
Bayesian Knowledge Bases (BKBs) 

• What is a BKB 

• What is an Inference 

• Probabilistic 

Reasoning with BKBs 

• Uniquely 

Representing a BKB 

as a matrix 

• Different types of 

BKBs 

 
  Richard S. Detsch  

Thayer School of Engineering  

October 2006 

Richard.S.Detsch@dartmouth.edu 
Slides on paper titled: Reasoning with BKBs – Algorithms and Complexity by 

Rosen, Santos, Shimony 



Why Construct a BKB 

• Similar to why you would want to construct 

any knowledge network: to find the most 

probable complete state (belief revision) & 

associated marginal probabilities (belief 

updating) given the evidence.  

• Belief Updating schemes do not seem to 

work well with BKBs  



What is a BKB 

Weather = Raining  

r.v. / assignment 

I-Node “Instantiation Node” 

S-node “Conditional 

Probability Node” 



Weather = Raining Cover = On 

Porch = Wet 

P(Porch = Wet | 

Weather = Raining, 

Cover = On) 

0.8 

0.1 0.4 



Bayesian Network 



BN to BKB 

= 
0.8 0.2 

R= T R= F 

0.8 0.2 

R= T R= F 

0.01 0.4 

S= T S = F 

0.6 0.99 

For each (variable, value) pair construct 

an I-node r.  For each CPT entry 

construct a rule with the antecedent being 

the I-node corresponding to the state of 

the predecessor (could be null) of variable, 

and consequent being the I-node r 



? Mutual Exclusion ? 

Cover = Off Rain = Yes 

Concrete = 

Wet 

S1 

Sprinkler = 

On 

S2 
  Two CPRs are not 

mutex if they are 

consistent with a 

shared state i. e. 

{S1,S2} are 

consistent with the 

same state namely: 

{Cover=Off, 

Rain=Yes, 

Sprinkler=On, 

Concrete=Wet} 

Equivalently: Two CPRs 

are mutex if they have 

different instantiation of 
(ONE) shared r.v. in their 

respective antecedents. 

R1  P(C=c|A1=a1, … , An=an) 

R2  P(D=d|B1=b1, … , Bn=bn) 

Where Ai = Bj but ai != bj for 

some i and j 

{S1,S2} doesn’t have a shared 

r.v. 



Consequent Bound 

Z= 0 

T= 1 

S2 

X = 0 

Z= 1 

S1 U = 0 

T= 1 

The CPRs {S1,S2} are consequent bound because they have discrete instantiations 

of the same r.v. in their consequence and they‟re antecedent intersection is non-null.  

Therefore {S1,S2} are opposing rules to apply when both antecedents are satisfied 

since they result in different consequents.  Note: the yellow is to indicate that 

Consequent Bound does not mean Consequent Variant 

P(C = c | A1, … , Am) 

P(D = d | B1, … , Bn) 

Where ai = aj whenever Ai = Bj 

and C = D but c != d 

Note: Mutually Consequent 

Bound CPRs are not mutually 

exclusive 



Compatible CPRs 

W = w X = x Y = y 

R2 R1

  

A = a B = b 

Two CPRs are compatible if either they do not share a r.v. in their respective 

antecedent or if they do share one or more r.v.s. in their respective antecedents, 

those r.v.s. have the same instantiation.   



W = w X = x Y = y 

S2 S3 S1 

S6 
S5 

L = l A = a 

S4 

Z = z 

S7 

S9 

B = b 

S8 S11 

C = c 

S10 

Compatible Intersection 



Compatible Inferences 

X = x1 X = x2 Y = y 

S2 S3 S1 

S4 S5 

Z = z2 Z = z1 

W = w X = x Y = y 

S2 S3 S1 

S4 S5 

Not Compatable Compatable 

L = l Z = z 



Formal Definition of a BKB B 

• For any two distinct CPRs S1 and S2  in B 

are either mutually exclusive or have 

different consequence. 

