;

 End loop;

� Case II : not fixed node sequence to visit

In case of non-fixed node sequence to visit, the better
performance is achieved by changing node sequence to visit. The
algorithms are as follows.
input : node list, other parameters
output : table that composed of pair of (selected_node, paradigm)

set current_agent_position as client_node
While unvisited_node = none
 visit node by increasing order of total document size
 for each node
 choose paradigm which has minimum execution time by
 migration function
 Add selected_paradigm into selected_paradigm_list
 If selected_paradigm = locker pattern

update accmulated_header value
 set current_agent_position as node#;
 If selected_paradigm = MA

update AD(t) value
 set current_agent_position as node#;
 end loop;
 End loop;

4. SIMULATION
In this section, we present simulation results of each algorithm.
We used Visual C++ 6.0 for simulation, and considered following
parameter values : number of node N=8, network delay �=20ms,
network bandwidth �=300kbytes/s, r=40%, UR=80% and size of
mobile agent was 15KB. The size of request and reply messages
of header were 50, 60 bytes respectively. At each node, the
average number of documents and their sizes are shown in table 4.

 node 1 2 3 4 5 6 7 8

doc. size(KB) 2 5 10 3 5 15 1.5 3

of doc. 6 7 2 30 50 5 20 40

Table 4. Parameter values

� Case I : fixed node sequence to visit

The migration sequence after applying our algorithm with the
above assumptions is shown in table 5. The table 6 shows
migration sequence when applying algorithm in reverse for
comparison purpose.

visit node 1 2 3 4 5 6 7 8 C

Paradigm L L R M M L L L M

loc. Of agent 1 2 2 4 5 6 7 8 C

Table 5. After applying algorithm (L: Locker pattern, R: RPC, M:
Mobile agent)

visit node 1 2 3 4 5 6 7 8 C

paradigm M M M R R M M R M

loc. of agent 1 2 3 3 3 6 7 7 C

Table 6. After applying algorithm in reverse
Table 7 compares execution times to each other in case I. We can
see that the migration pattern after applying algorithm performs

better than others.

Only
MA

Only
RPC

Only
locker

Algorithm algorithm
reverse

time(ms) 3154 2972 2187 1769 2978

Table 7. Network execution times
The total network load of accumulated data is 115.2KB when
applying algorithm, 56.2KB for applying in reverse, and 174.2KB
for mobile agent only. The total network load of accumulated
header is 1.3KB when applying algorithm, 0KB in case of reverse
applying, and 3KB for locker pattern.

� Case II : non-fixed node sequence to visit

The migration sequence after applying our algorithm under the
assumptions above is shown in table 8. The table 9 shows
migration sequence of reverse applying.

visit node 1 8 3 7 2 6 4 5 C

paradigm L M R M L L M M M

loc. Of agent 1 8 8 7 2 6 4 5 C

Table 8. After applying algorithm

visit node 5 4 6 5 7 3 8 1 C

paradigm M R M R M M R R M

loc. of agent 5 5 6 6 7 3 3 3 C

Table 9. After applying algorithm in reverse
Table 10 shows the comparison of execution times in the case II.
From simulation results, when changing node sequence to visit by
the algorithm, mobile agent consumes less execution time. But the
execution time of locker pattern is little influenced, and RPC is
not influenced at all.

Only
MA

Only MA
(reverse)

Only
RPC

Only
locker Algo. algorithm

reverse

time 1927 4773 2972 2187 1446 2902

Table 10. network execution times[unit: ms]
In case II, the total network load of accumulated data and headers
are 115.2KB, 0.37KB respectively by applying algorithm. These
loads are less than those of case I. In case of mobile agent, total
network load of accumulated data is about 28KB less than that of
case I. If there is a big difference in the number or the size of
documents at each node, the performance of system is much more
influenced by node visiting sequence.
The table 11 compares the execution time of fixed node sequence
with execution times of visit sequence changed by the algorithm II.
From this simulation, we can see that the network execution times
can be varied according to node visit sequence and interaction
pattern of the paradigm as well.

applying
algo.

Applying algo.
in reverse Only mobile agent

Fixed 1769 2978 3154

Non-fixed 1446 2902 1927 4773(reverse)

Table 11. Comparing execution times by node sequence to visit
[unit: ms]

5. CONCLUSIONS
In this paper, we presented performance evaluation model for
three different paradigms. On the basis of this model, we also
presented a selection algorithm searching for more efficient
interaction pattern. We then showed simulation results of these
algorithms. There is no interaction pattern that is better than
others in absolute terms. The choice of the interaction pattern
must be performed on a case-by-case basis, according to the type
of application. For performance evaluation, parameters such as
CPU costs, memory usage and network traffic etc. should be
considered. In this paper, we, however, concerned network traffic
only, and chose a simple data mining for target application.
From this research, we can see that the network execution times
are varied according to node sequence to visit and interaction
pattern of the given paradigm. This paper helps us to decide
convenient interaction pattern in specific application domain for
developing distributed applications. In the future work, we will
extend the proposed model and algorithms to facilitate non-
uniform network.

6. REFERENCES
[1] Bic, L. F., fukuda, M., and Dillencourt, Distributed

computing using autonomous objects. IEEE Computer, Aug.
1996.

[2] Wooldridge, M. and N. R. Jennings, Agent Theories,
Architectures and Languages: A Survey. In Michael Jl.
Wooldridge and Nicolas R.Jennings, editor, Intelligent Agent,
pp.1-39, Springer-Verlag, Germany, 1995.

[3] Lange, D.B., M. Oshima, Programming and deploying Java

Mobile Agents with Aglets. Addison Wesley Press, 1998.
[4] Tennenhouse, D. L., Jonathan M. S., W. David Sincoskie,

David J. Wetherall, and Gary J. Minden. A survey of active
network research. IEEE Communications, 35(1):80-86,
January 1997.

[5] Harrison, C. G., D. M. Chess and A. Kershenbaum, Mobile
Agents: Are they a good idea?. IBM Watson Research Center,
Mar. 1995.

[6] Carzaniga, A., G. P. Picco, G. Vigna, Designing Distributed
Applications with Mobile Code Paradigms. Proceedings of
the 19th International Conference on Software Engineering,

[7] Strasser, M., M. Schwehm, A Performance Model for Mobile
Agent Systems. Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications PDPTA'97, Volume II, pp. 1132-1140, 1997.

[8] Yariv, A., D. B. Lange, Agent Design Patterns : Elements of
Agent Application Design. Second International Conference
on Autonomous Agents (Agents 98), 1998.

[9] Nog, S., Chawla S., and D. Kotz, An RPC mechanism for
transportable agents. Technical Report TR96-280,
Department of Computer Science, Dartmouth College,
Hanover, N.H., 1996.

[10] H.C.Kwon, J.H.Lee, H.J.Park, B.N.Yoon and K.J.Yoo, "A
Performance Evaluation Model for Mobile Agent System.
Proc. of the first International Conference on Advanced
Communication Technology (ICACT'99), Muju resorts,
Korea, pp.303-306 Feb. 1999.