• For any subset of mutually consequent-

bound CPRs R, the weight of R, W(R) is 

less than unity. 



Partition Rule 

A = a1 

A = a2 

B = b1 

B = b3 
B = b3 

Z = z1 

X = z2 

Y = y1 

Y = y3 
Y = y3 

… 

CELLS 



A BKB that obeys a partition rule in the I-node 

space if it is confined by two restrictions 

• One: No more than 

one instantiation per 

r.v. can be contained 

in any of its S-node‟s 

immediate 

predecessor set 

 

Y = y 

X = x1 
X = x2 

S 

The S-node S has two instantiations of 

r.v. X represented in its immediate 

predecessor set  



• Two: An I-node with 

two distinct S-nodes 

in its immediate 

predecessor set will 

have two distinct r.v. 

instantiations for a 

single r.v. 

 

X = x1 

Y = y 

S1 

S2 

X = x2 

S = S 

Q = q 

The S-nodes S1 and S2 have r.v. instantiations 

x1 and x2 represented in their respective 

immediate predecessor set and therefore are 

not mutex w.r.t. the partition rule 

Note: a set of CPRs that obey a 

partition rule is said to be mutually 

exclusive w.r.t. the partition rule; 

for it doesn’t allow events that 

overlap in probability space for the 

same I-node 



An S-node within a subgraph is well-

founded if it keeps its original immediate 

predecessor set. 

T = t 

Y = y 

U = u 

X = x 
Z = z 

Si 

Sj 

Sk 

Sl 

Sh 

T = t 

Y = y 

U = u 

X = x 

Si 

Sj 

Sk 

Sl 

Sg 

Graph 

Subgraph 

Here Sk is well-founded in the subgraph but Sl is not 



An S-node within a subgraph is well-

defined if it keeps its original immediate 

descendent set. 

T = t 

Y = y 

U = u 

X = x 
Z = z 

Si 

Sj 

Sk 

Sl 

Sh 

T = t 

Y = y 

U = u 

X = x 

Si 

Sj 

Sk 

Sl 

Graph 

Subgraph 

Note:  all S-nodes within a subgraph are well-defined because they have to have 

exactly one I-node descendent to even exist 



An I-node is well-supported if it is 

preceded by an S-node 

X = x 

Sk 

Y = y Z = z 

X = x 

Si 

Z = z 

X = x 

Sk 

Y = y Z = z 

Si Sj Sj 

Sk 

Good 
Good Bad  Z = z not preceded by 

an S-node 

Note: outside of this slide assume all I-nodes not pictured with a 

preceding S-node to have one implicitly. 



States are subgraphs of a BKB that do not 

contain more that one r.v. instantiation 

• Every r.v. has two or 

more possible 

instantiations 

• A state is a set of I-nodes 

containing one or less 

instantiations from each 

r.v. 

• A state is complete for a 

set of r.v.s. if it contains 

exactly one instantiation 

from each r.v. 

T = t 

Y = y 

U = u 

X = x 
Z = z 

Si 

Sj 

Sk 

Sl 

Above state is complete on the set of 

r.v.s. {T,U,X,Y,Z} 



A subgraph is an inference over a graph if every 

S-node is well-founded/defined, every I-node is 

well supported, acyclic and is a state 

X = x1 X = x2 Y = y 

S2 S3 S1 

S4 S5 

Z = z2 

X = x2 Y = y 

S2 S3 

S5 

Z = z2 

Graph 

Subgraph 

This subgraph is complete inference for it is also a complete state on r.v.s. 

{X, Y, Z}, also notice that the graph is not an inference for it is not a state 

Z = z1 

Because of the 

partition rule, an 

I-node with more 

than one 

predecessor S-

node is not 

allowed! 

A node is 

grounded if it 

exist in an 

inference 



Inferencial Equivalence 



When is an inference relevant to a 

state? 

• An inference is relevant to a state when it is a 
subgraph of that state. 

• Multiple inferences can be relevant to a state but 
their exist one unique maximally relevant 
inference, however multiple states can share the 
same maximally relevant inference 

• The composite state of an inference is the set 
of complete states to which the inference is 
relevant.  Dominate composite state of an 
inference is the set of complete states the 
inference is the maximal relevant inference to. 



BKB Locally Complete? 

Y1= y1 Y2= y2 Yk= yk  X = xj 

When you have a rule R s.t. given any complete state S (on 

ant(R)) with non-zero probability then ant(R) {Y1=y1, … 

,Yk=yk} extended by X=xl will have probability less then S 

there exist an inference I in the BKB relevant to S that 

contains ant(R) + X=xl 

Y1= y1 Y2= y2 Yk= yk + X = xl 

R : 

I : 



R1 

R2 

h1 

h2 

h3 

h… 

hn 

For any two inferences R1 

and R2 where R1 is a 

proper subset of R2 there 

exist a sequence of 

inferences   

{h1, h2, h3, … , hn} called 

the immediate parent 

sequences where:  

|Ihi+1 – Ihi| = |Shi+1 = Shi| = 1  

that formally defines in a 

discrete incremental fashion 

the canonical inference 

space between the two 

inferences described above.  



Conditional Probability Rule (CPR) 

U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

A CPR is an S-node, its incident edges and immediate neighbors; highlighted in 

green above is the CPR for S-node S7 

The weight of a CPR 

is the weight of its S-

node i.e. the weight of 

S7 is P(Y=1|Z=0,X=0) 



I 
U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 

S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

A CPR is called an extender of an inference if it is 

not a member of the inference but when include 

creates a new inference. 

The CPR for S3 and S4 extend the inference I.  

Not all r.v.s that are outside 

the inference can be 

extended! i.e. I-node T=0 

cannot extend the inference I 
for the antecedent of either 

CPRs S5 or S9 would be 

unsupported and not in I 



I 
U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

A set of CPRs is complementary w.r.t. an inference and a 

r.v. if each extents the inference by including a unique 

instantiation of the r.v. 

CPRs {S3, S12} are complementary w.r.t the inference I and 

the r.v. Y additionally if Y=0 and Y=1 were the only 

instantiations for Y then {S3, S12} is the unique maximal 

complementary set of CPRs. 



I 
U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

The inference I is relevant to the following states: {X = 0, Z = 1, U = 1};  

{X = 0, Y = 2, Z = 1, T = 0, U = 1}. 

The inference in light yellow is the maximally relevant to the state  

{X = 0, Y = 1, Z = 0, T = 0, U = 0, V = 0}. “which is a member of the dominate 

composite state of the inference” 

Note: {X = 0, Y = 1, Z = 0, T = 

0, U = 0, V = 0} is not an 

inference because to include 

S6 you would also have to 

include U=1! 



Test Case 

BKB K 

A1 

A2 
A3 

A4 

Evidence  
Compete  

Inference 

1 

Compete  

Inference 

1 

Compete  

Inference 

4 

Compete  

Inference 

3 

To employ belief 

revision on a set 

of test cases 

their has to exist 

for every 

evidence set 

associate with 

those test cases 

a complete 

inference it is 

relevant to.  

The user defines what 

test cases and 

associated evidence that 

the BKB has to satisfy. 



BKB User Mechanics 

A = 0 

S1 

D = 1 B = 0 A = 2 B = 1 

S2 S3 S4 S5 

C = 0 

B = 2 A = 1 
D = 0 

C = 1 S10 

S6 

S7 
S8 

S9 

S11 

Evidence E  {A = 0, B = 0} “what we know” 

MPE “most probable complete state” {A = 0, B = 0, D = 1, C = 1} 

The random variable the customer cares about C  Answer = {C = 

1} if C=1 is the expected answer and P(C = 1|E) > P(C = * | E) where * 

is all other possible values for r.v. C then the BKB satisfies the 

Evidence in respect to the expected answer. 

The evidence is the 

customers query 

which through belief 

revision produces the 

most probable 

compete state 

containing the 

evidence, the answer 

are the r.v. values in 

the complete state 

that have particular 

interest to the user. 



Correct Inference 

• A correct inference for a 

test case is a complete 

state that contains the 

evidence, answer and 

has higher probability 

than any incorrect 

inference. 

• An incorrect inference is 

a complete state that 

contains the evidence 

and a r.v. incompatible 

with the answer. 

A = 0 

S1 

D = 1 B = 0 

S2 S3 

C = 0 

S6 
S7 

C = 1 

Correct Inference 

Incorrect  Inference 

Answer 



Force Correct Inference 

• Looking at the example, if 

the incorrect inference 

has a higher probability 

then the correct inference 

one could try to adjust the 

weights of S-nodes S6 and 

S7 to reverse the 

probabilistic inequality. 

• S-node weight changes 

are a non-structural 

modification, but are not 

always possible. 

A = 0 

S1 

D = 1 B = 0 

S2 S3 

C = 0 

S6 
S7 

C = 1 

Correct Inference 

Incorrect  Inference 

Answer 



T E(I1) 

E(I2) 

E(I3) 

E(I4) 

BKB B 



Reasoning w/ Inferences 

R 

U 
U 

R K 

d 



Probability of an Inference 

• The probability of an inference I is the 

probability that the state „event‟ I happens 

which is the sum of probability of all 

complete states consistent with I {the 

complete states to which I is relevant}. 

  



A1 = a11 

A2 = a21 

     … 

An = an1 

A1 = a12 

A2 = a22 

An = a2n 

      … 

      … 

A1 = a1k1 

A2 = a2k2 

An = ankn 

     …      …      … 

     … 

Assignment Complete: A BKB is assignment complete if for every complete state 

there exist a complete inference that represents that complete state. 

Probability Complete: A BKB is probability complete if the sum of all complete 

inferences equals one. 

The BKB bellow would be assignment complete if the Blue, Yellow, Red, Green 

& Brown complete states where subsumed by a complete inference AND would be 

probability complete if the probabilities of those inferences equaled one. 

BKB B 

State 

Intersection is 

allowed 



Topological Ordering 

Then the Probability of the Inference would be: 

A = a10 A = a12 

A = a8 

Good: 8 < min{10,12} 

Topology is only 

allowed when 

subgraph is 

acyclic 



0.8 0.2 

R= T R= F 

0.01 0.4 

S= T S = F 

0.6 0.99 

Topological Ordering for 

Quasi-Unique Representation 

R1 R2 

R4,1 

R3,1 R3,2 
R4,2 

Depth First? 

What do you do about 

Cyclicity? 

Have not formally 

decided … 

On both vertices and 

arcs? 

E1 E2 

E3 
E4 

E5 

E6 

E7 E8 
E9 

 E10 

I-1 I-2 

I-3 I-4 



Incidence Matrix 

0.8 0.2 

R= T R= F 

0.01 0.4 

S= T S = F 

0.6 0.99 

R1 R2 

R4,1 

R3,1 R3,2 
R4,2 

E1 E2 

E3 
E4 

E5 

E6 

E7 E8 
E9 

 E10 

I-1 I-2 

I-3 I-4 

E1 E2 

E

3 

E

4 

E

5 

E

6 E7 E8 E9 

E1

0 

R1 -0.2 0  0 0 0 0 0 0 0 0 

I1 0.2 0 -1 -1 0 0 0 0 0 0 

R2 0 -0.8 0 0 0 0 0 0 0 0 

I2 0 0.8 0 0 -1 -1 0 0 0 0 

R3,1 0 0 1 0 0 0 -0.01 0 0 0 

R3,2 0 0 0 1 0 0 0 -0.99 0 0 

R4,1 0 0 0 0 1 0 0 0 -0.4 0 

R4,2 0 0 0 0 0 1 0 0 0 -0.6 

I3 0 0 0 0 0 0 0.01 0 0.4 0 

14 0 0 0 0 0 0 0 0.99 0 0.6 

Adjacency Matrix 

0.2 

1 1 

0.8 

1 1 

0.01 

0.99 

0.4 

0.6 

I1 I2 R3,1 R3,2 R4,1 R4,2 I3 I4 
R1 

I1 

R2 

I2 

R3,1 

R3,2 

R4,1 

R4,2 

Adjacency 

1. Tailless S-nodes 

removed from 

columns. 

2. Headless I-nodes 

removed from rows 

3. S-node rows have 

exactly on element 

4. I-node rows have one 

or multiple unity 

values 

Incidence 

1. Two elements in 

every column: one 

positive one 

negative 

2. For every row 

|negative| = # edges 

leaving, |positive| = # 

edges leaving 



0 1 Projectors Positive Definite 

Nonnegative Semidefinite 

Group Invertable 

Range Hermitian 

Normal 

Hermitian 



Incomplete BKB 

Partition Rule  

Violation 
Deductive 

Mutually 

Consequent Bound 

CPR sum > Unity 

I-nodes Not 

Supported 

S-nodes w/ 

Multiple heads 

Complete Info 

Consequent 

Complete 

Antecedent 

Complete 

Antecedent 

Complete 

Stable 

Normalized 



0 1 Projectors Positive Definite 

Nonnegative Semidefinite 

Group Invertable 

Range Hermitian 

Normal 

Hermitian 



No self-pointing I-node 

S Y = y 

The antecedent and consequent of any CPR has null 

intersection 



S-Nodes have exactly one I-Node Descendent 

X = x 

Good 

X = x 

Bad 

Y = y 

S S 

P(X = x, Y = y | Z = z , … ) = S   NOT ALLOWED 



Inferencial Acyclicity 

X = x2 Y = y 

S2 

S5 

Z = z2 

S6 

Acyclicity in an inference gets at the fact that no inference chain can have a 

support node head that occurs in the tail of any of its predecessors in that chain 

i.e. S6‟s head is at the tail of its predecessor S5 



Variable Cycle 

U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S2 

S3 S5 

S8 
S1 

A variable cycle in BKB is a directed path that includes two I-nodes (not 

necessarily distinct) from the same r.v.  A cycle that starts and ends at the same 

I-node counts that I-node twice and is a variable cycle. 



Every BKB has to respect a weighting 

• All S-nodes are 

conditional probability 

rules that take values 

in [0,1] 

• All BKBs a have to 

obey a weighting W 
that is the product of 

its S-nodes 

T = t 

Y = y 

U = u 

X = x 
Z = z 

Si 

Sj 

Sk 

Sl 

Here W(A) = P(T = t)*P(U = u | T = t)*P(X = x | U = u)*P(Y = y | X = x, Z = z) 

BKB A 



Node Removal? 

Rain = T Rain = F 

Car Fast = T Car Fast = F 

0.6 0.4 

0.9 
0.1 

0.1 
0.9 

Car Fast = T Car Fast = F 

0.9 0.1 

Graph A 

Graph B 

You can always 

remove r.v.s. but the 

distributions will not be 

the same.  In the 

example bellow, the S-

nodes of Graph B are 

the derived marginal 

distributions from 

Graph A‟s joint 

distribution. 



Deductive Subsets of CPRs 

R1 

R2 

… 

Rn 

A1 = a1 

A2 = a2 

… 

An = an 

1:1 and onto mapping 



Consequent Variant 

Z= 0 

T= 1 

S1 

X = 0 

Z= 1 

S2 

A set of CPRs are consequent variant if they have the same set of antecedents and 

consequent random variable.  Here {S1,S2} are consequent variant because they 

share the same consequent r.v. Z, and both have the same set of antecedent I-

nodes namely {X = 0 and T = 1}, additionally if 0 & 1 are the only instantiations of r.v. 

Z then {S1,S2} would be consequent variant complete for r.v. Z. 

A graph is called 

consequent-

complete if every 

maximal C-variant 

set is also 

complete 

Note: Consequent 

Variant is different 

then Consequent 

Bound 



Consequent Completeness 

• Consequent Completeness means that if 

there is a rule that can deduce an I-node 

{instantiation of r.v. X} from some 

antecedent state, then all other 

instantiations of X may be deduced from 

the same antecedent state.  

• A BKB is consequent-complete if every 

maximal C-variant set is also complete 



Antecedent Variant 

V = 0 

Z= 0 

S1 

Y= 0 

Y= 1 

S2 

V = 1 

U = 0 

S3 

S4 

S5 

   A set of CPRs R is called antecedent-variant if they have the same consequent I-node.  

Additionally, R is called a cover of its antecedent-variables Va if all possible states for Va 

are CONSISTENT with the antecedent of some rule in R.  If all possible states for Va are 

also equal to the antecedent of some rule in R, then R is antecedent-compete for Va. i.e. 

the above BKB K has CPRs R = {S1,S2,S3}, Va = {Y,V,U}, ante(R) = 

{Y=0,Y=1,V=0,V=1,U=0}, if no state on Va exist outside of ante(R) then R would be an 

antecedent-cover.  If ante(R) = {Y=0,Y=1,V=0,V=1,U=0,U=1} it would be a complete 

enumeration on Va and thus R would be antecedent-complete.  A graph is antecedent-

cover/compete if every maximal antecedent-variant are a cover/complete.  

Consistency in BKBs requires Groundedness and Normalization 

S6 
S7 

S8 

Q= 1 

U = 1 

S9 

S10 

??? 
??? 

The pink annex is 

INCONSISTENT 

with antecedent-

cover 



BN correspond to BKB? 

• A Bayes Network corresponds naturally to a 

BKB that is acyclic, consequent-complete and 

antecedent-complete. 

A BKB with these 

conditions has its 

consistency trivially 

meet. 



Y = y 

X = x1 
X = x2 

R1 

R4 

R2 

R3 



Y = y 

X = x1 
X = x2 

R1 

R4 

R2 

R3 



Stable BKB B 

Y = y 

X = x 

Z = z 

R1 

T = t 

??? 

??? 

R2 

R5 

R3 

R4 

Subset S 



BKB B is conditional probability 

consistent with p when 



Ih 
A = a 

S 

B = b B = b 
Ih 

I 

Bad Good 



Importance Sampling 

• Complicated Belief heuristic for 

determining the most probable complete 

state S and associated sample weight 

W(S) for a grounded and normalized BKB 

K w/ cycles; that is randomized by a 

random uniform probability for each of the 

r.v.s. not in the evidence and a weight 

accumulator.   



R1
1, …, R1

k1 Rn
1, …, Rn

kn , … , BKB K  

Where Cons(Ri
1) + …, + Cons(Ri

ki)  Domain Xi  

On set of r.v.s.  X  {X1, … , Xn} 

X1, … , Xm 
Evidence  E  0 <= m < n 

I = null Initial Inference & 

associated 

complementary CPRs 

all initialized to null 
R1 R2 . . . Rn 



Ri
1, …, Ri

ki 

For all CPR set Ri
1, …, Ri

ki for i <= n if Ri
j extends I w.r.t. Xi 

then Ri
j is added to Ri 

While randomly generated uniform 

probability condition is not violated 

For all CPR set Ri
1, …, Ri

ki for i > m if there exits CPRs R in 

Ri that extends I w.r.t. Xi then I is unioned with R 

 

After I is expanded S is determined to be st(I) unioned w/ E 

where st(I) is the smallest state that I is the MRI to 



What Kind of BKB Makes Sense? 

• If the BKB is normalized, consequent-

complete, all nodes are grounded, all maximal 

inferences are complete.  Then the BKB is 

locally complete w.r.t every rule R and 

P(cons(R)|ant(R)) = W(R) whenever P(ant(R)) > 0 
 

• Note: given a state S the maximal relevant 

inference is the largest inference relevant to S 

and the only one with weight greater than zero. 



I 
U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

A complementary set of CRPs is normalized w.r.t an 

inference and r.v. if the sum of its respective S-nodes are 

less than or equal to unity 

The set of CPRs for S-nodes S3 and S12 are normalized w.r.t 

the inference I and random variable Y iff S3 + S12 <= unity 

(compete if = unity).  A graph is called normalized if for each 

inference its respective complementary set of CPRs is 

normalized. 

Determining whether a graph 

is normalized is exponential, 

we need an better semantic! 

A BKB is 

normalized if 

every inference’s 

complementary 

set of CPRs are 

normalized 



CPR Weight and Significance? 

• The weight of a conditional probability rule 

only has semantics in the context of its 

inference. 

• Weights for ungrounded rules are 

meaningless 

 



BKB Normalization 

• Normalization helps simplify heuristics 

• If K a consequent-complete BKB and each 

C-variant set of CPRs R is locally 

normalized {R is complementary w.r.t. 

some inference and r.v. X where X is the 

consequent for R} then K is normalized. 

• If all the nodes are grounded the above 

sufficient condition becomes necessary 



I 

The dominate weight of an inference is the weight of the inference 

multiplied by the product of the positive difference between unity and 

the weight of the maximal complete set of CPRs for each r.v. not 

represented in the inference 

U = 1 Z = 1 

Y = 1 

U = 0 

T = 0 

S1 S2 

S3 

S4 

S5 

Y = 0 

V = 0 

X = 0 Z = 0 

S6 

S7 

S8 

S9 

S10 S11 

S12 

For example the dominate weight for the inference I is:  

S1S2[(1-S3-S12)(1-S11)(1-S6)]  

The dominate weight of an 

inference is on a set of r.v.s. 

for which the r.v.s. contained 

in the inference is a subset. 



• Also note that if F is consistent with a 

normalized BKB, then for any inference in 

the BKB the product of the S-nodes is 

identical to F acting on the state of the 

inference. 

When is a function F consistent with a 

normalized BKB over a set of r.v.s.? 



When is a function F consistent with a 

normalized BKB over a set of r.v.s.? 

• When given any inference in the BKB the 

sum of F across all complete states, in the 

set of complete states for which the 

inference is the maximal relevant 

inference, is equivalent to the dominate 

weight of an inference.  And is called the 

default distribution for the BKB if F 

returns the same result across all the 

complete states it acts upon.  



If K a normalized BKB over r.v.s X, and F a 

distribution consistent w/ K then F is a joint 

probability distribution over the set of 

complete states on X 

• If the set of r.v.s. is {U,V,Z} each with 
domain {0,1} then the cross product of the 
domains is the set of ordered triplets of 0s 
and 1s which is the same thing as the set 
of complete states on X, therefore the 
domain of F is the cross-product of all the 
domains in X, of whose complete 
enumeration where evaluate would 
evaluate to unity. 



Is this an Inference? 

X = x Y = y 

S1 S2 

S3 

Q = q Z = z 

S4 

R = r 

S5 S6 

Rule Violation: there are two S-

nodes pointing to one I-node that do 

not share a r.v. w/ distinct 

instantiation; therefore this graph is 

not mutually exclusive w.r.t. a 

partition rule 

But: There is a chance, for this 

subgraph, that all the S-nodes are 

well-defined and well-founded, the I-

nodes are well-supported and it is 

acyclic; what is the difficulty here 

outside of the partition rule? 


